In this paper, we consider the solution of linear weighted complementarity problem (denoted by LWCP). Firstly, we introduce a new class of weighted complementary functions and show that its continuously differentiable. On this basis, the LWCP is reconstructed as a smooth system of equations, and then solved by the Levenberg-Marquardt method. The convergence of the algorithm is proved theoretically and numerical experiments are carried out. The comparative experiments show that the algorithm has some advantages in computing time and iteration times.
Citation: Panjie Tian, Zhensheng Yu, Yue Yuan. A smoothing Levenberg-Marquardt algorithm for linear weighted complementarity problem[J]. AIMS Mathematics, 2023, 8(4): 9862-9876. doi: 10.3934/math.2023498
In this paper, we consider the solution of linear weighted complementarity problem (denoted by LWCP). Firstly, we introduce a new class of weighted complementary functions and show that its continuously differentiable. On this basis, the LWCP is reconstructed as a smooth system of equations, and then solved by the Levenberg-Marquardt method. The convergence of the algorithm is proved theoretically and numerical experiments are carried out. The comparative experiments show that the algorithm has some advantages in computing time and iteration times.
[1] | Z. S. Yu, Y. Qin, A cosh-based smoothing Newton method for P0 nonlinear complementarity problem, Nonlinear Anal. Real., 12 (2011), 875–884. https://doi.org/10.1016/j.nonrwa.2010.08.012 doi: 10.1016/j.nonrwa.2010.08.012 |
[2] | Z. S. Yu, Z. L. Wang, K. Su, A double nonmonotone Quasi-Newton method for nonlinear complementarity problem based on piecewise NCP functions, Math. Probl. Eng., 2020. https://doi.org/10.1155/2020/6642725 doi: 10.1155/2020/6642725 |
[3] | K. Ueda, N. Yamashita, Global complexity bound analysis of the Levenberg-Marquardt method for nonsmooth equations and its application to the nonlinear complementarity problem, J. Optim. Theory Appl., 152 (2012), 450–467. https://doi.org/10.1007/s10957-011-9907-2 doi: 10.1007/s10957-011-9907-2 |
[4] | J. L. Zhang, X. S. Zhang, A smoothing Levenberg–Marquardt method for NCP, Appl. Math. Comput., 178 (2006), 212–228. https://doi.org/10.1016/j.amc.2005.11.036 doi: 10.1016/j.amc.2005.11.036 |
[5] | J. H. Alcantara, J. S. Chen, A new class of neural networks for NCPs using smooth perturbations of the natural residual function, J. Comput. Appl. Math., 407 (2022), 114092. https://doi.org/10.1016/j.cam.2022.114092 doi: 10.1016/j.cam.2022.114092 |
[6] | F. A. Potra, Weighted complementarity problems–a new paradigm for computing equilibria, SIAM J. Optim., 22 (2012), 1634–1654. https://doi.org/10.1137/110837310 doi: 10.1137/110837310 |
[7] | Y. Y. Ye, A path to the arrow-debreu competitive market equilibrium, Math. Program., 111 (2008), 315–348. https://doi.org/10.1007/s10107-006-0065-5 doi: 10.1007/s10107-006-0065-5 |
[8] | S. Asadi, Z. Darvay, G. Lesaja, N. Mahdavi-Amiri, F. A. Potra, A full-Newton step interior-point method for monotone weighted linear complementarity problems, J. Optim. Theory Appl., 186 (2020), 864–878. https://doi.org/10.1007/s10957-020-01728-4 doi: 10.1007/s10957-020-01728-4 |
[9] | X. N. Chi, G. Q. Wang, A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem, J. Optim. Theory Appl., 190 (2021), 108–129. https://doi.org/10.1007/s10957-021-01873-4 doi: 10.1007/s10957-021-01873-4 |
[10] | J. Y. Tang, H. C. Zhang, A nonmonotone smoothing Newton algorithm for weighted complementarity problem, J. Optim. Theory Appl., 189 (2021), 679–715. https://doi.org/10.1007/s10957-021-01839-6 doi: 10.1007/s10957-021-01839-6 |
[11] | Z. Y. Liu, J. Y. Tang, A new smoothing-type algorithm for nonlinear weighted complementarity problem, J. Appl. Math. Comput., 64 (2020), 215–226. https://doi.org/10.1007/s12190-020-01352-5 doi: 10.1007/s12190-020-01352-5 |
[12] | J. Zhang, A smoothing Newton algorithm for weighted linear complementarity problem, Optim. Lett., 10 (2016), 499–509. https://doi.org/10.1007/s11590-015-0877-4 doi: 10.1007/s11590-015-0877-4 |
[13] | J. Y. Tang, J. C. Zhou, Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Comput. Optim. Appl., 80 (2021), 213–244. https://doi.org/10.1007/s10589-021-00300-8 doi: 10.1007/s10589-021-00300-8 |
[14] | X. H. Liu, W. Wu, Coerciveness of some merit functions over symmetric cones, J. Ind. Manag. Optim., 5 (2009), 603–613. https://doi.org/10.3934/jimo.2009.5.603 doi: 10.3934/jimo.2009.5.603 |
[15] | Z. H. Huang, J. Y. Han, D. C. Xu, L. P. Zhang, The non-interior continuation methods for solving the P0 function nonlinear complementarity problem, Sci. Chin. Series Math., 44 (2001), 1107–1114. https://doi.org/10.1007/BF02877427 doi: 10.1007/BF02877427 |
[16] | P. Jin, C. Ling, H. F. Shen, A smoothing Levenberg-Marquardt algorithm for semi-infnite programming, Comput. Optimiz. Appl., 60 (2015), 675–695. https://doi.org/10.1007/s10589-014-9698-0 doi: 10.1007/s10589-014-9698-0 |
[17] | J. L. Zhang, J. Chen, A smoothing Levenberg-Marquardt type method for LCP, J. Comput. Math., 22 (2004), 735–752. |
[18] | W. A. Liu, C.Y. Wang, A smoothing Levenberg–Marquardt method for generalized semi-infnite programming, Comput. Appl. Math., 32 (2013), 89–105. https://doi.org/10.1007/s40314-013-0013-y doi: 10.1007/s40314-013-0013-y |