In this paper we propose a class of smoothing Newton-type methods for solving the second-order cone complementarity problem (SOCCP). The proposed method design is based on a special regularized Chen-Harker-Kanzow-Smale (CHKS) smoothing function. When the solution set of the SOCCP is nonempty, our method has the following convergence properties: (ⅰ) it generates a bounded iteration sequence; (ⅱ) the value of the merit function converges to zero; (ⅲ) any accumulation point of the generated iteration sequence is a solution of the SOCCP; (ⅳ) it has the local quadratic convergence rate under suitable assumptions. Some numerical results are reported.
Citation: Li Dong, Jingyong Tang. New convergence analysis of a class of smoothing Newton-type methods for second-order cone complementarity problem[J]. AIMS Mathematics, 2022, 7(9): 17612-17627. doi: 10.3934/math.2022970
In this paper we propose a class of smoothing Newton-type methods for solving the second-order cone complementarity problem (SOCCP). The proposed method design is based on a special regularized Chen-Harker-Kanzow-Smale (CHKS) smoothing function. When the solution set of the SOCCP is nonempty, our method has the following convergence properties: (ⅰ) it generates a bounded iteration sequence; (ⅱ) the value of the merit function converges to zero; (ⅲ) any accumulation point of the generated iteration sequence is a solution of the SOCCP; (ⅳ) it has the local quadratic convergence rate under suitable assumptions. Some numerical results are reported.
[1] | L. J. Chen, C. F. Ma, A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems, Comput. Math. Appl., 61 (2011), 1047–1418. https://doi.org/10.1016/j.camwa.2011.01.009 doi: 10.1016/j.camwa.2011.01.009 |
[2] | J. S. Chen, Two classes of merit functions for the second-order cone complementarity problem, Math. Meth. Oper. Res., 64 (2006), 495–519. https://doi.org/10.1007/s00186-006-0098-9 doi: 10.1007/s00186-006-0098-9 |
[3] | J. S. Chen, S. H. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs, Pac. J. Optim., 8 (2012), 33–74. |
[4] | J. S. Chen, S. H. Pan, A descent method for a reformulation of the second-order cone complementarity problem, J. Comput. Appl. Math., 213 (2008), 547–558. https://doi.org/10.1016/j.cam.2007.01.029 doi: 10.1016/j.cam.2007.01.029 |
[5] | X. D. Chen, D. F. Sun, J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems, Comput. Optim. Appl., 25 (2003), 39–56. https://doi.org/10.1023/A:1022996819381 doi: 10.1023/A:1022996819381 |
[6] | X. N. Chi, S. Y. Liu, A non-interior continuation method for second-order cone optimization, Optimization, 58 (2009), 965–979. https://doi.org/10.1080/02331930701763421 doi: 10.1080/02331930701763421 |
[7] | L. Dong, J. Y. Tang, J. C. Zhou, A smoothing Newton algorithm for solving the monotone second-order cone complementarity problems, J. Appl. Math. Comput., 40 (2012), 45–61. https://doi.org/10.1007/s12190-012-0550-3 doi: 10.1007/s12190-012-0550-3 |
[8] | M. Fukushima, Z. Luo, P. Tseng, Smoothing functions for second-order-cone complementarity problems, SIAM J. Optim., 12 (2002), 436–460. https://doi.org/10.1137/S1052623400380365 doi: 10.1137/S1052623400380365 |
[9] | S. Hayashi, N. Yamashita, M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM J. Optim., 15 (2005), 593–615. https://doi.org/10.1137/S1052623403421516 doi: 10.1137/S1052623403421516 |
[10] | Z. H. Huang, S. L. Hu, J. Y. Han, Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search, Sci. China Ser. A-Math., 52 (2009), 833–848. https://doi.org/10.1007/s11425-008-0170-4 doi: 10.1007/s11425-008-0170-4 |
[11] | N. Huang, C. F. Ma, A regularized smoothing Newton method for solving SOCCPs based on a new smoothing C-function, Appl. Math. Comput., 230 (2014), 315–329. https://doi.org/10.1016/j.amc.2013.12.116 doi: 10.1016/j.amc.2013.12.116 |
[12] | Z. H. Huang, T. Ni, Smoothing algorithms for complementarity problems over symmetric cones, Comput. Optim. Appl., 45 (2010), 557–579. https://doi.org/10.1007/s10589-008-9180-y doi: 10.1007/s10589-008-9180-y |
[13] | H. Jiang, Smoothed Fischer-Burmeister equation methods for the complementarity problem, Department of Mathematics, The University of Melbourne, Parille, Victoria, Australia, Technical Report, June, 1997. |
[14] | Y. Kanno, J. Martins, A. Costa, Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem, Int. J. Numer. Meth. Eng., 65 (2006), 62–83. https://doi.org/10.1002/nme.1493 doi: 10.1002/nme.1493 |
[15] | L. X. Liu, S. Y. Liu, A smoothing Newton method based on a one-parametric class of smoothing function for SOCCP, J. Appl. Math. Comput., 36 (2011), 473–487. https://doi.org/10.1007/s12190-010-0414-7 doi: 10.1007/s12190-010-0414-7 |
[16] | N. Lu, Z. H. Huang, Solvability of Newton equations in smoothing-type algorithms for the SOCCP, J. Comput. Appl. Math., 235 (2011), 2270–2276. https://doi.org/10.1016/j.cam.2010.10.025 doi: 10.1016/j.cam.2010.10.025 |
[17] | Y. Narushima, N. Sagara, H. Ogasawara, A smoothing Newton method with Fischer-Burmeister function for second-order cone complementarity problems, J. Optim. Theory Appl., 149 (2011), 79–101. https://doi.org/10.1007/s10957-010-9776-0 doi: 10.1007/s10957-010-9776-0 |
[18] | S. H. Pan, J. S. Chen, A regularization method for the second-order cone complementarity problem with the Cartesian $P_0$-property, Nonlinear Anal. Theor., 70 (2009), 1475–1491. https://doi.org/10.1016/j.na.2008.02.028 doi: 10.1016/j.na.2008.02.028 |
[19] | L. Qi, D. Sun, G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math. Program., 87 (2000), 1–35. https://doi.org/10.1007/s101079900127 doi: 10.1007/s101079900127 |
[20] | S. P. Rui, C. X. Xu, An inexact smoothing method for SOCCPs based on a one-parametric class of smoothing function, Appl. Math. Comput., 241 (2014), 167–182. https://doi.org/10.1016/j.amc.2014.05.007 doi: 10.1016/j.amc.2014.05.007 |
[21] | J. Y. Tang, L. Dong, J. C. Zhou, L. Sun, A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search, Optimization, 64 (2015), 1935–1955. https://doi.org/10.1080/02331934.2014.906595 doi: 10.1080/02331934.2014.906595 |
[22] | J. Y. Tang, J. C. Zhou, L. Fang, A non-monotone regularization Newton method for the second-order cone complementarity problem, Appl. Math. Comput., 271 (2015), 743–756. https://doi.org/10.1016/j.amc.2015.09.017 doi: 10.1016/j.amc.2015.09.017 |
[23] | X. S. Zhang, S. Y. Liu, Z. H. Liu, A regularization smoothing method for second-order cone complementarity problem, Nonlinear Anal. Real, 12 (2011), 731–740. https://doi.org/10.1016/j.nonrwa.2010.08.001 doi: 10.1016/j.nonrwa.2010.08.001 |