This paper focuses on solving a class of equilibrium problems, namely, the fixed point problem of set-valued mappings with second-order cone double constraints. Under certain conditions, the variational inequality form of the fixed point problem of set-valued mappings with second-order cone double constraints is obtained by using the generalized saddle point theory three times. The alternating direction method is used to solve the fixed point problem of set-valued mappings with second-order cone double constraints, and the global convergence of the algorithm is proved. Finally, numerical results of solving five examples with an inexact alternating direction method are given, and the feasibility and effectiveness of the algorithm are demonstrated by comparing with other algorithms.
Citation: Na Mi, Juhe Sun, Li Wang, Yu Liu. Alternating direction method for the fixed point problem of set-valued mappings with second-order cone double constraints[J]. AIMS Mathematics, 2023, 8(3): 6389-6406. doi: 10.3934/math.2023323
This paper focuses on solving a class of equilibrium problems, namely, the fixed point problem of set-valued mappings with second-order cone double constraints. Under certain conditions, the variational inequality form of the fixed point problem of set-valued mappings with second-order cone double constraints is obtained by using the generalized saddle point theory three times. The alternating direction method is used to solve the fixed point problem of set-valued mappings with second-order cone double constraints, and the global convergence of the algorithm is proved. Finally, numerical results of solving five examples with an inexact alternating direction method are given, and the feasibility and effectiveness of the algorithm are demonstrated by comparing with other algorithms.
[1] | H. Kuk, T. Tanino, M. Tanaka, Sensitivity analysis in parametrized convex vector optimization, J. Math. Anal. Appl., 202 (1996), 511–522. https://doi.org/10.1006/jmaa.1996.0331 doi: 10.1006/jmaa.1996.0331 |
[2] | P. H. Sach, Sufficient conditions for generalized convex set-valued maps, Optimization, 37 (1996), 293–304. http://doi.org/10.1080/02331939608844223 doi: 10.1080/02331939608844223 |
[3] | W. Song, Weak subdifferential of set-valued mappings, Optimization, 52 (2003), 263–276. https://doi.org/10.1080/0233193031000120051 doi: 10.1080/0233193031000120051 |
[4] | H. Leiva, N. Merentes, K. Nikodem, J. L. Sanchez, Strongly convex set-valued maps, J. Glob. Optim., 57 (2013), 695–705. https://doi.org/10.1007/s10898-013-0051-4 doi: 10.1007/s10898-013-0051-4 |
[5] | I. Beg, A. R. Butt, Fixed point of set-valued graph contractive mappings, J. Inequal. Appl., 2013 (2013), 1–7. https://doi.org/10.1186/1029-242X-2013-252 doi: 10.1186/1029-242X-2013-252 |
[6] | S. J. Li, X. Q. Yang, G. Y. Chen, Nonconvex vector optimization of set-valued mappings, J. Math. Anal. Appl., 283 (2003), 337–350. https://doi.org/10.1016/S0022-247X(02)00410-9 doi: 10.1016/S0022-247X(02)00410-9 |
[7] | N. Sisarat, R. Wangkeeree, T. Tanaka, Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps, J. Glob. Optim., 77 (2020), 273–287. https://doi.org/10.1007/s10898-019-00864-0 doi: 10.1007/s10898-019-00864-0 |
[8] | M. Abbas, B. Ali, C. Vetro, A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces, Topology Appl., 160 (2013), 553–563. https://doi.org/10.1016/j.topol.2013.01.006 doi: 10.1016/j.topol.2013.01.006 |
[9] | F. M. Yao, Research on several theories and applications of mathematical programming with equilibrium constraints, Harbin University of Science and Technology, 2007. |
[10] | A. H. Bajgiran, J. Jang, A study of subsidizing a biofuel supply chain to incentivize the production of advanced biofuel: an equilibrium problem with equilibrium constraints approach, Int. J. Energy Res., 45 (2021), 16932–16946. https://doi.org/10.1002/er.6914 doi: 10.1002/er.6914 |
[11] | E. Allevi, A. J. Conejo, G. Oggioni, R. Riccardi, C. Ruiz, Evaluating the strategic behavior of cement producers: an equilibrium problem with equilibrium constraints, Eur. J. Oper. Res., 264 (2018), 717–731. https://doi.org/10.1016/j.ejor.2017.06.043 doi: 10.1016/j.ejor.2017.06.043 |
[12] | A. S. Antipin, The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence, Comput. Maths. Math. Phys., 35 (1995), 539–551. |
[13] | J. F. Nash, Equilibrium points in $n$-person games, In: Proceedings of the National Academy of Sciences of the United States of America, 36 (1950), 48–49. https://doi.org/10.1073/pnas.36.1.48 |
[14] | D. J. Goehring, J. P. Kahan, The uniform $n$-person prisoner's dilemma game: construction and test of an index of cooperation, J. Conflict Resolut., 20 (1976), 111–128. https://doi.org/10.1177/002200277602000104 doi: 10.1177/002200277602000104 |
[15] | Q. X. Cheng, Y. H. Chen, Z. Y. Liu, A bi-level programming model for the optimal lane reservation problem, Expert Syst. Appl., 189 (2022), 116–147. https://doi.org/10.1016/j.eswa.2021.116147 doi: 10.1016/j.eswa.2021.116147 |
[16] | B. L. Lin, J. P. Wu, J. X. Wang, J. S. Duan, Y. N. Zhao, A bi-level programming model for the railway express cargo service network design problem, Symmetry, 10 (2018), 227. https://doi.org/10.3390/sym10060227 doi: 10.3390/sym10060227 |
[17] | M. Wei, B. Sun, W. Z. Jin, A bi-level programming model for uncertain regional bus scheduling problems, J. Transp. Syst. Eng. Inform. Tech., 13 (2013), 106–112. https://doi.org/10.1016/S1570-6672(13)60120-8 doi: 10.1016/S1570-6672(13)60120-8 |
[18] | A. Antipin, Differential equations for equilibrium problems with coupled constraints, Nonlinear Anal., 47 (2001), 1833–1844. https://doi.org/10.1016/S0362-546X(01)00314-5 doi: 10.1016/S0362-546X(01)00314-5 |
[19] | L. Wang, F. Shan, L. W. Zhang, An implementable augmented Lagrange method for solving fixed point problems with coupled constraints, Nonlinear Anal., 74 (2011), 1761–1768. https://doi.org/10.1016/j.na.2010.10.048 doi: 10.1016/j.na.2010.10.048 |
[20] | A. Bnouhachem, M. H. Xu, M. Khalfaoui, Z. H. Sheng, A new alternating direction method for solving variational inequalities, Comput. Math. Appl., 62 (2011), 626–634. https://doi.org/10.1016/j.camwa.2011.05.043 doi: 10.1016/j.camwa.2011.05.043 |
[21] | B. S. He, H. Yang, S. L. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optimiz. Theory Appl., 106 (2000), 337–356. https://doi.org/10.1023/A:1004603514434 doi: 10.1023/A:1004603514434 |
[22] | M. Sun, A new projection-type alternating direction method for monotone variational inequality problems, J. Oper. Res. Soc. Japan, 52 (2009), 1–10. https://doi.org/10.15807/jorsj.52.1 doi: 10.15807/jorsj.52.1 |
[23] | L. Q. Qi, J. Sun, A nonsmooth version of Newton's method, Math. Program., 58 (1993), 353–367. https://doi.org/10.1007/BF01581275 doi: 10.1007/BF01581275 |
[24] | F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, New York: Springer, 2003. https://doi.org/10.1007/b97544 |
[25] | J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birkhäuser, 1990. |
[26] | H. ur Rehman, N. Pakkaranang, A. Hussain, N. Wairojjana, A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces, J. Math. Comput. Sci., 22 (2021), 38–48. https://doi.org/10.22436/jmcs.022.01.04 doi: 10.22436/jmcs.022.01.04 |
[27] | K. Muangchoo, A new strongly convergent algorithm to solve pseudo-monotone equilibrium problems in a real Hilbert space, J. Math. Comput. Sci., 24 (2022), 308–322. https://doi.org/10.22436/jmcs.024.04.03 doi: 10.22436/jmcs.024.04.03 |
[28] | K. Muangchoo, Explicit Halpern-type iterative algorithm for solving equilibrium problems with applications, J. Math. Comput. Sci., 25 (2022), 115–132. https://doi.org/10.22436/jmcs.025.02.02 doi: 10.22436/jmcs.025.02.02 |
[29] | J. N. Ezeora, P. C. Jackreece, Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces, J. Nonlinear Sci. Appl., 14 (2021), 359–371. https://doi.org/10.22436/jnsa.014.05.06 doi: 10.22436/jnsa.014.05.06 |