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Abstract: In this paper, we consider the solution of linear weighted complementarity problem 

(denoted by LWCP). Firstly, we introduce a new class of weighted complementary functions and 

show that its continuously differentiable. On this basis, the LWCP is reconstructed as a smooth 

system of equations, and then solved by the Levenberg-Marquardt method. The convergence of the 

algorithm is proved theoretically and numerical experiments are carried out. The comparative 

experiments show that the algorithm has some advantages in computing time and iteration times. 
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1. Introduction 

The Weighted Complementarity Problem (WCP), which is to find a pair of 

( ), , n n mx s y R R R   such that 

 ( )0, 0, , , , 0,x s xs w F x s y  = =  (1.1) 

where, 
2: n m n mF R R+ +→  is a continuously differentiable function, nw R+ is the given weight 

vector, :xs x s= is the componentwise product of the vectors x and s . When 0w = , WCP (1.1) 

reduces to the classical Nonlinear Complementarity Problem (NCP). At present, there are many 

effective algorithms [1–5] that can solve NCP. For examples, Newton method [1], Quasi-Newton 
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method [2], L-M method [3,4], Neural-Networks method [5] etc. If 

 ( ), , ,F x s y Px Qs Ry a= + + −  (1.2) 

problem (1.1) is the Linear Weighted Complementarity Problem (LWCP) studied in this paper, which 

is to find a pair of ( ), , n n mx s y R R R   such that 

 0, 0, , ,x s xs w Px Qs Ry a  = + + =  (1.3) 

where,
( ) ( ) ( )

, , , ,
n m n n m n n m m n mP R Q R R R a R
+  +  +  +    are given matrices and vector. In addition, 

when 

 ( )
( )

, , ,
Tf x s A y

F x s y
Ax b

  − −
=  

− 

 (1.4) 

problem (1.1) is the perturbed Karush-Kuhn-Tucker(KKT) condition for the following Nonlinear 

Programming(NLP) 

 𝑚𝑖𝑛 𝑓 (𝑥), 𝑠. 𝑡. 𝐴𝑥 = 𝑏, 𝑥 ≥ 0. (1.5) 

Problem(1.3) was introduced by Potra [6] in 2012 and has been widely studied for its important 

applications in management, market equilibrium, etc. Many equilibrium problems can also be 

transformed into LWCP to solve, such as the famous Fisher market equilibrium problem [7], and the 

quadratic programming and weighted center problem [6]. 

In recent years, many effective algorithms have been proposed to solve problem (1.1) or (1.3) [8–13]. 

For examples, Chi et al. [9] proposed the full-Newton step infeasible interior-point method for 

solving LWCP. Zhang et al. [12] proposed the smoothing Newton type method for solving LWCP. 

Tang et al. [13] proposed the nonmonotone L-M method for NWCP. The interior point method 

depends on the choice of initial value. The classical Newton method needs the positive definite of 

Hessian matrix, otherwise, it is difficult to guarantee that the Newton direction is descending. The 

L-M method does not depend on the choice of initial values, nor does it require the positive 

definiteness of the Hessian matrix. Therefore, this paper mainly considers using L-M method to solve 

problem (1.3). Motivated by [13], we consider using a nonmonotone L-M method to solve LWCP. 

LWCP is a more general complementary model. For the solution of this model, we hope to use 

the WCP functions obtained by the extension of NCP functions. However, due to the existence of 

weighting term, not all NCP functions can be directly extended to WCP functions. For NCP function 

in the form of FB function, many scholars have extended it to WCP function. In this paper, motivated 

by the smoothed penalty function for [14], we construct a smoothng function for WCP. And then use 

L-M method to approximate the equivalent reconstruction equations of problem (1.3). The comparison 

experiment of random generation shows the feasibility and effectiveness of our algorithm. 

The following notations will be used throughout this paper. The superscript T denotes transpose. 

R denotes real numbers, nR represents the set of all n dimensional real column vectors. The matrix I 

denotes the identity matrix, and  denotes 2-norm. All vectors in this article are column vectors. 
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2. Weighted complementary function and its properties 

In this section, we study a class of complementary functions with participation weights and 

discuss its properties. Based on this weighted complementary function, the equivalent reconstruction 

equations of problem (1.3) are given. 

Definition 2.1. For a fixed 0c  , a function 2: R R → is called a weighted complementarity 

function [13], if it satisfies 

 ( , ) 0 0, 0, .c a b a b ab c =    =  (2.1) 

When 0c = , ( , )c a b reduces to the NCP function. 

In this paper, to solve the LWCP (1.3), we hope to use the WCP functions obtained by the extension 

of NCP functions. However, due to the existence of weighting term, not all NCP functions can be directly 

generalized to WCP functions. For example, the two piecewise NCP functions given in [2]: 

 ( )

2

2

3 , 0, 3 0;

, 3 , 0, 3 0;

9 9 , .

a
a b a or b a

b

b
a b a a b or a b

a

a b else



  
−    −   
 

  
= −    −   

 
 +



 (2.2) 

 ( )

2

2

2
2

2

, ;

2 , ;

,

2 2 , ;

4 , .

k a b k a

bb
kb a

a k
a b

bb
k a kb a

a k

k a kb b k a



 


 
−  

  
= 

 
+ +  − 

 
+  −

 (2.3) 

For FB function, many scholars have extended it to WCP function. For example, Liu et al. [11] 

based on the symmetric disturbance FB function in [15] constructed: 

 ( )( ) ( ) ( )
2 2 2( , , ) 1 2 2 ,c a b a b a b a b c     = + + − + + + + +  (2.4) 

where, c is a given nonnegative vector. 

Zhang[12] proposed: 

 ( )2 2( , , , ) 2 2 1 2 ,a b c a b ab c a b    = + − + + + − −  (2.5) 

where, ( 1,1 ,  − c is a given nonnegative vector. 

In addition, [13] provides another smooth function: 
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 ( ) ( ) ( )( ),

2 2( , ) 2 4 ,
q

q
qc a b a b a b ab c


  = + − + + − + −  (2.6) 

where, c is a given nonnegative vector,  )0,4  is a constant, 1q   is an odd integer. Compared 

with (2.4) and (2.5), (2.6) does not need to introduce the smoothing factor . By controlling the 

value of q , smoothing can be achieved. This smoothing method will be used to smooth the new WCP 

function given below. 

 
2 2 2( , ) ( ) (1 )( ) 2(1 ) ,c a b a b a b a b c   = + − − + − + + +  (2.7) 

where, c is a given nonnegative vector,  0,1  is a constant. 

Since Eq (2.7) is not smooth, we make the following smoothing treatment: 

 ( ) ( )( )
2 2 2

, ( , ) ( ) ( 1 2(1 ) ) ,c q q

q a b a b a b a b c   = + − − + − + + +  (2.8) 

where, c is a given nonnegative vector,  0,1  is a constant, 1q  is an odd integer. 

Theorem 2.1. Let ,

c

q be defined by (2.8) with  0,1  and 1q  being a positive odd interger. Then

q

 is a family of WCP functions, i.e., 

 , ( , ) 0 0, 0, .c

q a b a b ab c =    =  (2.9) 

Proof . Since for any , R   and any positive odd interger q , there is .q q   =  =  So we have 

 

2 2 2

,

2 2 2

( , ) 0 ( ) ( ( ) (1 )( ) 2(1 ) )

( ) (1 )( ) 2(1 )

( , ) 0.

c q q

q

c

a b a b a b a b c

a b a b a b c

a b





   

  



=  + = − + − + + +

 + = − + − + + +

 =

 (2.10) 

That is to say, we only need to prove that ( , )c a b is a family of WCP functions. On the one hand, we 

fist suppose that ,a b R  satisfy, ( , ) 0c a b = i.e., 

 
2 2 2( ) (1 )( ) 2(1 ) .a b a b c a b  − + − + + + = +  (2.11) 

By squaring the two sides of (2.11), we have 2(1 ) 2(1 ) ,ab c + = + which together with [0,1]  . 

yields .ab c=  By substituing ab c= into (2.2), we have 2 2 2 0.a b ab a b+ + = +  Since 0,c ab=   it 

follows that 0, 0.a b   On the other hand, we suppose that 0, 0, ,a b ab c  =  then 0a b+  and 

 2 2 2 2 2( ) (1 )( ) 2(1 ) 2 .a b a b c a b ab a b a b  − + − + + + = + + = + = +  (2.12) 

Which implies that ( , ) 0.c a b =  

Lemma 2.1. Let ,

c

q be defined by (2.8) with [0,1]  and 1q  being a positive odd interger. Let 
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 2 2 2( , ) ( ) (1 )( ) 2(1 ) .ch a b a b a b c   = − + − + + +  (2.13) 

Then 

(i)When 1q  , ,

c

q is continuously differentiable at any ( ) 2,a b R with 

 

,

,

,

,

c

q

c

q c

q

a

b












 
 
  =

 
 
 

 (2.14) 

where 

 

, 1 2

, 1 2

[( ) ( , ) ( )],

[( ) ( , ) ( )].

c

q q c q

c

q q c q

q a b h a b a b
a

q a b h a b b a
b















− −

− −


= + − −




= + − −



 

(ii)When 3q  , ,

c

q is twice continuously differentiable at any ( ) 2,a b R with 

 

2 2

, ,

2
2

, 2 2

, ,

2

( , ) ,

c c

q q

c

q c c

q q

a a b
a b

b a b

 



 

 


 

  
 
    =

  
 
   

 (2.15) 

where 

 

 

 

2
2 4 2 2

2

2

, 2 4 2 2

2

( 1)( ) ( , , ) [( 2)( ) ( , , ) ] ,

( 1)( ) ( , ) [( 2)( ) ( , ) ] ,

q
q q

c

q q c q c

q q a b h a b c q a b h a b c
a

q q a b h a b q b a h a b
b


 



 







− −

− −


= − + − − − +




= − + − − − +



 

  
2 2

, , 2 4 2( 1)( ) ( , ) [( 2)( )( ) ( , ) ] .

c c

q q q c q cq q a b h a b q a b b a h a b
a b b a

 

 

 
  − −

 
= = − + − − − − −

   
 

Lemma 2.2. Let ,

c

q be defined by (2.8) with [0,1]  and 1q  being a positive odd interger. Defining 

the closed and convex set ( )  2:u u R u  =   , where is a positive constant. Then: 

(i)When 1q  , ,

c

q is Lipschitz continuous on ( )u for any 0  . 

(ii)When 3q  , ,

c

q is Lipschitz continuous on ( )u for any 0  . 

Since ,

c

q and ,

c

q are bounded on the set ( )u , therefore the conclusion (i) and (ii) can be 

obtained from the Mean-Value-Theorem. 

Given weight vector nw R+ ，let 2: ( , , ) n mz x s y R +=  and 
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,

( , , )
( ) ( , , ) : ,

( , )w

q

F x s y
H z H x s y

x s

 
= =  

 
 (2.16) 

where 

 

1

, 1 1

,

,

( , )

( , ) .

( , )n

w

q

w

q

w

q n n

x s

x s

x s











 
 

 =  
 
   

(2.17) 

Then the solution of LWCP (1.3) is equivalent to the approximate solution of the system of 

equations ( ) 0H z = . 

Lemma2.3. Let ( ) 2 2 2

,: , :n m n m w n n

qH z R R R R

+ +→  → be defined by (2.16) and (2.17), respectively. 

Then: 

(i) ( ), ,w

q x s is continuously differentiable at any ( ) 2, , n mz x s y R +=  . 

(ii) ( )H z is continuously differentiable at any ( ) 2, , n mz x s y R +=  with its Jacobian 

 ( )
1 2

,
0

x s yF F F
H z

D D

   
 =  

 
 (2.18) 

where 

 

( ) ( ) ( ) 
( ) ( ) ( ) 

1 2

1

1 2

2

2 2 2

, , 1,2, , .

, , 1,2, , .

( , ) ( ) (1 )( ) 2(1 ) , 1,2, , .

i

i

i

q qw

i i i i i i

q qw

i i i i i i

w

i i i i i i i

D diag q x s h x s x s i n

D diag q x s h x s s x i n

h x s x s x s w i n











  

− −

− −

 = + − − =
 

 = + − − =
 

= − + − + + + =

 

Let ( )H z be defined by (2.16), then its value function 2: n mM R R+

+→ can be defined as: 

 ( )
21

( ) .
2

M z H z=：  (2.19) 

Obviously, the solution of LWCP (1.3) is also equivalent to the approximate solution of the system 

of equations ( ) 0.M z =  In addition, the following conclusion can be obtained from the Lemma 2.3. 

Lemma 2.4. Let 2: n mM R R+

+→ be defined by (2.19), then ( )M z is continuously differentiable at any

2n mz R + , and ( ) ( )( ) ' .
T

M z H z H z =  

3. Algorithm and convergence analysis 

In this section, based on the WCP function in Section 2, we will give the smooth L-M type 

algorithm and its convergence. 

Algorithm3.1 (A smooth L-M method) 
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Step 0: Choose ( ), , , 0,1     and ( )0 0 0 0 2: , , n mz x s y R +=  , let 0 1  , and ( )0

0C M z= . Choose a 

sequence ( ) 0, 0,1k kk    , set : 0.k =  

Step 1: Compute ( )kH z . If ( )kH z  then stop. 

Step 2: Let ( )
2

: k

k H z = . Compute the search direction 2n m

kd R + by 

 ( )' '( ) ( ) ( ) 0.k k T k

k kM z H z H z I d + + =  (3.1) 

Step 3: If
kd satisfies 

 ( ) ( ) .k k

kH z d H z+   (3.2) 

Then let : 1k = , and go to step 5. Otherwise, go to step 4.  

Step 4: Set
kj be the smallest nonnegative integer j satisfying 

  
2

( ) .k j j

k k kM z d C d  +  −  (3.3) 

let : kj

k = , and go to step 5. 

Step 5: Set 1 :k k

k kz z d+ = + and 

 
( )1

1 1

1

: , : .

k

k k k

k k k k

k

Q C M z
Q Q C

Q




+

+ +

+

+
= =  (3.4) 

Step 6: Let : 1k k= + , and go to step 1. 

Existing L-M type methods [16–18] are usually designed based on the Armijo line search. 

While algorithm 3.1 adopts a nonmonotone derivate free line search. The choice of k controls the 

degree of nonmonotoicity. If 0k  , then the line search is monotone. 

Theorem3.1. Let  kz be the sequence generated by Algorithm 3.1. Then,  kz satisfying 

( )k

kM z C for all 0k  . 

Proof. By Algorithm 3.1 ( )0

0 .C M z= We first assume that ( )k

kM z C . If ( ) 0,kM z = then 

Algorithm 3.1 terminates. Otherwise ( ) 0kM z  which implies that ( ) 0kH z  , hence 

( )
2

0k

k H z =  . So the matrix ( ) ( )
T

k k

kH z H z I  + is positive definite. Thus the search 

direction
kd in step 3 is well-defined and 0kd  . Since ( ) 0kM z  , we have 

 ( ) ( ) ( )( ) 0.
T T

k T k k

k k k kM z d d H z H z I d  = − +   (3.5) 

This implies that kd is a descent direction of ( )kM z at the point kz . Next we will prove that at least 
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one step size is obtained by step 4. Inversely, we assume that for any j , 

( )
2

k j j

k k kM z d C d  +  − , then 

 ( ) ( )
2 2

,k j j k j

k k k kM z d C d M z d    +  −  −  (3.6) 

thereby 

 
( ) ( )

2

0.

k j k j

k k

j

M z d M z d  



+ − +
  (3.7) 

By letting j → in (3.7), we have ( ) 0
T

k

kM z d  , which contradicts (3.5). Therefore, we can 

always get 1kz + by Step 3 or Step 4. If 1kz + is generated by step 3, i.e., ( ) ( )k k

kH z d H z+  , 

then ( ) ( )
2 2

21 1

2 2

k k

kH z d H z+  , so ( ) ( )1 2k kM z M z+  . And because, ( )0,1  , 

therefore, we have ( ) ( ) ( )1 2k k k

kM z M z M z C+    . If 1kz + is generated by step 4, we can get

( )1k

kM z C+   directly. So, from(3.4), we can get that
( ) ( )

( )
1 1

1

1

k k

k k k

k

k

Q M z M z
C M z

Q

 + +

+

+

+
 = . 

Hence, we conclude that ( )k

kM z C for all 0k  . 

Next, we first suppose that ( ) 0kM z  for all 0k  . In order to discuss the convergence of 

algorithm 3.1, we need the following lemma. 

Lemma 3.1. Let kz be the sequence generated by Algorithm 3.1, then there exists a nonnegative 

constantC such that 

 ( )lim lim .k

k
k k

M z C C

→ →
= =  (3.8) 

Proof. By Theorem3.1, we can get ( )0 k

kM z C  for all 0k  and 1

1

.k k k k

k k

k

Q C C
C C

Q


+

+

+
 =

 

Hence, 

by The Monotone Bounded Theorem, there exists a nonnegative constantC such that lim k
k

C C

→
= . 

By the definition of
kQ , we have 

 1

1 max max
0 0 0 0

max

1
1 1 .

1

k i k
i i

k k j
i j i i

Q   



+

+ −
= = = =

= +    +    =
−

 (3.9) 

Hence, we conclude that max

max1
k kQ







−
is bounded, which together with lim k

k
C C

→
= yields 

( )1 1 1lim 0.k k k k
k

Q C C − − −
→

− = So, it follows from (3.4) that 
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( ) ( )

( )

1

1 1 1

1 1

1

.

k

k k k k k k k k k k k

k k k k k

M z Q C Q C Q C Q C

Q C C C

  



+

+ + +

+ +

= − = + −

= − +
 (3.10)

 

Hence 

 ( ) ( )1 1 1lim lim .k

k k k k k
k k

M z Q C C C C 

− − −
→ →

= − + =    (3.11) 

We complete the proof. 

Theorem3.2. Let kz be the sequence generated by Algorithm 3.1. Then any accumulation point z

of kz is a stationary point of ( )M z . 

Proof. By Lemma 3.1, we have ( )lim lim , 0k

k
k k

M z C C C 

→ →
= =  . If 0C = , then ( )lim 0k

k
H z

→
=

which together with Lemma 2.4 yields ( ) 0M z = . In the following, we discuss the case of 0C  . 

Set ( ) ( ) : k k

kN k H z d H z= +  . Then N must be a finite set, otherwise ( ) ( )1 2k kM z M z+ 

holds for infinitely many k . By letting k →with k N , we can have 2C C  and 21  which 

contradicts ( )0,1  . Therefore, we can suppose that there exists an index 0k  such that

( ) ( )k k

kH z d H z+  for all k k . Thereby, there exists a
kj such that ( )

2
1 kjk

k kM z C d +  − , 

i.e., 

 ( )
2

1 .kj k

k kd C M z  + −  (3.12) 

Next, we suppose that z is the limit of the subsequence   k k

k K
z z


 where  K 0,1,2, , i.e., 

( )
lim k

k K
z z

 →
= . Hence, by the continuity, we have ( ) ( )

21

2
C M z H z  = = . By 

( ) ( )
2

lim lim lim 2 2k k

k
k k k

H z M z C    

→ → →
= = = , we can get that 

 
( )

( ) ( ) ( ) ( )lim 2 .
T T

k k

k
k K

H z H z I H z H z C I   

 →

    + = +
  

 (3.13) 

According to the proof process of theorem 3.1, the matrix ( ) ( )
T

k k

kH z H z I  + is a symmetric 

positive definite matrix. In addition, because of 0C  , the matrix ( ) ( ) 2
T

H z H z C I    + is also 

symmetric positive definite matrix. Hence, we have 

 
( )

( ) ( ) ( ) ( )
1 1

lim 2 .
T T

k k

k
k K

H z H z I H z H z C I 
− −

  

 →

      + = +
      

 (3.14) 

and 
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( )

( ) ( ) ( )
1

lim 2 .
T

k
k K

d d H z H z C I M z
−

    

 →

  = = − + 
  

 (3.15) 

By (3.5), we can get 

 ( )
( )

( )lim 0.
T T

k k

k K
M z d M z d 

 →
 =    (3.16) 

By letting k → with k N in (3.12), we have
( )
lim 0kj

k
k K

d
 →

= . If 0kj  , then 

( )
lim 0k

k K
d d 

 →
= = which together with (3.15) yields ( ) 0M z = . Otherwise,

( )
lim 0kj

k K


 →
= . From 

step 4 and Theorem 3.1 

 
2 2

1 1 1
( ) ( ) ,k k kj j jk k

k k k kM z d C d M z d    − − −
+  −  −  (3.17) 

i.e., 

 
1

2
1

1

( ) ( )
0.

k

k

k

jk k
jk

kj

M z d M z
d


 



−

−

−

+ −
+   (3.18) 

Now that ( )M z is continuously differentiable at z , so we have 

 ( ) 0.
T

M z d    (3.19) 

Then, from (3.16), we can get ( ) 0
T

M z d  = and 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( )

1

2 2 2

0.

T T T T T

T

d H z H z C I d M z H z H z C I H z H z C I d

M z d

  
−

            

 

      + = − + +
  

= − =

 

Since the matrix ( ) ( ) 2
T

H z H z C I    + is a positive matrix, so we have 

 ( ) ( ) ( )
1

2 0.
T T

d H z H z C I M z
−

      = − +  =
  

 (3.20) 

Now that the matrix ( ) ( )
1

2
T

H z H z C I
−

     +
  

is also positive matrix, we can get ( ) 0.M z =  

4. Numerical experiments 

In this section, we carry out some numerical experiments on the LWCP by Algorithm 3.1. All 

experiments were conducted on a ThinkPad480 with a 1.8GHz CPU and 8.0GB RAM. The codes are 

run in MATLAB R2018b under Win10. 

We first generate the matrices , ,P Q R and vector a by following way: 
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0 0

, , , ,
T

A b
P Q P a

M I A f

       
= = = =       

− −       
 (4.1) 

where m nA R  is a full row rank matrix with m n , the matrix M is an n n symmetric semidefinite 

matrix, , .m nb R f R  In our algorithm we set: 40.01, 0.5, 0.8, 10 .    −= = = =  The initial points 

are choosing as : ( ) ( ) ( )0 0 01, ,1 , 1, ,1 , 0, ,0 .x s y= = =  

In the course of experiments, we generate LWCP (1.3) by the following two ways. 

(i)We take ( ),A randn m n= with ( )rank A m= , and
T

T

BB
M

BB
= with ( ),B rand n n= . we first generate 

( ) ( )ˆ ,1 , ,1x rand n f rand n= = , then we set ˆ ˆ ˆ ˆ ˆˆ: , ,b Ax s Mx f w xs= = + = . 

(ii) We choose
b

a
f


 

= − 
− 

where n mR + is a noise. We choose ( )M diag v= with ( ),1v rand n= . 

The matrix A and vectors ,b f are generated in the same way as (i). In the course of experiments, we 

take 410 (1,1)rand p −= with ( ): 1,1,0, ,0
T n mp R +=  . 

First, in order to observe the local convergence of algorithm 3.1, we conducted two sets of random 

test experiments on LWCP (i) with 1000, 500n m= = . Figure 1 gives the convergence curve of ( )kH z

at the k -th iteration. We can clearly see that algorithm 3.1 is locally fast, or at least locally superlinear. 

Next, we conducted comparative experiments with [13]. In the course of experiments, the 

parameters in the WCP functions ,

w

q are respectively taken as 0.5, 3, 1, 3q q = = = = and 

0.3, 3, 0.8, 3q q = = = = . The numerical results are presented in Tables 1, 2, Figures 2 and 3 

respectively. Where AIT, ACPU, ANH are respectively the average number of iterations, the average 

CPU time (unit seconds), and the average number ( )kH z of iterations at the end of 10 random 

experiments. LM represents our experimental result, TLM is the experimental result of [13]. 

Tables 1 and 2 show the numerical results for LWCP (i). Where, the parameters are taken as 

0.5, 3; 1, 3q q = = = = respectively. It can be seen from the table that no matter what value takes, 

our algorithm 3.1 has less iteration time or higher accuracy than algorithm 1 in [13]. 

Figures 2 and 3 show the numerical results for solving LWCP (ii). Where, the parameters are 

respectively taken as 0.3, 3, ; 0.8, 3,
2 2

n n
q m q m = = = = = = . It can be seen from the figure that 

with the increase of dimension, the AIT of algorithm 3.1 fluctuates slightly, but it is always smaller 

than the AIT in [13]. The ACPU increases steadily and always smaller than the ACPU in [13]. 

When 0.6, 3,
2

n
q m = = = , Figure 4 shows the ACPU and AIT comparison line graphs for 

LWCP (i) and LWCP (ii) solved by algorithms 3.1 and [13] respectively. It can be seen from the 

figure that after adding noise to LWCP (i), the solution speed of both algorithms decreases, but our 

algorithm still has certain advantages. 

In general, the problems generated by numerical experiments converge in a few iterations. The 

number of iterations varies slightly with the dimension of the problem. Our algorithm is effective for 

the linear weighted complementarity problem LWCP (1.3), because each problem can be 

successfully solved in a very short time with a small number of iterations. Numerical results show 

the feasibility and effectiveness of the algorithm 3.1. 
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Table 1. Numerical results of solving LWCP (i) ( 0.5, 3q = = ). 

m n LM TLM 

AIT ACPU ANH AIT ACPU ANH 

200 500 7.9 0.6960 5.0131×10-12 8.0 0.7015 6.0903×10-13 

  7.8 0.6974 5.5794×10-12 7.7 0.6906 1.2630×10-11 

  7.6 0.6703 8.5289×10-12 7.9 0.7025 3.5098×10-13 

400 800 8.1 2.4705 5.5548×10-13 8.8 3.1241 5.2707×10-13 

  8.2 2.5097 7.6171×10-13 8.9 2.6100 2.2961×10-13 

  8.2 2.6300 2.4813×10-13 8.1 2.4039 3.6750×10-12 

500 1000 8.1 4.4569 1.2136×10-12 8.1 4.3590 2.2894×10-12 

  8.4 4.7697 3.1192×10-13 8.4 4.4993 4.5153×10-12 

  8.2 4.8820 2.7039×10-12 8.4 4.4767 9.3738×10-13 

600 1500 7.9 11.2160 9.7961×10-12 8.0 11.6639 1.0240×10-12 

  8.0 11.4230 1.0008×10-13 8.0 11.6522 9.3154×10-13 

  8.0 11.5575 1.0238×10-12 7.9 11.4497 1.0559×10-11 

1000 1500 9.6 18.4934 5.6351×10-12 9.5 18.6699 1.6880×10-11 

  9.9 19.0396 5.2759×10-12 11.1 21.6384 5.9206×10-11 

  8.4 16.3751 1.2735×10-11 10.9 21.3177 7.6313×10-12 

Table 2. Numerical results of solving LWCP (i) ( 1, 3q = = ). 

m n LM TLM 

AIT ACPU ANH AIT ACPU ANH 

200 500 7.5 0.6642 1.5973×10-11 8.0 0.7155 9.7275×10-12 

  7.4 0.6675 8.8485×10-12 8.4 0.7429 8.7482×10-13 

  7.6 0.6661 2.5321×10-12 8.1 0.7167 6.7422×10-13 

400 800 8.0 2.3642 2.4919×10-13 8.8 2.6212 4.6000×10-12 

  8.0 2.3791 4.5892×10-13 8.2 2.5740 2.4604×10-13 

  8.2 2.4293 9.2368×10-13 9.0 2.6885 1.3216×10-12 

500 1000 8.0 4.3592 6.2691×10-13 8.3 4.5328 3.5736×10-12 

  8.1 4.3174 3.1221×10-13 8.2 4.3540 3.2290×10-13 

  7.9 4.2089 9.7440×10-12 9.9 5.3469 6.5691×10-12 

600 1500 7.9 11.3807 9.2057×10-12 8.9 12.9567 9.7825×10-13 

  7.8 11.2766 1.3435×10-11 8.0 11.6116 9.9437×10-13 

  8.0 11.5494 9.8875×10-13 9.2 13.3792 1.0247×10-12 

1000 1500 9.3 17.6422 7.8120×10-12 8.9 17.2609 3.4824×10-12 

  8.7 16.3247 4.9019×10-12 8.8 17.3407 4.7999×10-11 

  9.3 18.1968 7.8112×10-12 9.4 18.4024 1.3738×10-11 
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Figure 1. Convergence curve of ( )kH z at the k -th iteration. 

 

Figure 2. Comparison curves of solving LWCP (ii) ( 0.3, 3,
2

n
q m = = = ). 

 

Figure 3. Comparison bars of solving LWCP (ii) ( 0.8, 3,
2

n
q m = = = ). 
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Figure 4. Comparison curves of solving LWCP (i) and LWCP (ii) ( 0.6, 3,
2

n
q m = = = ). 

5. Conclusions 

Based on the idea of L-M method, with the help of a new class of WCP functions , ( , )c

q a b ，we 

give the algorithm 3.1 for solving the LWCP (1.3). Under certain conditions, our algorithm can 

obtain the approximate solution of LWCP (1.3). Numerical experiments show the feasibility and 

effectiveness of the algorithm 3.1. 
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