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1. Introduction

In this paper, we study the split feasibility problem (SFP) which is defined on two nonempty closed
and convex subsets C and Q of real Hilbert space H1 and H2, respectively when A : H1 → H2 is a
bounded linear operator. The problem SFP is to

find µ∗ ∈ C such thatAµ∗ ∈ Q, (1.1)

if such µ∗ exists. The set Ω := {µ∗ ∈ C : Aµ∗ ∈ Q} is denoted for the solution set of the problem
SFP (1.1).
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In 1994, Censor and Elfving [8] first introduced the algorithm for solving the problem SFP (1.1).
The existence of the inverse of the operator A−1 need to be required for computing of each iteration.
After that many mathematicians (see in [3,9,10,14,34,37]) applied the problem SFP (1.1) to solve real
world problems such as signal and image processing, automatic control systems, machine learning,
and many more.

Byrne [7] was the first to propose a popular CQ algorithm solving SFP (1.1) which generates a
sequence {µn} by the recursive procedure,

µn+1 = PC(µn − λA
T (I − PQ)Aµn), ∀n ≥ 1, (1.2)

where λ belongs in the open interval (0, 2
‖A‖2

) with PC and PQ are the projections matric onto C and Q,
respectively. Another one of the famous algorithms in convex minimization problems is known that
the gradient projection algorithm (GPA), this algorithm was generated as follow:

µn+1 = PC(µn − λn 5 f (µn)), ∀n ≥ 1, (1.3)

where f : H1 → (−∞,+∞] is a lower semicontinuous convex function, λn the stepsize at iteration
n is chosen in the interval (0, 2

L ), where L is the Lipschitz constant of 5 f . It is well known that the
algorithm GPA (1.3) can be reduced to solve the problem SFP (1.1) when setting f (µ) := 1

2‖(I −
PQ)Aµ‖2 with ∇ f (µ) = AT (I − PQ)Aµ. The Lipschitz condition was required for the step size λn of
the algorithms (1.2) and (1.3), that is λn ∈ (0, 2

‖A‖2
). This means that to compute the CQ algorithm, the

matrix norm ofA needs to be found, which is generally not easy work in practice.
Later on, Byrne [7] presented a different step size {λn} without matrix norms computing. Also,

Yang [41] was interested in using a step size {λn} that has no connection with matrix norms, the
algorithm GPA (1.3) was considered for variational inequality problem. After that, many different
stepsizes {λn} have been presented by many mathematicians, see in [22, 35, 36, 41]

Another one of the different stepsizes was presented in 2018 by Pham et al. [2], this stepsize is
generated as follow:

λn =
βn

ηn
, ∀n ≥ 1, (1.4)

where

ηn = max{1, ‖ 5 fn(µn)‖}, lim
n→∞

βn = 0,
∞∑

n=1

βn = ∞.

The algorithm (1.2) with the stepsize (1.4) was used to solve the problem SFP (1.1). For recent results
on the problem SFP with the stepsize (1.4), see [13, 19, 23, 38, 43].

Finding a way to make algorithms converge faster is another approach many authors are interested
in studying. The inertial technique is one way of solving the smooth convex minimization problem,
which was first proposed by Polyak [27] in 1964. Polyak’s algorithm was called the heavy ball method,
modified from the two-step iterative method. The next iterate is defined by making use of the previous
two iterates. Later on, the heavy ball method was improved by Nesterov [25] to speed up the rate
of convergence. It is denotable that the inertial terminology dramatically improves the algorithm’s
performance and has nice convergence properties (see [10]). Since that, the heavy ball method has been
widely used to solve a wide variety of problems in the optimization field, as seen in [12, 24, 30, 33].
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In 2020, Sahu et al. [28] proposed an inertial relaxed CQ algorithm {µn} for solving the problem
SFP (1.1) in a real Hilbert space by combining the inertial technique of Alvarez and Attouch [1] with
the Byrne algorithm (1.2). This algorithm was generated as follows:νn = µn + σn(µn − µn−1),

µn+1 = PCn(νn − λA
T (I − PQn)A(νn)), ∀n ≥ 1,

(1.5)

where the stepsize parameter λ is still in the interval involving the norm of operator A and the
extrapolation factor σn ∈ [0, σ̄n] and σ ∈ [0, 1) such that

σ̄n = min
{
σ,

1
max{n2‖µn − µn−1‖

2, n2‖µn − µn−1‖}

}
, ∀n ≥ 1. (1.6)

The weakly convergence of sequence {µn} generated by (1.5) was proved under the conditions of the
extrapolation factor (1.6) and the stepsize parameter λ.

The study of the development of inertial techniques received significant attention. Subsequently,
Beck and Teboulle [5] introduced the well-known fast iterative shrinkage-thresholding
algorithm (FISTA). The algorithm is designed by choosing t1 = 1, λ > 0 and compute

νn = PCn(µn − λA
T (I − PQ)Aµn),

tn+1 =
1+
√

1+4t2n
2 , σn = tn−1

tn+1
,

µn+1 = νn + σn(νn − νn−1).

(1.7)

FISTA has received a lot of attention because of its excellent computational results. Many
mathematicians have used its implementation in many problem applications (see [21] and reference
therein). This inertial technique is limited in the computation of the {σn} sequence.

With the limit of choosing parameter σn of Beck and Teboulle [5], Gibali et al. [17] modified
the following the inertial relaxed CQ algorithm (IRCQA) in a real Hilbert space. This algorithm is
generated as follows: νn = µn + σn(µn − µn−1),

µn+1 = PCn(νn − λnA
T (I − PQn)A(νn)), ∀n ≥ 1.

(1.8)

They proved that, if λn = τn
fn(µn)
η2

n
, where ηn = max{1, ‖ 5 fn(µn)‖} and σn ⊂ [0, σ̄n], where

σ̄n =

min
{
σ, εn
‖µn−µn−1‖2

}
, if µn , µn−1,

σ, otherwise,
(1.9)

such that
∑∞

n=0 σn‖µn − µn−1‖
2 < ∞, then the sequence {µn} generated by (1.8) converges weakly to

an element in a solution set of the problem SFP (1.1). The advantage of the IRCQA (1.8) is the
extrapolation factor {σn} can be chosen in many ways under the control condition (1.9), and the stepsize
parameter {λn} was built without the matrix norm.

In this paper, we propose an inertial Mann relaxed CQ algorithms to solve the split feasibility
problems in Hilbert spaces. Our work is inspired by iterative methods developed Dang et al. [10], and
Gibali et al. [17]. We apply our main result to solve a data classification problem in machine learning
and then compare the performance of our algorithm with FISTA and IRCQA.
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2. Preliminaries

Let H1 and H2 be real Hilbert spaces. The strong (weak) convergence of a sequence {µn} to µ is
denoted by µn → µ (µn ⇀ µ), respectively. Given a bounded linear operatorA : H1 → H2,AT denotes
the adjoint ofA. For any sequence {µn} ⊂ H1, ωn(µn) denotes the weak w-limit set of {µn}, that is,

ωω(µn) := {µ ∈ H1 : µn j ⇀ µ for some subsequence {n j} of {n}}.

Let C be a nonempty closed and convex subset of a real Hilbert space H1. The metric projection
from H1 onto C is defined by for each µ ∈ H1, there exists a unique x∗ ∈ C such that

‖µ − x∗‖ ≤ ‖µ − ν‖, ∀ν ∈ C.

x∗ is called the metric projection from H1 onto C and denoted by PCµ.

Lemma 2.1. [35] Let f : H1 → R be a function defined by

f (µ) :=
1
2
‖Aµ − PQAµ‖

2, ∀µ ∈ H1.

Then following assertions hold:
(i) f is convex and differentiable;
(ii) f is weakly lower semicontinuous on H1;
(iii) ∇ f (µ) = AT (I − PQ)Aµ for all µ ∈ H1;
(iv) ∇ f is 1

‖A‖2
inverse strongly monotone, that is,

〈∇ fµ − ∇ f y, µ − ν〉 ≥
1
‖A‖2

‖∇ fµ − ∇ f ν‖2, ∀µ, ν ∈ H1.

Lemma 2.2. [1] Let {κn}, {δn} and {αn} be the sequences in [0,+∞) such that κn+1 ≤ κn+αn(κn−κn−1)+δn

for all n ≥ 1,
∑∞

n=1 δn < +∞ and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then
the followings hold:
(i)
∑

n≥1[κn − κn−1]+ < +∞, where [t]+ = max{t, 0};
(ii) There exists κ∗ ∈ [0,+∞) such that lim

n→+∞
κn = κ∗.

Lemma 2.3. [40] Consider the problem SFP (1.1) with the function f as in Lemma 2.1 and let λ > 0
and µ∗ ∈ H1. The point µ∗ solve the problem SFP (1.1) if and only if the point µ∗ solve the fixed point
equation:

µ∗ = PC(µ∗ − λ∇ f (µ∗)) = PC(µ∗ − λAT (I − PQ)Aµ∗). (2.1)

Lemma 2.4. [26] Let {µn} be a sequence in a real Hilbert H1 such that there exists a nonempty closed
and convex subset Ω of H1 satisfying:
lim
n→∞
‖µn − µ‖ exists for all µ ∈ Ω and any weak cluster point of {µn} belongs to Ω.

Then there exists µ∗ ∈ Ω such that µn ⇀ µ∗.

Lemma 2.5. [32] Let X be a Banach space satisfying Opial’s condition and let {µn} be a sequence in
X. Let u, v ∈ X be such that

lim
n→∞
‖µn − u‖ and lim

n→∞
‖µn − v‖ exists.

If {µnk} and {µmk} are subsequences of {µn} which converge weakly to u and v, respectively, then
u = v.
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3. Main results

In this section, we introduce an inertial Mann relaxed CQ algorithm for solving the SFP (1.1). Let
C and Q be a nonempty closed and convex subsets of a real Hilbert spaces H1 and H2, respectively,
such that

C = {µ ∈ H1 : c(µ) ≤ 0}, Q = {ν ∈ H2 : q(ν) ≤ 0}, (3.1)

where c : H1 → R and q : H2 → R are lower semi-continuous convex functions. We also assume that
∂c and ∂q are bounded operators. For a sequence {νn} in H1, we define the half-spaces Cn and Qn as
follow:

Cn = {µ ∈ H1 : c(νn) ≤ 〈un, νn − µ〉}, (3.2)

where un ∈ ∂c(νn), and
Qn = {ν ∈ H2 : q(Aνn) ≤ 〈vn,Aνn − ν〉}, (3.3)

where vn ∈ ∂q(Aνn) andA : H1 → H2 is bounded linear operator. We see that C ⊆ Cn and Q ⊆ Qn for
each n ≥ 1. Define

fn(µ) :=
1
2
‖(I − PQn)Aµ‖

2, ∀µ ∈ H1 and n ≥ 1. (3.4)

Hence, we have

∇ fn(µ) = AT (I − PQn)Aµ.

Our algorithm is defined as follows:

Algorithm 3.1. : Inertial Mann relaxed CQ algorithm

Initialization: Take µ0, µ1 ∈ C and set n = 1.
Iterative Steps: Generate {µn} by computing the following step:
Step 1. Compute

νn = µn + σn(µn − µn−1), (3.5)

where σn ∈ [0, σ) for each n ≥ 1 such that for some σ ∈ [0, 1).
Step 2. Compute

zn = PCn(νn − λn∇ fn(νn)),

where λn ∈ (0, 2
‖A‖2

).
Step 3. Compute

µn+1 = (1 − αn)νn + αnzn, (3.6)

where αn ∈ (0, 1).
Update n to n + 1 and go to Step 1.

Assume that the following conditions hold:

∞∑
n=1

σn max{‖µn − µn−1‖
2, ‖µn − µn−1‖} < ∞. (3.7)
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0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2
‖A‖2

(3.8)

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 (3.9)

Lemma 3.1. Let {µn} be the sequence generated by Algorithm 3.1. Assume that the conditions (3.7)–
(3.9) hold. Then we have the following conclusions:
(i) 〈∇ fn(νn), νn − µ

∗〉 ≥ 2 fn(νn) for all µ∗ ∈ Ω and n ∈ N.
(ii) ‖µn+1 − µ

∗‖2 ≤ ‖νn − µ
∗‖2 − 4λnαn(1 − 1

2λn‖A‖
2) fn(νn)) for all µ∗ ∈ Ω.

(iii) If lim
n→∞
‖µn − µ

∗‖ exists and
∑∞

n=1[‖µn − µ
∗‖2 − ‖µn−1 − µ

∗‖2]+ < ∞ for all µ∗ ∈ Ω then we have
(a) {µn}, {νn} and {∇ fn(νn)} are bounded,
(b) ‖µn+1 − µn‖ → 0.

Proof. (i) Let µ∗ ∈ Ω and A∗ is adjoint operator of A. Since C ⊆ Cn and Q ⊆ Qn, µ∗ = PC(µ∗) =

PCn(µ
∗) and (I − PQ)(Aµ∗) = (I − PQn)(Aµ

∗) = 0. From (I − PQn) is firmly nonexpansive, for each
n ∈ N, we have

2 fn(νn) = ‖(I − PQn)Aνn‖
2

= ‖(I − PQn)Aνn − (I − PQn)Aµ
∗‖2

≤ 〈(I − PQn)Aνn − (I − PQn)Aµ
∗,Aνn −Aµ

∗〉

= 〈(I − PQn)Aνn,Aνn −Aµ
∗〉

= 〈A∗(I − PQn)Aνn, νn − µ
∗〉

= 〈∇ fn(νn), νn − µ
∗〉.

(ii) Let µ∗ ∈ Ω. Set tn = νn − λn∇ fn(νn), we have

‖µn+1 − µ
∗‖2 = ‖(1 − αn)νn + αnPCn((I − λn∇ fn)νn) − µ∗‖2

≤ (1 − αn)‖νn − µ
∗‖2 + αn‖PCn(tn) − µ∗‖2

≤ (1 − αn)‖νn − µ
∗‖2 + αn(‖tn − µ

∗‖2 − ‖tn − PCn(tn)‖2)
= ‖νn − µ

∗‖2 − αn(‖νn − µ
∗‖2 + ‖νn − λn∇ fn(νn) − µ∗‖2 − ‖νn − λn∇ fn(νn) − µn+1‖

2)
= ‖νn − µ

∗‖2 − αn(‖νn − µn+1‖
2 + 2λn〈∇ fn(νn), νn − µ

∗〉 − 2λn〈∇ fn(νn), νn − µn+1〉).

From part (i), we get

‖µn+1 − µ
∗‖2 ≤ ‖νn − µ

∗‖2 − αn(‖νn − µn+1‖
2 + 2λn‖∇ fn(νn)‖‖νn − µn+1‖ − 4λn fn(νn))

≤ ‖νn − µ
∗‖2 − αn(‖νn − µn+1‖

2 + (λn‖∇ fn(νn)‖)2 + ‖νn − µn+1‖
2 − 4λn fn(νn))

= ‖νn − µ
∗‖2 + λ2

nαn‖∇ fn(νn)‖2 − 4αnλn fn(νn)
≤ ‖νn − µ

∗‖2 + 2λ2
nαn‖A‖

2 fn(νn) − 4αnλn fn(νn)

= ‖νn − µ
∗‖2 − 4λnαn(1 −

1
2
λn‖A‖

2) fn(νn). (3.10)

(iii) Let µ∗ ∈ Ω. Suppose that lim
n→∞
‖µn−µ

∗‖ exists, (3.7) holds and
∑∞

n=1[‖µn−µ
∗‖2−‖µn−1−µ

∗‖2]+ <

∞, we have

‖µn+1 − νn‖
2 + ‖µn+1 − µ

∗‖2 = ‖νn − µ
∗‖2 + 2〈µn+1 − νn, µn+1 − µ

∗〉. (3.11)
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On the other hand, for each n ∈ N,

‖νn − µ
∗‖2 = (1 + σn)‖µn − µ

∗‖2 − σn‖µn−1 − µ
∗‖2 + σn(1 + σn)‖ µn − µn−1‖

2

≤ (1 + σn)‖µn − µ
∗‖2 − σn‖µn−1 − µ

∗‖2 + 2σn‖µn − µn−1‖
2. (3.12)

From (3.11) and (3.12), we have

‖µn+1 − νn‖
2 + ‖µn+1 − µ

∗‖2 ≤ ‖µn − µ
∗‖2 + σn(‖µn − µ

∗‖2 − ‖µn−1 − µ
∗‖2)

+ 2σn‖ µn − µn−1‖
2 + 2〈µn+1 − νn, µn+1 − µ

∗〉. (3.13)

Since {µn} is bounded, it follows from (3.12) that {νn} is also bounded. Since ∇ fn is ‖A‖2-Lipschitz,
we have

‖∇ fn(νn)‖ = ‖∇ fn(νn) − ∇ fn(µ∗)‖ ≤ ‖A‖2‖νn − µ
∗‖.

Hence {∇ fn(νn)} is also bounded.
Since λ ∈ (0, 2

‖A‖2
), we have

‖µn+1 − µ
∗‖2 ≤ (1 − αn)‖νn − µ

∗‖2 + αn‖zn − µ
∗‖2 − (1 − αn)αn‖νn − zn‖

2

≤ ‖νn − µ
∗‖2 − (1 − αn)αn‖νn − zn‖

2

= ‖µn − µ
∗ + σn(µn − µn+1)‖2 − (1 − αn)αn‖νn − zn‖

2

= ‖µn − µ
∗‖2 + 2σn〈µn − µn+1, νn − µ

∗〉 − (1 − αn)αn‖νn − zn‖
2.

This implies that

(1 − αn)αn‖νn − zn‖
2 ≤ ‖µn − µ

∗‖2 − ‖µn+1 − µ
∗‖2 + 2σn〈µn − µn+1, νn − µ

∗〉.

If follows from lim
n→∞
‖µn − µ

∗‖ exists and (3.7) that

lim
n→∞
‖νn − zn‖ = 0. (3.14)

We next show that ‖µn+1 − µn‖ → 0. It follows from (3.14), we have

〈µn+1 − νn, µn+1 − µ
∗〉 = 〈(1 − αn)νn + αnzn − νn, (1 − αn)νn + αnzn − µ

∗〉

= αn〈zn − νn, (1 − αn)(νn − µ
∗) + αn(zn − µ

∗)〉
= αn〈zn − νn, (1 − αn)(νn − µ

∗) + αn〈zn − νn, αn(zn − µ
∗)〉

= αn(1 − αn)〈zn − νn, νn − µ
∗〉 + α2

n〈zn − νn, zn − µ
∗〉 → 0, as n→ ∞. (3.15)

By
∑∞

n=1[‖µn − z‖2 − ‖µn−1 − z‖2]+ < ∞ and
∑∞

n=1 σn‖µn − µn−1‖
2 < ∞, it follows from (3.13) and (3.15)

that

lim
n→∞
‖µn+1 − νn‖

2 = 0. (3.16)

On the other hand, from (3.7), we have

‖νn − µn‖ = σn‖µn − µn−1‖ → 0. (3.17)

From (3.16) and (3.17), we get

‖µn+1 − µn‖ ≤ ‖µn+1 − νn‖ + ‖νn − µn‖ → 0 as n→ ∞.

This completes the proof. �
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Let {µn} be sequence which defined by Algorithm 3.1. We next prove that there exists a subsequence
{µn j} of the sequence {µn} converges weakly to a solution of the problem SFP (1.1).

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces, and let C and Q be nonempty closed convex
subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Assume that the
solution set Ω of the problem SFP (1.1) is nonempty, the condition (3.7) holds, and {λn}, {αn} satisfies
the condition (3.8). Let {µn} be a sequence generated by Algorithm 3.1. Then we have the following:
(i) {µn}, {νn} and ∇ fn(νn) are bounded;
(ii) There exists a subsequence {µn j} of {µn} converging weakly to a point µ∗ ∈ Ω;
(iii) The sequence {µn} converges weakly to a point µ∗ ∈ Ω.

Proof. Let µ∗ ∈ Ω. From Lemma 3.1 (ii), there exists m ∈ N such that

‖µn+1 − µ
∗‖2 + 4λnαn(1 −

1
2
λn‖A‖

2) fn(νn) ≤ ‖νn − µ
∗‖2, ∀n ≥ m. (3.18)

From (3.12) and (3.18), we have

‖µn+1 − µ
∗‖2 + σn‖µn−1 − µ

∗‖2 + 4λnαn(1 −
1
2
λn‖A‖

2) fn(νn) ≤ (1 + σn)‖µn − µ
∗‖2

+ 2σn‖µn − µn−1‖
2, ∀n ≥ m. (3.19)

Since 4λnαn(1 − 1
2λn‖A‖

2) fn(νn) ≥ 0, from (3.19), we have

‖µn+1 − µ
∗‖2 + σn‖µn−1 − µ

∗‖2 ≤ (1 + σn)‖µn − µ
∗‖2 + 2σn‖µn − µn−1‖

2, (3.20)

which implies that, for each n ≥ m,

‖µn+1 − µ
∗‖2 − ‖µn − µ

∗‖2 ≤ σn(‖µn − µ
∗‖2 − ‖µn−1 − µ

∗‖2) + 2σn‖µn − µn−1‖
2. (3.21)

From (3.10), we have

4λnαn(1 −
1
2
λn‖A‖

2) fn(νn) ≤ ‖µn − µ
∗‖2 − ‖µn+1 − µ

∗‖2

+2σn〈µn − µn−1, νn − µ
∗〉. (3.22)

Applying Lemma 2.2 of [1] in (3.21) with the data ψn = ‖µn − µ
∗‖2, δn = 2σn‖µn − µn−1‖

2, we obtain
that lim

n→∞
‖µn − µ

∗‖ exists and
∑∞

n≥m[‖µn − µ
∗‖2 − ‖µn−1 − µ

∗‖2]+ < ∞. This leads, from Lemma 3.1
(iii) that {µn}, {νn} and {∇ fn(νn)} are bounded. Since {∇ fn(νn)} is bounded. It follows from (3.22) and
conditions (3.7)–(3.9) that

lim
n→∞

fn(νn) = 0. (3.23)

Since {νn j} is bounded, there exists a subsequence {νn jm
} of {νn j} which converges weakly to µ∗. Since

PQn j
Aνn j ∈ Qn j , we have

q(Aνn j) ≤ 〈vn j ,Aνn j − PQn j
Aνn j〉, (3.24)

where vn j ∈ ∂q(Aνn j). Since ∂q is bounded, then {vn j} is also bounded. From (3.24), we have

q(Aνn j) ≤ ‖vn j‖‖Aνn j − PQn j
Aνn j‖ → 0 as j→ ∞.

AIMS Mathematics Volume 8, Issue 8, 18898–18918.
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It follow from the assumption of q that

q(Aµ∗) ≤ 0,

which means thatAµ∗ ∈ Q. By Lemma 3.1 (iii), we have

lim
n→∞
‖µn − µn+1‖ = 0.

Note that zn j ∈ Cn j . By the definition of Cn j , we get

c(νn j) ≤ 〈un j , νn j − zn j〉,

where un j ∈ ∂c(νn j). Since ∂c is bounded, we see that {un j} is bounded. From (3.14), we have

c(νn j) ≤ ‖un j‖‖νn j − zn j‖ → 0 as j→ ∞.

Similarly, we obtain that c(µ∗) ≤ 0, i.e., µ∗ ∈ C. From 3.17. Therefore, µn j ⇀ µ∗ ∈ Ω.
Since {µn} is bounded and H is reflexive, ωω(µn) is nonempty. Let p ∈ ωω(µn) be an arbitrary

element. Then there exists a subsequence {µnk} of {µn} such that µnk ⇀ p. Let q ∈ ωω(µn) and
{µni} ⊆ {µn} be such that µni ⇀ q. From (ii), we have p, q ∈ Ω. By Lemma 2.5, p = q. Applying
Lemma 2.4 and Lemma 3.1 (iii), there exists µ∗ ∈ Ω such that µn ⇀ µ∗. �

For the convergence of Algorithm 3.1, we see that the parameter {λn} needs to satisfy the Lipschitz
condition that is λn ∈ (0, 2

‖A‖2
). So, Algorithm 3.1 is flexible to use by choosing the parameter {λn}. For

example, applying the stepsize (1.6) and (1.9) of Dang et al. [10] and Gibali et al. [17], respectively,
we present a new update step size in the following Algorithm 3.3 and Algorithm 3.4:

Algorithm 3.3. Initialization: Take {λ1} ∈ (0, 2
‖A‖2

), {αn} ∈ (0, 1), and ρ1, ρ2 ∈ (0, 2) and N ∈ N. Select
arbitrary points µ0, µ1 ∈ C and σn ∈ [0, σ) for some σ ∈ [0, 1). Set n = 1.

Iterative Steps: Generate {µn} by computing the following step:
Step 1. Compute

νn = µn + σn(µn − µn−1). (3.25)

Step 2. Compute
zn = PCn(νn − λn∇ fn(νn)).

Step 3. Compute
µn+1 = (1 − αn)νn + αnzn. (3.26)

λn+1 =


min
{
λn,

ρ1‖νn−zn‖

Ξ(νn) , ρ2‖zn−µn+1‖

Ξ(µn+1)

}
, i f Ξ(νn) , 0,Ξ(µn+1) , 0, n ≤ N,

2
n‖A‖2 , n > N,
λn, otherwise,

where Ξ(x) = ‖∇ fn(zn) − ∇ fn(x)‖.
Update n to n + 1 and go to Step 1.

AIMS Mathematics Volume 8, Issue 8, 18898–18918.



18907

Algorithm 3.4. Initialization: Take {λ1} ∈ (0, 2
‖A‖2

), {αn} ∈ (0, 1), and ` > 0. Select arbitrary points
µ0, µ1 ∈ C and σn ∈ [0, σ) for some σ ∈ [0, 1). Set n = 1.

Iterative Steps: Generate {µn} by computing the following step:
Step 1. Compute

νn = µn + σn(µn − µn−1). (3.27)

Step 2. Compute

zn = PCn(νn − λn∇ fn(νn)).

Step 3. Compute

µn+1 = (1 − αn)νn + αnzn. (3.28)

λn+1 =


min
{
λn, `Θ(νn), `Θ(zn), `Θ(µn+1)

}
, i f Θ(νn) , 0,Θ(zn) , 0,Θ(µn+1) , 0, n ≤ N,

2
n‖A‖2 , n > N,
λn, otherwise,

where Θ(x) = ‖∇ fn(x)‖.
Update n to n + 1 and go to Step 1.

Remark 3.1. From Algorithms 3.3 and 3.4, it’s easy to see that the stepsize λn is a nonincreasing
sequence in (0, 2

‖A‖2
) and satisfies the condition (3.8).

4. Application to data classification problem

Currently, cardiovascular disease is the leading cause of death. World Health Organization (WHO)
reported 17.9 million human deaths caused by cardiovascular diseases in the year 2019 that was
estimated to be 32% the year 2019 [39]. In Thailand [11] cardiovascular disease is the number 1 cause
of death for Thai people and increases in all age groups. Therefore, monitoring the heart condition at
regular intervals and tracing out the problem at an earlier stage is the need to control the life-threatening
situation due to heart failure. To predict heart disease, we used the UCI Machine Learning Heart
Disease dataset, which is available on the Internet at [15], was used to evaluate the proposed model.
The dataset comprises 76 characteristics and 303 records. However, only 14 attributes from the dataset
were used for training and testing. This dataset contains the various attributes are Age, Gender, CP,
Trestbps, Chol, Fbs, Restecg, Thalach, Exang, Oldpeak, Slope, Ca, Thal and Num (target variable).
The dataset consists of 138 normal instances versus 165 abnormal instances. The following Table 1
shows visualization of the dataset.
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Table 1. Overview of the UCI Machine Learning Heart Disease dataset.

Attribute Description x̄ S.D. Max Min C.V.

Age Age of patient in years 54.37 9.07 77 29 16.68
Sex Male and female 0.68 0.47 1 0 68.10
Cp Chest pain type 0.97 1.03 3 0 106.55
Trestbps Resting blood pressure 131.62 17.51 200 94 13.30

(in mm Hg on admission to the hospital)
Chol Serum cholesterol shows the amount of triglycerides present 246.26 51.75 564 126 21.01
Fbs Fasting blood sugar larger than 120 mg/dl 0.15 0.36 1 0 239.44
Restecg Resting electrocardiographic results 0.53 0.52 2 0 99.42
Thalach Maximum heart rate achieved 149.65 22.87 202 71 15.28
Exang Exercise-induced angina (1 yes) 0.33 0.47 1 0 143.55
Oldpeak ST depression induced by exercise relative to rest 1.04 1.16 6.2 0 111.50
Slope The slope of the peak exercise ST segment 1.40 0.62 2 0 43.96
Ca Number of major vessels colored by fluoroscopy 0.73 1.02 4 0 139.97
Thal No explanation provided, but probably thalassemia 2.31 0.61 3 0 26.42
Target No disease, disease - - - - -

S.D.: Standard deviation; C.V.: Coefficient of variation.

In 2021, Bharti et al. [6] presented the comparison of different machine learning algorithms of the
UCI Machine Learning Heart Disease dataset with feature selections and normalization for getting
better accuracy. In this section, we shall apply our Algorithms 3.1, 3.3, and 3.4 to optimize weight
parameter in training data for machine learning by using 5-fold cross-validation [20] in extreme
learning machine (ELM). Very recently, Sarnmeta et al. [29] also considered the UCI Machine
Learning Heart Disease dataset using an accelerated forward backward algorithm with linesearch
technique for convex minimization problems in ELM with 10-fold cross-validation. The following
Table 2 shows the efficiency of our algorithm in extreme learning machine by original dataset compare
with the existing machine learning methods were presented in Bharti et al. [6] and ELM algorithm in
Sarnmeta et al. [29].

Table 2. Highest accuracy of different machine learning methods using the UCI Machine
Learning Heart Disease dataset.

Machine learning method Accuracy(%)
Logistic regression 83.30
K neighbors 84.80
Support vector machine 83.20
Random forest 80.30
Decision tree 82.30
Artificial neural network [4] 82.50
Learning vector quantization neural network algorithm [31] 85.55
ELM(Sarnmeta et al. [29]) 83.87
ELM(our algorithm) 87.69
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For our machine learning classification process, we start at letting U := {(µs, rs) : µs ∈ R
n, rs ∈

Rm, s = 1, 2, ...,N} be a training set of N distinct samples where µs is an input training data and rs

is a target data. The output function of ELM for single-hidden layer feed forward neural networks
(SLFNs) [16, 42] with M hidden nodes and activation functionV is

Os =

M∑
i=1

wiV(ciµs + ei),

where ci and ei are parameters of weight and finally the bias, respectively. To find the optimal output
weight wi at the i-th hidden node, then the hidden layer output matrixA is generated as follows:

A =


V(c1µ1 + e1) . . . V(cMµ1 + eM)

...
. . .

...

V(c1µN + e1) . . . V(cMµN + eM)

 .
To solve ELM is to find optimal output weight w = [wT

1 , ...,w
T
M]T such that Aw = T , where

T = [rT
1 , ..., r

T
N]T is the training target data. The least square problem is used for finding the solution

of linear equation Aw = T in the cases of the Moore-Penrose generalized inverse of A may be not
easy to compute when the matrixA† does not exist. To reduce overfitting of the model in training, we
consider constrain least square problem in closed convex subsets C of H1 as follow:

min
ω∈C

1
2
{‖Aω − T‖22}, (4.1)

where C = {x ∈ H1 : ‖x‖1 ≤ γ} such that γ is regularization parameters. For applying our inertial Mann
relaxed CQ algorithm to solve the problem (4.1), we define f (µ) := 1

2‖(I − PQ)Aµ‖2, ∀µ ∈ H1, and
Q = {T }, and let c(µ) = ‖µ‖1 − γ and q(µ) = 1

2‖µ − T‖
2.

The following four evaluation metrics: Accuracy, Precision, Recall, and F1-score [18] are
considered for comparing the performance of the classification algorithms:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%, (4.2)

Precision =
TP

TP + FP
× 100%, (4.3)

Recall =
TP

TN + FN
× 100%, (4.4)

F1 − score =
2 × (Precision × Recall)

Precision + Recall
, (4.5)

where TP:=True Positive, FN:=False Negative, TN:=True Negative and FP:=False Positive.
The binary cross-entropy loss function is the mean of a cross-entropy resulting from two probability

distributions, the probability distribution we want versus the probability distribution estimated by the
model. By computing the following average:

Loss = −
1
K

K∑
i=1

yi log ŷi + (1 − yi) log(1 − ŷi),
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where ŷi is the i-th scalar value in the model output, yi is the corresponding target value, and K is the
number of scalar values in the model output.

We start computation by setting the activation function as sigmoid, hidden nodes M = 100,
regularization parameter λ = 1 × 10−5 and αn = 1

n+1 for Algorithms 3.1, 3.3, and 3.4 with λn =
0.9

2(max(eigenvalue(ATA))) for Algorithm 3.1, λ1 = 0.9
2(max(eigenvalue(ATA))) , ρ1 = ρ2 = 1.99 for Algorithm 3.3 and

λ1 = 0.9
2(max(eigenvalue(ATA))) for Algorithm 3.4. The stopping criteria is the number of iteration 100. We

compare the performance of the algorithm with different parameters σ̄n as seen in Table 3 when

σn =

{ σ̄n
n2 max{‖µn−µn−1‖2,‖µn−µn−1‖

, i f n > N and µn , µn−1,

σ̄n, otherwise,

where N is a number of iterations that we want to stop. We can see that parameters σn satisfies the
condition in Algorithm 3.1, Algorithm 3.3, and Algorithm 3.4 all of each case of σ̄n in Table 3.

Table 3. Numerical results of σ̄n.

Loss
σ̄n Training Time Training Test
0.3 0.0371 0.252224 0.230180
0.5 0.0239 0.251785 0.229676

Algorithm 3.1 1
n 0.0321 0.252403 0.230384
1

‖µn−µn−1‖2+n2 0.0333 0.252805 0.230993
213

‖µn−µn−1‖3+n3+213 0.0322 0.250660 0.228933
0.3 0.1511 0.252224 0.230180
0.5 0.1681 0.251785 0.229676

Algorithm 3.3 1
n 0.1804 0.252403 0.230384
1

‖µn−µn−1‖2+n2 0.1750 0.252805 0.230993
213

‖µn−µn−1‖3+n3+213 0.1773 0.250660 0.228933
0.3 0.1398 0.252224 0.230180
0.5 0.1342 0.251785 0.229676

Algorithm 3.4 1
n 0.1314 0.252403 0.230384
1

‖µn−µn−1‖2+n2 0.1123 0.252805 0.230993
213

‖µn−µn−1‖3+n3+213 0.1450 0.250660 0.228933

We can see that σ̄n = 213

‖µn−µn−1‖3+n3+213 highly improves the performance of Algorithm 3.1, Algorithm
3.3, and Algorithm 3.4. We next choose it as the default inertial parameter for later our calculation.

By setting σ̄n = 213

‖µn−µn−1‖3+n3+213 , αn = 1
n+1 for Algorithms 3.1, 3.3, and 3.4 with ρ1 = ρ2 = 1.99

for Algorithm 3.3. The stopping criteria is the number of iteration 100. We obtain the results of the
different parameters h when λn = h

2(max(eigenvalue(ATA))) for Algorithm 3.1 and different parameters λ1 for
Algorithm 3.3 and Algorithm 3.4 as seen in Table 4.
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Table 4. Numerical results of λn of Algorithm 3.1 and λ1 of Algorithm 3.3 and Algorithm
3.4, respectively.

Loss
h, λ1 Training Time Training Test
0.7 0.0380 0.250782 0.228759
0.9 0.0347 0.250660 0.228933

Algorithm 3.1 1 0.0331 0.250174 0.228310
1.9 0.0256 0.247012 0.224474

1.9999 0.0338 0.246779 0.224221
0.7 0.1440 0.250782 0.228759
0.9 0.1581 0.250660 0.228933

Algorithm 3.3 1 0.1533 0.250174 0.228310
1.9 0.1735 0.247012 0.224474

1.9999 0.1574 0.246795 0.224238
0.7 0.1317 0.250782 0.228759
0.9 0.1367 0.250660 0.228933

Algorithm 3.4 1 0.1313 0.250174 0.228310
1.9 0.1280 0.247012 0.224474

1.9999 0.1353 0.246779 0.224221

Table 5. Numerical results of αn.

Loss
αn Training Time Training Test
0.3 0.0364 0.242989 0.220795
0.5 0.0376 0.240726 0.219035

Algorithm 3.1 1
n 0.0372 0.244716 0.221871
1

n+1 0.0343 0.246779 0.224221
1

100n+1 0.0366 0.271235 0.259327
0.3 0.1605 0.243010 0.220813
0.5 0.1621 0.240745 0.219048

Algorithm 3.3 1
n 0.1654 0.244733 0.221890
1

n+1 0.1820 0.246795 0.224238
1

100n+1 0.1762 0.271299 0.259421
0.3 0.1396 0.242989 0.220795
0.5 0.1281 0.240726 0.219035

Algorithm 3.4 1
n 0.1367 0.244716 0.221871
1

n+1 0.1444 0.246779 0.224221
1

100n+1 0.1264 0.271235 0.259327

We can see that h = λ1 = 1.9999 highly improves the performance of Algorithm 3.1, Algorithm 3.3,
and Algorithm 3.4. We next choose it as the default suitable step size for later our calculation.
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Setting the inertial parameters σ̄n = 213

‖µn−µn−1‖3+n3+213 , λn = 1.9999
2(max(eigenvalue(ATA))) for Algorithm 3.1 and

σ̄n = 213

‖µn−µn−1‖3+n3+213 , λ1 = 1.9999
2(max(eigenvalue(ATA))) for Algorithm 3.3 and Algorithm 3.4 with ρ1 = ρ2 = 1.99

for Algorithm 3.3. The comparison of all algorithms with different parameters αn are presented in
Table 5.

We can see that αn = 0.5 highly improves the performance of Algorithm 3.1, Algorithm 3.3, and
Algorithm 3.4. Therefore, we choose it as the default parameter αn for later our calculation. We
compare the performance of FISTA, IRCQA, and our algorithm. All the parameters are chosen as seen
in Table 6.

Table 6. Chosen parameters of each algorithm.

Algorithm σ̄n λn λ1 αn ρ1, ρ2 τn

FISTA - 0.2
2‖A‖2 - - - -

IRCQA 1
‖µn−µn−1‖2+n+2 - - - - 1

n+1

Algorithm 3.1 213

‖µn−µn−1‖3+n3+213
1.9999

2(max(eigenvalue(ATA))) - 0.5 - -
Algorithm 3.3 213

‖µn−µn−1‖3+n3+213 - 1.9999
2(max(eigenvalue(ATA))) 0.5 1.99 -

Algorithm 3.4 213

‖µn−µn−1‖3+n3+213 - 1.9999
2(max(eigenvalue(ATA))) 0.5 - -

For comparison, We set sigmoid as an activation function, number of hidden nodes M = 100 and
regularization parameter λ = 1 × 10−5.

Table 7 shows that our algorithm is among those with the highest precision, recall, F1-score, and
accuracy efficiency. Additionally, it has the lowest number of iterations. This means that it has the
highest probability of correctly classifying heart disease compared to algorithms examinations. We
next present the training and validation loss with the accuracy of training to show that our algorithm
has good fit model in the training dataset.

Table 7. The performance of each algorithm.

Algorithm Iteration No. Training Time Precision Recall F1-score Accuracy
FISTA 72 0.0336 100.00 87.50 93.33 87.69
IRCQA 85 0.0758 100.00 87.50 93.33 87.69
Algorithm 3.1 67 0.0386 100.00 87.50 93.33 87.69
Algorithm 3.3 68 0.0975 100.00 87.50 93.33 87.69
Algorithm 3.4 67 0.0934 100.00 87.50 93.33 87.69

From Figures 1–3, we can see that the Training Loss and Validation Loss values have decreased,
where the Validation Loss value is lower than Training Loss. On the contrary, when we look at the
Accuracy graph, we see that Training Accuracy and Validation Accuracy increase, where the Validation
Accuracy is higher than Training Accuracy.
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Figure 1. Accuracy and Loss plots of the iteration of Algorithm 3.1.
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Figure 2. Accuracy and Loss plots of the iteration of Algorithm 3.3.
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Figure 3. Accuracy and Loss plots of the iteration of Algorithm 3.4.

5. Conclusions

This paper considers solving split feasibility problems using the inertial Mann relaxed CQ
algorithms. Under some suitable conditions imposed on parameters, we have proved the weak
convergence of the algorithm. Moreover, we present choosing different stepsize modifications to
achieve an efficient algorithm. We show the efficiency of our algorithm by comparing it with different
machine learning methods and also extreme learning machine with FISTA and IRCQA algorithms in
data classification using the UCI Machine Learning Heart Disease dataset. The results show that our
algorithms are better than the other algorithms.
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