In this article, we prove some results on existence and uniqueness of fixed points for an almost $ \phi $-contraction mapping defined on a metric space endowed with an amorphous relation. Our results generalize and improve several well known fixed point theorems of the existing literature. To substantiate the credibility of our results, we construct some examples. We also apply our results to determine a unique solution of a boundary value problem associated with nonlinear elastic beam equations.
Citation: Ebrahem A. Algehyne, Nifeen Hussain Altaweel, Mounirah Areshi, Faizan Ahmad Khan. Relation-theoretic almost $ \phi $-contractions with an application to elastic beam equations[J]. AIMS Mathematics, 2023, 8(8): 18919-18929. doi: 10.3934/math.2023963
In this article, we prove some results on existence and uniqueness of fixed points for an almost $ \phi $-contraction mapping defined on a metric space endowed with an amorphous relation. Our results generalize and improve several well known fixed point theorems of the existing literature. To substantiate the credibility of our results, we construct some examples. We also apply our results to determine a unique solution of a boundary value problem associated with nonlinear elastic beam equations.
[1] | F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math., 30 (1968), 27–35. |
[2] | D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 158–164. |
[3] | J. Matkowski, Integrable solutions of functional equations, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1975. |
[4] | V. Berinde, Iterative approximation of fixed points, Springer Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72234-2 |
[5] | V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43–53. |
[6] | V. Berinde, M. Pǎcurar, Fixed points and continuity of almost contractions, Fixed Point Theor., 9 (2008), 23–34. |
[7] | M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. https://doi.org/10.1016/j.jmaa.2006.03.016 doi: 10.1016/j.jmaa.2006.03.016 |
[8] | M. A. Alghamdi, V. Berinde, N. Shahzad, Fixed points of non-self almost contractions, Carpathian J. Math., 30 (2014), 7–14. |
[9] | G. V. R. Babu, M. L. Sandhya, M. V. R. Kameshwari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24 (2008), 8–12. |
[10] | A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y |
[11] | A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A |
[12] | A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally $T$-transitive binary relations, Fixed Point Theor., 19 (2018), 13–24. https://doi.org/10.24193/fpt-ro.2018.1.02 doi: 10.24193/fpt-ro.2018.1.02 |
[13] | M. Arif, M. Imdad, A. Alam, Fixed point theorems under locally $T$-transitive binary relations employing Matkowski contractions, Miskolc Math. Notes, 23 (2022), 71–83. https://doi.org/10.18514/MMN.2022.3220 doi: 10.18514/MMN.2022.3220 |
[14] | E. A. Algehyne, M. S. Aldhabani, F. A. Khan, Relational contractions involving (c)-comparison functions with applications to boundary value problems, Mathematics, 11 (2023), 1127. https://doi.org/10.3390/math11061277 doi: 10.3390/math11061277 |
[15] | F. A. Khan, Almost contractions under binary relations, Axioms, 11 (2022), 441. https://doi.org/10.3390/axioms11090441 doi: 10.3390/axioms11090441 |
[16] | A. Alam, R. George, M. Imdad, Refinements to relation-theoretic contraction principle, Axioms, 11 (2022), 316. https://doi.org/10.3390/axioms11070316 doi: 10.3390/axioms11070316 |
[17] | K. Sawangsup, W. Sintunavarat, A. F. Roldán-López-de-Hierro, Fixed point theorems for $F_\mathcal{R}$-contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., 19 (2017), 1711–1725. https://doi.org/10.1007/s11784-016-0306-z doi: 10.1007/s11784-016-0306-z |
[18] | H. H. Al-Sulami, J. Ahmad, N. Hussain, A. Latif, Relation-theoretic $(\theta, \mathcal{R})$-contraction results with applications to nonlinear matrix equations, Symmetry, 10 (2018), 767. https://doi.org/10.3390/sym10120767 doi: 10.3390/sym10120767 |
[19] | S. Shukla, N. Dubey, Some fixed point results for relation theoretic weak $\varphi$-contractions in cone metric spaces equipped with a binary relation and application to the system of Volterra type equation, Positivity, 24 (2020), 1041–1059. https://doi.org/10.1007/s11117-019-00719-8 doi: 10.1007/s11117-019-00719-8 |
[20] | B. S. Choudhury, N. Metiya, S. Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations, CUBO, 23 (2021), 171–190. |
[21] | C. Zhai, M. Hao, Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems, Nonlinear Anal., 75 (2012), 2542–2551. https://doi.org/10.1016/j.na.2011.10.048 doi: 10.1016/j.na.2011.10.048 |
[22] | M. Subaşi, S. I. Araz, Numerical regularization of optimal control for the coefficient function in a wave equation, Iran J. Sci. Technol. Trans. Sci., 43 (2019), 2325–2333. https://doi.org/10.1007/s40995-019-00690-9 doi: 10.1007/s40995-019-00690-9 |
[23] | A. Atangana, S. I. Araz, An accurate iterative method for ordinary differential equations with classical and Caputo-Fabrizio derivatives, 2023, hal-03956673. |
[24] | J. Wu, Y. Liu, Fixed point theorems for monotone operators and applications to nonlinear elliptic problems, Fixed Point Theory Appl., 134 (2013), 134. https://doi.org/10.1186/1687-1812-2013-134 doi: 10.1186/1687-1812-2013-134 |
[25] | M. Jleli, V. C. Rajić, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl., 12 (2012), 175–192. https://doi.org/10.1007/s11784-012-0081-4 doi: 10.1007/s11784-012-0081-4 |
[26] | S. Lipschutz, Schaum's outlines of theory and problems of set theory and related topics, McGraw-Hill, 1998. |
[27] | B. Kolman, R. C. Busby, S. C. Ross, Discrete mathematical structures, 6 Eds, Pearson/Prentice Hall, 2009. |