Let $ \Delta_q $ be the universal Askey-Wilson algebra. If $ q $ is not a root of unity, it is shown in the Huang's earlier paper that an $ (n+1) $-dimensional irreducible $ \Delta_q $-module is a quotient $ V_n(a, b, c) $ of a $ \Delta_q $-Verma module with
$ {\textbf{ Condition A: }} \; abc, a^{-1}bc, ab^{-1}c, abc^{-1} \notin \left \{q^{n-2i+1}| 1 \leq i \leq n\right \}. $
The aim of this paper is to discuss the structures of $ (n+1) $-dimensional $ \Delta_q $-modules $ V_n(a, b, c) $ when the given triples $ (a, b, c) $ do not satisfy Condition A.
Citation: Wanxia Wang, Shilin Yang. On finite-dimensional irreducible modules for the universal Askey-Wilson algebra[J]. AIMS Mathematics, 2023, 8(8): 18930-18947. doi: 10.3934/math.2023964
Let $ \Delta_q $ be the universal Askey-Wilson algebra. If $ q $ is not a root of unity, it is shown in the Huang's earlier paper that an $ (n+1) $-dimensional irreducible $ \Delta_q $-module is a quotient $ V_n(a, b, c) $ of a $ \Delta_q $-Verma module with
$ {\textbf{ Condition A: }} \; abc, a^{-1}bc, ab^{-1}c, abc^{-1} \notin \left \{q^{n-2i+1}| 1 \leq i \leq n\right \}. $
The aim of this paper is to discuss the structures of $ (n+1) $-dimensional $ \Delta_q $-modules $ V_n(a, b, c) $ when the given triples $ (a, b, c) $ do not satisfy Condition A.
[1] | P. Baseilhac, Deformed Dolan-Grady relations in quantum integrable models, Nucl. Phys. B, 709 (2005), 491–521. http://doi.org/10.1016/j.nuclphysb.2004.12.016 doi: 10.1016/j.nuclphysb.2004.12.016 |
[2] | B. Curtin, Modular Leonard triples, Linear Algebra Appl., 424 (2007), 510–539. http://doi.org/10.1016/j.laa.2007.02.024 doi: 10.1016/j.laa.2007.02.024 |
[3] | D. B. Fairlie, Quantum deformations of $\mathfrak su(2)$, J. Phys. A: Math. Gen., 23 (1990), L183–L187. http://doi.org/10.1088/0305-4470/23/5/001 doi: 10.1088/0305-4470/23/5/001 |
[4] | M. Havlíček, S. Pošta, On the classification of irreducible finite-dimensional representations of $U_{q}'(\mathfrak so_3)$ algebra, J. Math. Phys., 42 (2001), 472–500. http://doi.org/10.1063/1.1328078 doi: 10.1063/1.1328078 |
[5] | H. Huang, Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Commun. Math. Phys., 340 (2015), 959–984. http://doi.org/10.1007/s00220-015-2467-9 doi: 10.1007/s00220-015-2467-9 |
[6] | H. Huang, Finite-dimensional irreducible modules of the universal Askey-Wilson algebra at roots of unity, J. Algebra, 569 (2021), 12–29. https://doi.org/10.1016/j.jalgebra.2020.11.012 doi: 10.1016/j.jalgebra.2020.11.012 |
[7] | H. Huang, The classification of Leonard triples of QRacah type, Linear Algebra Appl., 436 (2012), 1442–1472. http://doi.org/10.1016/j.laa.2011.08.033 doi: 10.1016/j.laa.2011.08.033 |
[8] | J. Jantzen, Lectures on quantum groups, Providence: American Mathematical Society, 1996. https://doi.org/10.1090/gsm/006 |
[9] | A. Lavrenov, On Askey-Wilson algebra, Czech. J. Phys., 47 (1997), 1213–1219. http://doi.org/10.1023/A:1022821531517 doi: 10.1023/A:1022821531517 |
[10] | P. Terwilliger, The universal Askey-Wilson algebra, SIGMA, 7 (2011), 069. https://doi.org/10.3842/SIGMA.2011.069 doi: 10.3842/SIGMA.2011.069 |
[11] | P. Terwilliger, The universal Askey-Wilson algebra and the equitable presentation of $U_{q}(\mathfrak sl_2)$, SIGMA, 7 (2011), 099. http://doi.org/10.3842/SIGMA.2011.099 doi: 10.3842/SIGMA.2011.099 |
[12] | P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 330 (2001), 149–203. http://doi.org/10.1016/s0024-3795(01)00242-7 doi: 10.1016/s0024-3795(01)00242-7 |
[13] | P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form, J. Algebra, 291 (2005), 1–45. https://doi.org/10.1016/j.jalgebra.2005.05.033 doi: 10.1016/j.jalgebra.2005.05.033 |
[14] | R. Vidūnas, Askey-Wilson relations and Leonard pairs, Discrete Math., 308 (2008), 479–495. http://doi.org/10.1016/j.disc.2007.03.037 doi: 10.1016/j.disc.2007.03.037 |
[15] | A. S. Zhedanov, "Hidden symmetry" of Askey-Wilson polynomial, Theor. Math. Phys., 89 (1991), 1146–1157. http://doi.org/10.1007/BF01015906 doi: 10.1007/BF01015906 |