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1. Introduction

In 1991, Zhedanov in [15] introduced the Askey-Wilson algebra AW, which has attracted a lot of
attentions. The Askey-Wilson algebra AW, is defined by three generators Ky, K, K. It satisfies the
relations

[Ko, K1]l4 = K2,
[Ki, K], = BK; + CoKy + Dy,
[Ki, K>], = BKy + CK; + Dy,

where [L, M], = gLM — g 'ML, and B, Cy, C,, Dy, D; are the structural constants of the algebra.

In the course of the research, it has been found that the Askey-Wilson algebra AW, plays an
important role in the quantum integrable systems (see [1, 9]) and in the theory of Leonard pairs
(see [12-14]) and Leonard triples (see [2,7]). The algebra AW, has very closed relations with the
quantum algebra U,(sl,) (see [11]) and the non-standard deformation U, (s03) (see [3]).
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In 2011, Terwilliger in [10] introduced the universal Askey-Wilson algebra A,. It is an associative
[F-algebra generated by A, B, C such that

BC - q'CB CA - q'AC AB— g 'BA
A+l 2 q—z ’ B+1 2 q—z ’ c+? 2 q—z

9 —4q 9 —4q 9 —4q
are all central in A,. In 2015, Huang in [5] gave the classification of finite-dimensional irreducible
modules of A, when ¢ is not a root of unity. It is shown that an (n + 1)-dimensional irreducible A,-
module is a quotient V,(a, b, ¢) of a A,-Verma module with

abe,a 'be,ab™'c,abc”! ¢ {q"_z”lll <i< n} (1.1)

He also established the connections between this new classification and those of finite-dimensional
irreducible modules of U/ (so3) (see [4]) and U,(sl) (see [8]) respectively. Huang in [6] classified the
finite-dimensional irreducible modules of A, at roots of unity.

The aim of this paper is to discuss the structures of (n + 1)-dimensional A,-module V,(a, b, c) when
the given triples (a, b, c) do not satisfy the condition (1.1) under the assumption that g is not a root of
unity.

In Section 1, we recall that the definition of the universal Askey-Wilson algebra A, and some
known results about the construction of the Verma module M,(a, b,c) and its (n + 1)-dimensional
quotient V,(a, b, c), respectively. In Section 2, for a given triple (a, b, ¢), and the condition (1.1) is not
satisfied, we show that there is at most four isomorphism classes of (n + 1)-dimensional irreducible
A (a,B,y)-module. In these cases, we also discuss the structures of (n + 1)-dimensional A,(a,S,7y)-
module V,(a, b, ¢). In Section 3, we give some examples satisfying various conditions of the theorems.

2. Some known results

First of all, let F be an algebraically closed field with char F = 0, Z the ring of integers, N the set of
the nonnegative integers and N* = N \ {0}. All algebras, vector spaces etc. are defined over the field F.

2.1. The universal Askey-Wilson algebra A,

Fix a nonzero g € F such that g* # 1. Let us recall the concepts of the universal Askey-Wilson
algebra A, which was introduced by Terwilliger in [10, Definition 1.3].

Definition 2.1. The universal Askey-Wilson algebra A, is an associative F-algebra generated by A, B,
C with the following relations

N gBC-q'CB _ «
9 —q? qg+q"’
L4CA-gq'AC _ P
¢-q*  q+q’"’
N gAB — ¢ 'BA 0%

A

B

2.1)

c

¢-q*  q+q"

where each of a, B, vy is central in A,.
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The algebra A, has other presentation as follows (see [10, Theorem 2.6]).

Theorem 2.2. The algebra A, can be presented by generators A, B, y with relations

A’B-BA® + (¢ +¢7 +1)(ABA> ~A’BA) = (¢ -q72) (BA-AB),
(4 - a72) (AB- BA),

(9-47') (BA-AB)y,

B°A-AB*+(q’ + g + 1)(BAB® - B’AB)

A2B? — B2A? + (q2 + q—2) (BABA — ABAB)
Ay =vyA, By = yB.

2.2. The Verma A,-module M(a, b, c)

(2.2)
(2.3)

(2.4)
(2.5)

Now we recall the concept of Verma A,-module M ,(a, b, ¢) of the universal Askey-Wilson algebra

A, for a given triple (a, b, ¢).

Let us list some notations for convenience firstly.
Let A, O, X, Y, Z denote five mutually commuting indeterminate elements over F. Define

0:(A, Q; X) =AQ7 X! + A1 0¥X, for i € Z,
</)i(/\, Q;X, Y,Z) :AQX—lY—l (Qi _ Q—i) (A—lQi—l _ AQl—i)
x (07 - A‘lQHXYZ) (Q-" —-AT'Q7'xYZT), for i € Z,

WA, 0:X.Y,2) =(AQ+ A Q") (Z+Z7) + (X +X7") (Y + ¥7).

Let L(A, Q; X) = (L;;) be the N X N matrix with

1, if j=i-1;
L = ej(A, 0.;X), itj=i
0, otherwise.

Let UA, O; X, Y,Z) = (U;;) be the N X N matrix with

91(A7 Q; Y)a lf] =1
Uj=1 ¢;(AO;X,Y,2Z), ifj=i+]l;
0, otherwise.

Let T(A, Q; X, Y,Z) = (T;;) be the N X N matrix with

0710;11(A,0;Y)-00,(A,0:Y)

QZ_Q—Z ’ ifj = i_ 1;
07'¢41(A.Q:X.Y,2)- 06 /(A.Q:X.Y.Z)
QZ_Q—2
Tij = W(AQ:X,Y,2)-0;(A,0:X)0;(A, Q) T
+ Q+Q’l ’ 1 _] - la
0710,(A0:X)-00;-1(A,Q0:X) ) e e
: Q2_Q—2j 1 ¢](A’ Q, X, KZ)9 lf J =1+ 19
0, otherwise.
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All notations given in the above are fixed unless specified.

Let a, b, c, A be given nonzero scalars in IF and M,(a, b, ¢) an F-vector space with a basis {m;};cy . It
is easy to see that there is a A,-module structure on M,(a, b, c) on which the matrices of A, B, C acting
are

LA, q;a), U(A,q;a,b,c), T(A,q;a,b,c) (2.6)
respectively, and the actions of @, 5, y are as follows:
am; = w(A,q;b,c,a)m;, Pm; =w(d,q;c,a,bym;, ym;=w(d,q;a,b,c)m, 2.7)
for all i € N.

2.3. Finite-dimension A,-module V,(a, b, c)

Under the condition that 4 = ¢", we let N (a, b, c) be a submodule of M,(a, b, c) spanned by the
{m;}izn+1, then
Vu(a,b,c) = My(a,b,c)/Na(a, b, c)

is naturally an (n + 1)-dimensional quotient A,-module.
Let {v|0 < i < n} be a basis of A,-module V,(a,b,c), T, = {q"‘z”lll <i< n} and T the set of all
triples (a, b, ¢) of nonzero scalars in F that satisfy

abe, a'be, ab 'c, abc' ¢ T,.

For all (a, b, c) € T, the group {1, 1} acts on T by

(a,b,0)7" = (a™ b)), (2.8)
(a0, = (a,b7" ), (2.9)
(a.b,c)"V = (a,b,c™"). (2.10)

Let T/{—1, 1}? denote the set of the {—1, 1}*-orbits of T and [a, b, c] the {—1, 1}*-orbit of T that contains
(a,b,c) for (a, b, c) € T. Denote the isomorphism class of A,-module V,(a, b, c) by [V,(a, b, c)].
The following results are referred to [5, Lemma 4.2; Theorem 4.4; Theorem 4.7].

Lemma 2.3. The matrices of A, B, C acting on the basis {vgg’g)}:lzo of V,(a, b, c) for each (g,g) € K, are
as follows:

A B C
{vgl,l)}:zzo L(g;a) U(q;a,b,c) T (g;a,b,c)
{vg_l’l) :;0 L(q;a‘l) U(q;a‘l,b,c_l) T(q;a‘l,b,c_l) ,
O AR S SRR A
{V, }i:O T(q ¢, b ,a) U(q ¢, b ,a) L(q ,c)

where K, = {1,—1} X {1, 0} is a Klein group.
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Theorem 2.4. The A,-module V,(a, b, ¢) is irreducible if and only if the following conditions hold:

(1) ¢ # 1 forall1 <i < n;
(2) abc, a”'be, ab~'c, abc™' ¢ {q"‘z”lll <i< n}

Theorem 2.5. Let M be the set of the isomorphism classes of irreducible A,-modules with dimension
n + 1. Then there exists a bijection T/{~1,1}> — M given by

[a,b,c] — [Vi(a,b,0)], [a,b,c] e T/{-1,1).
In the sequel, we always assume that ¢ is not a root of unity, the values a, b, ¢ € F are fixed, and
Condition A: abc, a 'be, ab™'c, abc™" ¢ {q”_z”lll <i< n}
Fix a set

S={,11, (-1,1,1), (1,-1,1), (1,1,=-1)}.

The parameters a, b, ¢ in the Verma A,-module M,(a, b, ¢) are related with corresponding parameters
of the Askey-Wilson polynomials {p;(X)}cy in [5, Section 3.2]. If the Condition A fails, then there
exist j(1 < j < n) and (&, &>, &3) € S such that a® b*¢® = ¢"2/*!, In this case, the Askey-Wilson
polynomials make sense only when 0 < i < k, where

k = min {j | a®'b®2c® = q”_z"'“ for (g1,&5,63) € S,1 < j< n}

Also, we see that V,(a, b, ¢) is not irreducible. Note that the actions of central elements «, 8, y are all
fixed automatically, and we denote A, by A,(a,f,7y) in this case. The structures of finite-dimensional
Ay(a,B,y)-module V,(a, b, c) will be discussed.

3. The structures of V,(a, b, ¢)
In this section, we consider (n + 1)-dimensional A,(a, 3, y)-module. Firstly, we have the following

result.

Theorem 3.1. If the Condition A fails, then A (a,B,y) has at most four isomorphism classes of
(n + 1)-dimensional irreducible modules.

Proof. First of all, assume that abc € T,, that is, there is j(1 < j < n) such that abc = ¢"~%/*!.

Assume that A (a, 8, y) has an (n+1)-dimensional irreducible module V, we can get a triple (a’, b’, ¢’)
such that V = V,(a’, b’, ¢’) by Theorem 2.5. Obviously, (a’,b’,c") ¢ [a, b, c], otherwise, V,(a’,b’, ") =
V.(a, b, c) is reducible. Let

flx) = - [(q3n—4j+8 " qn—4j+6) a2b3] e
+ [( qn—Z j+6 at + qn—Z j+6 a2) b+ ( q3n—6 +8,2 4 q3n—6 j+8) bz] X
+ [( qn—Z j+6 a4 + qn—Z j+6 a2) b5 + ( qn—Z j+6 a4 + (2 q3n—4j+8 +2 qn—4j+6 + qn—Z j+6
+q3n—6j+8 + 2q4—n—4j + 2q5n+—4j+10) @+ q3n—6j+8) p+ (q3n—6j+8a2 + q3n—6j+8) b] +©

_ [(qn+6 + q4—n) a*bl + ((q3n—4j+8 + qn—4j+6 + 3qn—2j+6 + qn+6 + q4—n + 3q4—n—2j

AIMS Mathematics Volume 8, Issue 8, 18930-18947.
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43 q3n—2j+8) at+ (4 q3n—4j+8 44 qn—4j+6 43 qn—2j+6 43 q4—n—2j 43 q3n—2j+8) 2

+ an—4j+8 + qn—4j+6) bt 4 (( q3n—4j+8 + qn—4j+6) at+ (4 q3n—4j+8 44 qn—4j+6

3 q3n—6j+8 43 qn—6j+6 +3q 2+ q3n—4 8 | n=4it6 | 3 q3n—6j+8

5n-6j+10

+4q
S5n-8,j+10

5n—6 j+10)

+3qn—6j+6 +3q + an—8j+10 n q3n—8j+8)b2 +q + q3n—8j+8] e

+ [((3qn+6 + 3q4—n + 4qn—2j+6 + q—n+4—2j + q3n—2j+8 + q2—3n + q3n+8) a4
+ (4 qn—2j+6 + q3n—2j+8 n q4—n—2j) az) b+ ((3 qn—4j+6 +3 q3n—4j+8 +4 qn—2j+6
+ q4—n—4j + q4—n—2j + q3n—2j+8 + an—4j+10) a4 + (4 q3n—6j+8 _ q7n—4j+12 _ q2—3n—4j

+4qn—2j+6 + qn—6j+6 + an—6j+lO + q4—n—2j + q3n—2j+8 + 8q3n—4j+8 + Sqn—4j+6

+3 q4—n—4j +3 an—4j+10) & +3 q3n—4j+8 +3 qn—4j+6 +4 q3n—6j+8 + q4—n—4j + qn—6j+6
+q5n—4j+10 + q5n—6j+10) b3 + ((4q3n—6j+8 + qn—6j+6 + q5n—6j+10) az + 4q3n—6j+8
+qn—6j+6 + q5n—6j+10 + 3q5n—8j+10 + 3q3n—8j+8 + qn—8j+6 + q7n—8j+12) b] x4

_ [( qn+6 + q4—n) b0+ (( q3n—4j+8 " qn—4j+6 +3 qn—2j+6 " qn+6 " q4—n +3 q4—n—2j
+3q3n—2j+8) a4 + (4q3n—4j+8 + 4qn—4j+6 + 3qn—2j+6 + 3q4—n—2j + 3q3n—2j+8) az

+ q3n74j+8 + qn—4j+6) b+ (( q3n—4j+8 + qn—4j+6) at + (4 q3n—4j+8 +4 qn—4j+6

3 q3n—6j+8 43 qn—6j+6 43 q5n—6j+10) @+ q3n—4j+8 n qn—4j+6 +3 q3n—6j+8

_3qn—6j+6 + 3q5n—6j+10 + q5n—8j+10 + q3n—8j+8) »:+ an—8j+10 + q3n—8j+8] e

+ [(qn—2j+6a4 + qn—2j+6a2) b+ (qn—2j+6a4 + (2q3n—4j+8 + an—4j+6 + 2q5n—4j+10
+ qn—2j+6 + q3n—6j+8 +2 q4—n—4j) @+ q3n—6j+8) b+ ( q3n—6j+8 @+ q3n—6j+8) b] 2
+ [qn—2j+6a4 + qn—2j+6a2b4 + (q3n—6j+8a2 + q3n—6j+8) bz] X

_ [ q3n—4j+8 + qn—4j+6] a2b’.

By the direct calculation, we get that f(x) = x3f(x™"). So, if f(x) = 0, then f(x!) = 0.
By the actions of «, 3, y as (2.7), we have

w(a,7 b” C’) = w(a’ b’ C)’
wb',c,d) = wb,ca), (3.1
w(c,d,b) = w(ca,b).

Eliminating »” and ¢’ from the Eq (3.1) implies that @’ is the root of f(x) = 0. Since F is an algebraically
closed field, there are 8 roots a’ that satisfy the above equation.

Since U(g;a’,b’,c’) = U(q;a’,b',c’™") and w(q;a’,b’,c’) = w(g;a’,b’,c’""), we can get that
V', b, c) = Va,b,c’™") by (2.6)-(2.7). Also V,(a',b',c’) = V,(a"',b’,c’"") by Lemma 2.3,
so we have V,(a'~',b',c") = V,(a', b, ).

It follows that A (a, B, y) has at most four (n+1)-dimensional irreducible module up to isomorphism.
Other cases for a”'bc, ab™'c, abc™! belonging to T, can be similarly to discuss.

AIMS Mathematics Volume 8, Issue 8, 18930-18947.
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Therefore, there is at most four (n + 1)-dimensional irreducible A,(a,B,y)-module up to
isomorphism if the Condition A fails. O

In the following, we discuss the structures of V,,(a, b, c) when a, b, c € F are fixed and Condition A
fails. For this purpose, we first give some notations.

/7

For (&1, &2, &3), (€], €}, &), (€], €7, €)) € S, denote
n n n
/ /’1 7 //’1
Vi= Y Rt vy = Y R vy = Y R (32)
i=j i=k i=l

we have the following results.
Theorem 3.2. Assume that a® b®>c® = q"~%*! for some j(1 < j < n) and (&1, &, &3) € S. Then

1) Vi is a submodule of V,(a,b,c) and V\ = V,_i(¢’a***, ¢'b, ¢/ c*'*);
2) V(a,b,c)]V, = Vj_l(qj—n—laslaz, qj—n—lb’ qj—n—lcslaz);
3) the equivalent conditions of irreducibility of V| are described as follows:

(€1,€2,€3) V) is irreducible
(1,1, 1) a’,b*, c? ¢{q2i|1 SiSn—j}
(-1,1,1) b2 ¢l <i<n—j| and ¢ {q2f+2f'|1 <i<n-j| ;
(1,-1,1) @b ¢ <i<n-j} and j> 1
(1,1,-1) a’, b’ ¢ {qu_zjll <i<n- j} and c* ¢ {qzi‘z"_zll <i<n- j}

4) the equivalent conditions of maximality of V| are described as follows:

(&1,&2,83) V, is maximal

(1,1,1) b ¢ g <i< -1}

(-1,1,1) b2 g | i< j- 1} and ¢ {1 < i< - 1

(1,-1,1) @, b2, ¢ ¢ (P <0 < - 1 with j < 2n+ 1

(1,1,-1) @0 ¢ P <i< j- 1) and P ¢ {g 1 < i< - 1)

Proof. We only prove the case when (g1, &5, €3) = (1, 1, 1), the others are similar. At this time, by (3.2),

we have
n
vi= Y B
i=j

AIMS Mathematics Volume 8, Issue 8, 18930-18947.
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For convenience, we denote
(Cl,,b,, C,) — (qja’ qu, qjc)’ (a",b",c") — (qj—n—la’ qj—n—lb, qj—n—lc).

1) Firstly, let us show that V; is a submodule of V,(a, b, c).
By Theorem 2.2 and Lemma 2.3, the actions of A, B, y on this basis {v, a, 1)IO <i<n}ofV,a,b,c)
are as follows:

AV(-LI) — 0 (q a)v(l 1) (l 11) (3 3)
1 > + 2 .
ngl’l) = bi(q; b)v(1 Dy ¢:(q;a,b, c)vf1 11), (3.4)
7\151’1) = w(q;a,b, c)v(1 D 3.5

By (3.3) and (3.5), V| = X,_ JIFv(l ‘D is an A- and y-invariant subspace of V,(a, b, ¢), it is enough to
show that V; is B-invariant.
Since abc = ¢"~**!, we have ¢(q; a, b, ¢) = 0 by direct calculation.
By (3.4), we know
By (1 D_ g, (4 b)v(l 1)

Therefore V,; is B-invariant and V; is a Aq(a, B, v)-submodule of V,(a, b, ).
Now we show that V| = V,_i(a’,b’, c’).
Let {v'(l’l)IO <i < n- j}beacanonical basis of V,_;(a’, b, ¢’).
Construct a linear map ¢ : V|, — V,_;(a’, ', ¢’) sending v(1 D to v/(l ' Obviously, ¢ is bijective since
dim V; =dim V,_; = n— j+ 1. So it is enough to show that go 1s a Aq(a/, B, v)-modules homomorphism.
Since @’ = qja, we have

LDy _ 7(1,1)
Acp(vj+k ) = Ay,
—j 1.1 1.1
= Oq" g W+
LoD (1
= j+k(qn q; a)v ( + vk(-i—l :

1,
= @Op(q", gV + Vi)

= oAV

Similarly, Bgo(vii,?) = ga(Bv;L’,i)) and )/go(v;i’,?) = ga(yvg.i’,?).

Therefore, V| = V,_i(¢’a, ¢’b, q’c) is a submodule of V,(a, b, c).

2) V,(a,b,c)/V, has a basis { (11)+V|O<l<]—l} and let { "(“)|0<z<]—1} be a basis of

Via(a’,b",c”).

Define a map ¢ : V,(a,b,c)/Vy — Vi_i(a”,b”,c”) that sends vgl’” +V, to v;'(l’l). Obviously, ¥
is bijective since dim V,(a,b,c)/V, = dim V;_;(a”,b”,c”) = j. So it is enough to show that ¢ is a
Ay (a,B,y)-modules homomorphism.

Since a” = ¢/ 'a, we have

Ay + v = A
o /,(1,1) (1,1)
= 0(q" . q:a Vi
_ (1, l) 1(1,1)
= 6i(qd", q:a)v, +vi.,

AIMS Mathematics Volume 8, Issue 8, 18930-18947.
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= YO g0 + V) + 0L + V)
YAWHY + V).

Similarly, By(\"" + V)) = p(BO"" + V))) and yp (0P + V) = w0 + vy)).

It follows that V,,(a, b, ¢)/V, is isomorphic to V;_,(a”,b"”,c”).

3) By 1), it is sufficient to describe the equivalent conditions for V,_;(a’,b’,c’) is irreducible or
equivalently a’b'c’, a’"'b'c’, a’b’™'c’, a’b’'c¢’"" ¢ T,_; by Theorem 2.4. Indeed

alblcl’al—]blcl’albl—lcl’alblcl—l ¢ Tn—j — a2,b2’c2 ¢ {q21|1 <i<n- _]} )

(=) Since abc = ¢"%*! and a'b'¢ = qla'be = ¢"'a? ¢ T, we have a* ¢
{[@n<i<n-jl.

Similarly, we can obtain that b?, ¢ ¢ {qzill <i<n- j} )

(&) Assume that abc = ¢""%*! and a?, b?, > ¢ {qzill <i<n- j}. Obviously, a’b’c’ = g’/ abc =
g T,

Since a” ¢ {qull <i<n- j}, we have @'~ 'b'c’ = g/a 'bc = ¢"Ha? ¢ T,_;.

Since b? ¢ {q2i|1 <i<n- j}, we have a’b’~'¢’ = g/ab™'c = ¢" b2 ¢ T,_;.

Since ¢? ¢ {q2i|1 <i<n- j} ,wehave a'b'c’"! = glabc™ = ¢"*'c? ¢ T,;.

In summary, V; is irreducible if and only if a?, b*, c* ¢ {q” N<i<n- j} .

4) By 2), it is sufficient to describe the equivalent conditions for V,(a,b,c)/V, = V;_1(a”,b",c") is
irreducible or equivalently a”b”c¢”, awe, ', b ¢ T -1 by Theorem 2.4. Indeed

a"b”c”,a"_lb”c",a”b”_lc”,a"b"c”_l ¢ rle_1 az’ b2,C2 ¢ {q21—2]|1 < l < j_ 1} )

(=) Since abc = ¢"%*', and a"'b"¢" = ¢ 'a'bc = gla? ¢ T, we have a* ¢
{2 <is<j-1.

Similarly, we can obtain that b?, ¢* ¢ {q‘”ll <i<j- 1}.

(&) Assume that abc = ¢"%*' and a2, b?, ¢* ¢ {qu‘ZJII <i<j- 1}. Obviously, a”’b"c” =
P abe = g = g2 g T,

Since a” ¢ {qu‘zfll <i<j- 1}, we have @ 'b"¢” = ¢ la'be = g la? ¢ T;y.

Since b* ¢ {qzi‘zfll <i<n- j}, we have a’b" ¢ = ¢ lab™'c = ¢ Ib? ¢ T ;.

Since ¢? ¢ {q2i‘2j|1 <i<n- j} ,we have a’b"¢"' = ¢/ " labc™ = g ¢ T).

In summary, V; is maximal if and only if a?, b?, ¢* ¢ {qz"‘zj N1<i<j- 1}.

This proof is finished. O

Theorem 3.3. Assume that a® b>c® = ¢"2*! and a®1b*2c®% = ¢" ! for some j, k(1 < j,k < n) and
(€1, &2, 83), (€], &), €}) € S. Then

1) Vi and V, are Ay(a, B, y)-submodules of V,(a, b, c) and
Vi 2V, i(@a®,¢'b, ¢/, Vy =V, (d'a®%, ¢'b, ¢! %)
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2) if e1&, = €€}, then V, is reducible and V is a submodule of V, when j > k; V is reducible and
V, is a submodule of V| when j < k;
3) the equivalent conditions of the irreducibility of V| and V, are described as follows:

EZ,I’ Z,z’ 2,3; Vi is irreducible V, is irreducible

10©2°3

(1,1,1) Jj>k—1and k>n-— jand

(-1,1,1) b ¢ {qu’QZi—Zkll <i<n- j} b ¢ {q2i—2k’ q2i—2k—2j|1 <i<n- k}
(1,1,1) j>k—1and k>n-— jand

(1,-1,1) a* ¢ {qu,qu—ZkH <i<n- j} a ¢ {qzi—Zk, q2i+2k—2j|1 <i<n- k}
(1,1,1) j>kand j<kand

(1,1,-1) a* ¢ {qu,QZi—Zkll <i<n- j} a* ¢ {q2i+2k—2j’ qu—2k|1 <i<n- k}
(-1,1,1) Jj> maxh{k-, 5 - ’é} and k > max‘{j-, %} ‘and

(1,-1,1) @ ¢l M1 <i<n- | @ ¢ {2 ML <i<n— k)
(-1,1,1) Jj>k—1and k> j—1and

(1,1,-1) @ ¢ {qu—Zi’QZi—Zk+4j|1 <i<n- j} a* ¢ {q2i—2k’ q2j—2i—4k|1 <i<n- k}
(1,-1,1) j>max{k—l,§} and k> j—1and

(1,1,-1) b2 ¢ {q2j—2i’ M <i<n-— j} b ¢ {q2i—2k’ GFEH < <n— k}

Proof. 1) It can be implied directly by Theorem 3.2.

2) If g1, = €] €], it is obvious by (3.2).

3) We only prove the case when (g1, &;,&3) = (1,1,1) and (&}, &},&;) = (-1, 1, 1), the others are
similar. At this time, by (3.2), we have

Vi= ) B 2V, (gla.gb g (3.6)
i=j

V, = ZFV?’D = Vn_k(qka_l,qkb, ch_l). 3.7
i=k

For convenience, we denote
(Cl], bl’ Cl) = (C]ja, qu’ Cljc), (a29 b29 C2) = (qkd_l, qkb, ch_l)'

Firstly, we discuss the equivalent conditions of the irreducibility of V;.
By (3.6), it is sufficient to describe the equivalent conditions for V,_;(a;, by, c;) 18 irreducible or
equivalently abycy, a;'bicy, aibi'cy, aibic;! ¢ T,—; by Theorem 2.4. Indeed

alblcl,al_lblcl,albl_lcl,alblcl_l ¢ Tn—j — b2 ¢ {qu,q2i—2k|l <i<n- ]},_] >k—1.

(=) Since abc = ¢"¥*', we have aibj'c;, = q¢lab”'c = ¢"*'b? ¢ T, ; and b* ¢
{@n<i<n-jl.

Since a~'bc = ¢ , we have a;'bic; = ¢/a”'be = ¢""** ¢ T,_;, 50 j > k—1. And a\bic;' =
glabc™ = g H ¢ T, we have b? ¢ {1 <i<n— j}.

n—2k+1
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Therefore, b* ¢ {qu,qu‘Zkll <i<n- j} and j > k— 1.

(=) Assume that b ¢ {¢%,¢* |1 <i<n-jland j> k- 1.

Since abc = ¢"**!, we have aibic| = ¢*abc = ¢"7*' ¢ T,_; and a\b;'c; = g/ab™'c = ¢"7*'b7? ¢
T, ..

Since a~'bc = ¢"**!, we have a;'bic) = ¢/a”'bc = ¢/ ¢ T,_; and a\byc;! = ¢/ b ¢
T, ..

Therefore V| is irreducible if and only if 5> ¢ {q2i, Pl <i<n- j} with j > k- 1.

Now we discuss the equivalent conditions of the irreducibility of V5.

Similarly, it is enough to show that

-1 -1 -1 2 2i-2k  2i-2k-2j . .
612b2C2,612 bzcz,a2b2 cz,a2b2c2 ¢ Tn—k — b ¢ {q ' ,q ' jll <i<n- k} ,k >n-—].

(=) Since abc = ¢"%*!, we have arbyc» = g*a'bc™! = g2 ¢ T, so b ¢
{221 <i<n—kl. Andayby'e, = ¢*a” b7 ™ = g ¢ T,y s0k > - .

Since a~'bc = ¢!, we have a;'bycy = gfabc™ = ¢ 1b* ¢ Ty, s0 b? ¢ {qu‘Zkll <i<n- k} .

Therefore, b* ¢ {qu‘Zk, g2 <i<n-— k} and k > n — j.

(&) Assume that b” ¢ {qu‘Zk, g1 <i<n- k} and k > n —j.

Since abc = ¢"**!, we have a;b;'c, = g‘a”'b™c™ = g
q2k—n+2]—lb2 ¢ Tn—k'

Since a'bc = ¢
q3k—n—lb2 ¢ Tn—k'

Therefore V, is irreducible if and only if 5> ¢ {q”‘”‘, G <i<n- k} with k > n — j.

This proof is finished. O

V¢ T, and aybyc, = g*a~'bc™! =

n=2k+1we have axbycy' = grabc™' = ¢ ¢ T, and a;'byc; = grfabe™! =

Theorem 3.4. Assume that a®b®>c® = ¢"~ %", a®1b%2¢% = ¢" 2 a®'b%2 c% = ¢" 21, for some j, k,
I(1 < j,k, I <n)and (g1, &,83), (,8,, &), (e],&),&)) € C. If e1&; = &&, then

1) Vi, V, and V5 are submodules of V,(a, b, c) and
V, = Vn—j(qjaglgz’ qu’ qjcslaz), V, = Vn_k(qkas'lsé’ qkb, che’lsé)’ Vs = Vn_l(qlaa’l’ag’ qlb, qlcg’l’gg);

2) if j > k, V, is reducible and V, is a submodule of V,; if j < k, Vy is reducible and V, is a
submodule of V;
3) the equivalent conditions of the irreducibility of V| and V, are described as follows:

(&7, &5, V\ is irreducible V, is irreducible
j>max{k,n—l,§—§}and k>max{j,§,n—l} and
(1, 1,1) 2 2i+2j-21 S 2 2i+2k-21 o
2 ¢q 1<i<n-j 2 ¢lq 1<i<n-—k
111 Jj > max{k,[— 1} and k> max{j, [ -1} and .
(-1,1,1) b2¢{q2i|15i5n—j} b2¢{q2i+2k—2jllgisn_k} ;
1 1.1 J>max{k,l— 1} and k > max{j,[— 1} and
(I,-1,1) a2¢{q2i|1§i§n—j} a2¢{q2i+2k—2jllsisn_k}
(1.1, —1) j>max{k,l—1,§—§}and k>max{j,§,l—1} and
> L, azé{qu—ZiH SiSn—j} b2¢{q2k_2i|l SiSn—k}
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4) the equivalent conditions of the irreducibility of V3 are described as follows:

(£,€y, € Vs is irreducible
(1,1,1) [>max{j—1,k-1} and ¢ ¢ {1 <i<n-I
(-1,1,1) I>max{k—1n-j} and b* ¢ {g* 2 2|1 <i<n-1
(1,-1,1) [>max{%.k—1n-j} and a®¢{g** |l <i<n-1|
(1,1,-1) [>max{j-1,k—1} and ¢ ¢{qg |l <i<n-1

Proof. 1) It is obvious by Theorem 3.3.
2)If 16, = g(g), then V; = 3, vl(.g‘gz’l) and V, = YL, vﬁs‘gz’l) by (3.2). Therefore, it is obvious.

We only prove the case of (&}, &), &7) = (1,1, 1), the others are similar. In this case, (g1, &, &3) =
(-=1,1,1) and (&}, &}, &;) = (1,—1,1). By (3.2), we get that

Vi= ) W 2V da g, (3.8)
i=j

Vo= ) v = Viagla g'bgle, (3.9)
i=k

V3 = Z vl('l’l) = n—l(qla’ qlb’ qlc)' (310)

For convenience, denote

(ala bl’ Cl) = (qka_l’ qkb’ ch_l)’
(a2, b2, ¢2) = (¢Ya", ¢’b, g'c™"),
(a3, b3, c3) = (¢'a, ¢'b. q'c).

3) Firstly, we show the equivalent conditions of the irreducibility of V.

By 2), the equivalent condition of irreducibility of V; should be discussed in the case of j > k.
By (3.8), it is sufficient to describe the equivalent conditions for V,_;(a;, b, ;) is irreducible or
equivalently abycy, a;'bici, aibi'cy, aibic;! ¢ T,—; by Theorem 2.4. Indeed

_ - _ 2 : A n ok
alblcl,al119161,01[?1161,011?101l ¢ Tn—j —> 2 ¢ {q21+2j 2l|1 <1< n—]},] > max{n— 1’5 - 5}
(=) Since ab™'c = ¢"**!, we have a\byc; = ¢¥a” b = g ¢ T, 0 j> 2 -4
Since abc = ¢"*"*!, we have a;'bic; = g/abc™' = ¢/ ¢ T, ;, 50 ¢ ¢ ¢#*%7. And
abi'cy = galb-1c =g/ ¢ T, ;80 j>n—1.

Therefore, ¢ ¢ {q”*zf—zzll <i<n- j} with j > max {n -2 %}

(=) Assume that ¢ ¢ {¢** 2|1 <i<n - j}and j > max feon—1,2 -4}
n—2k+1’ we have alblcl — q3]a—1bc—l — q3J—n+2k—1 ¢ Tn—j-
1.-1

, we have a;'bic) = ¢g/abc™ = ¢/ **1¢2 ¢ T, ;and arb;'c; = ¢/a”'b7'c7! =

Since ab™'c = ¢
Since abc = ¢g"*!
qj—n+21—l é Tn—j~
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Since a™'bc = ¢"*!, we have aibic;' = ¢/a 'bec = ¢ ¢ T,

Therefore, V) is irreducible if and only if ¢ ¢ {¢**2 |1 <i < n - j} with j > max {k,n - 1.4 — &}

Now we show the equivalent conditions of the irreducibility of V;.

By 2), the equivalent condition of irreducibility of V, should be discussed in the case of j < k. In
this case, it is enough to show that

azbzcz,aglbzcz,azbglcz,azbzcgl ¢T, = c*¢ {q2i+2k_21|1 <i<n- k},k > max {g,n - l}.
The proof is analogous to the above process omitted here.
asbsc3, a3 bacs, azbs' ez ashycs' ¢ Ty = ¢ {gP|l <i<n—1},1>max{(j— 1k 1}.
(=) Since a™'be = ¢ ¥*!, we have a;'bycs = ¢'a™'be = ¢ ¢ T, 501> j - 1.
Since ab™'c = ¢"**!, we have azb;'c; = g'ab™'c = ¢ ¢ T, s01> k- 1.
Since abe = ¢" ', asbycy! = glabe™! = ¢"H e ¢ Ty, s0 ¢ ¢ {q2i|1 <i<n- l}.
Therefore, ¢? ¢ {qull <i<n- l} and [ > max {j— 1,k —1}.
(<) Assume that ¢? ¢ {qull <i<n- l} and [ > max {j—1,k—1}.
Since abc = ¢!
T, ..
Since a'be = ¢!, we have a;'bscs = g'a”'be = ¢ ¢ T,
Since ab™'c = ¢"**!, we have azb;'c; = ¢lab™'c = """ ¢ T,

, we have asbycs = glabe = ¢"**' ¢ T,_; and azbsc;' = glabc™ = ¢"*'c7? ¢

In summary, V3 is irreducible if and only if ¢ ¢ {¢%|1 < i < n — I} with [ > max {j - 1,

k—1}. O
Denote
V, = ZFVEI’I), Vv, = ZFVE_LU, Vi = ZFVE_I’I), V, = ZFV&I’I). 3.11)
i=j i=k i=l i=m
Theorem 3.5. Assume that abc = ¢ %', a”'bc = ¢!, ab™'c = ¢"%*! and abc™' = ¢! for

some J, k, [, m(1 < j,k,l,m < n). Then
1) Vi, V,, V3 and V, are submodules of V,(a, b, c) and

Vl = Vn—j(qja’ qu’ qjc)’ VZ = n—k(qka_l s qkb’ ch_1)5
V2V, (q'a”',q'b,q'c™h), Vo=V, i(q"a,q"b,q"c);
2) we have the following statements:
> m Vi is irreduciible < V4 is reducible
J Jj>max{k—-1,[- 1} Vi is a submodule of V4
< m V1 is reducible V, is irreduciible <
J V, is a submodule of V, m>{l-1,k-1}
£ | V, is irreduciible < V; is reducible
k>max{”7_l,m—1,n—j} V, is a submodule of V;
k<] V, is reducible Vs is irreduciible <=
V3 is a submodule of V, l>max{§,m—1,n—j}
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Proof. 1) It is obvious by Theorem 3.2.
For convenience, denote

(a1,b1,¢1) = (¢"a, ¢"b, ¢*c), (a2, br, 02) = (¢Ya", ¢’b, g’c™"),
(as,b3,c3) = (¢'a”',¢'b, g'c™), (a4, b4, cs) = (q"a,q"b,q"¢).

2) Firstly, let us consider j > m.

If j > m, it is obvious that V, is reducible, V; is a submodule of V, by (3.11). Also, V; is irreducible
if and only if V,_i(a1, by, ¢;) is irreducible by 1), or equivalently a;bicy, a;'bici, aiby'ci, aibic;' ¢
T,_; by Theorem 2.4. Indeed

alblcl,al_lblcl,albl_lcl,alblcl_l ¢T, ;& j>max{k-1,1-1}.
(=) Since a”'be = ¢"***!, we have a;'bic; = ¢g/a”'bc = ¢/ ¢ T,_j, 80 j > k- 1.

Since ab™'c = ¢"?*!, we have a;b;'c| = ¢/ab™'c = ¢/"" " ¢ T,_j, 50 j > - 1.

Therefore, j > max{k—1,/—1}.

(&) Assume that j > max{k—1,/—1}.

Since abc = ¢""%*!, we have a1bic; = ¢*abc = ¢"*' ¢ T,_;.

Since a~'be = ¢"**!, we have a;'bic; = ¢/a”'be = ¢/ ¢ T,

Since ab™'c = ¢ , we have a\bi'c; = g/ab™'c = ¢/ ¢ T,_;.

Since abc™" = ¢"**!, we have aibic;' = ¢*a”'bc = ¢ ¢ T,_;.

Therefore V; is irreducible if and only if j > max{k — 1,1 - 1}.

Similarly, if j < m, we can get that V; is reducible, V, is a submodule of V; by (3.11). Vy is
irreducible if and only if m > max{k — 1,/ — 1} by 1).

The remain proof is similar to the above. O

n—-2l+1

4. Some examples

Keeping all notations as the previous sections. Fixing a, b, ¢ € F and assuming that the Condition
A fail or not, we give some examples to explain various structures of A,(a, 8, y)-modules.

Example 4.1. Assume that Vi(a, b, ¢) has the basis {vél’l), v(ll’l)}.
(1) If we choose a, b, ¢ such that abc,a”'bc,ab™'c,abc™ ¢ T, = {1}, then V\(a, b, ¢) is an irreducible
Ay(a,B,y)-module by Theorem 2.4.

) lfa=q,b= q‘%, c= q‘%, then

w(a,b,c) = q% + 26[% + q% + q_% " 2q‘% 4 q_%,
wb,c,a)=q +2q+2+2q"" + ¢,
wc,a,b)=q* +2q° +q* +q * +2¢7 + 477

By the tedious calculation, it concludes that AJ(q* +2q+2+2q7" + ¢, ¢* +2¢7 +q* +q 7 +2¢77 +
5os 31 R . . . . . :

q 2, q2+2q2+q>+q 2 +2q 2 +q 2) has three 2-dimensional irreducible modules up to isomorphism.

We also have abc =1 € T\, a'bc = qg> ¢ T\, ab™'c = q ¢ T\, abc™' = q ¢ T,. By Theorem 3.2, we

have V,(q, q‘%, q‘%) is reducible and for V = Pv(ll’l),
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(a) V is a submodule of V,(q, q‘%, g ) and V = V(g q%, q%);
1 1 3 3

(b) Vilg.q2,q472)/V = Vo(l,q72,q472);

(c) V is irreducible and maximal.

Example 4.2. Assume that V5(a, b, c) has two bases {vf)l’l), v(ll’l), v(zl’l), v(31,1>} and {vf)_l’l), v(l_l’l), v;_l’l),

S

(1) If we choose a,b,c such that abc,a 'bc,ab'c,abc™ ¢ T; = {qz, l,q’z}, then Vi(a,b,c) is an
irreducible A (a, 5, y)-module by Theorem 2.4.
) Ilfa = q%, b= q‘%, c = q, then

W@, b, )= +@+@+q+q ' +q +q7 +q7,
11

il 5 3 1 _1 _3 _s _n
wbh,c,d)=q> + @ + @ +q@>+q 2 +q 2 +q2+q 2,
9

-3

weab) =G+ @G+ @+ rqirqgirgiegt

By the tedious calculation, it concludes that Aq(q% +q% +q% +q% +q‘% +q‘% +q‘% +q‘1*21, q% +q% +q% +

q% + q‘% + q‘% + q‘% + q‘%, PP+ +q+q " +q?+q3+q7) has four 4-dimensional irreducible
modules up to isomorphism. We also have abc = ¢* € T3, a”'bc = g7' ¢ Tz, ab™'c = ¢* ¢ T;,
abc™' = 1 € Ts. By Theorem 3.3, we have V3(q%, q‘%, q) is reducible and

(a) Vi, V, are submodules of V3(C]%, q‘%, q) and
Vi = V(g 4%, ), Va=Vilgh. g% );

(b) Vi is reducible and V, is a submodule of V;
(¢) Vy is an irreducible module,

where V| = Pv(ll’l) + Fv(zl’l) + Fvg’]) and V, = Fv(;’l) + Fvgl’l).
B Ilfa=q,b= q%, c= q%, then

W@b)=@G+ @+ + @+ g g v g v g g

wb,c,a) =@ +¢ +q+2+qg ' +q3+q7,

w(c,a,b) = qg +q% +q% +q% + q% + q_% +q_% +q_% +q_% +q_%.
By the tedious calculation, it concludes that A(q° + ¢* + q+2+q ' +q > + ¢, ¢* +q* +¢* +¢* +
q% + q*% + q*% + q*% + q*% + q*%, q% + q% + q% + q% + q% + q*% + q*% + q*% + q’% + q’%) has three
4-dimensional irreducible modules up to isomorphism. We also have abc = g* € T3, a”'bc = 1 € T;,
ab™'c = g ¢ Ty and abc™" = q ¢ Ts. By Theorem 3.3, we have V3(q, q%, q%) is reducible and

(a) Vi, V, are submodules of V5(q, q%, q%) and
Vi=Vadhat.qd), Va2 Vi(g.q%qP);
(b) Vi and V, are reducible,

where V| = ]Fv(ll’l) + ]Fv(zl’l) + ]Fvél’l) and V, = ]Fv(;’l) + Fv(;’l).
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Example 4.3. Assume that Vi(a,b,c) has two bases {vél’l),v(ll’l),vgl’l),v(;’l),vf‘l’l)} and

L) (-1, (L) _(-1,1) (-1
{Vo B T U D }

(1) If we choose a, b, ¢ such that abc,a™'bc,ab™'c,abc™" ¢ Ty = {q3, q,.q97", q‘3} , then Vy(a, b, c) is an
irreducible A (a,B,y)-module by Theorem 2.4.
Q) Ifa=qg*b=qg7?% c=gq,then

w(a,b,¢)=q¢®+2¢" +2+2¢7* + ¢q°°,

wb,c,a)=q +2¢° +q+q ' +2¢7> +q7,

w(c,a,b)=q" +2¢° +qg+q ' +2¢> +q7".
By tedious calculation, it concludes that AJ(q" +2¢° +q+q ' +2¢° +q7, ¢ +2¢° +q+q ' +2¢7> +
g7, ¢®+2¢* +2+2g* + g°) has three 5-dimensional irreducible module up to isomorphism. We also
have abc = q € Ty, a”'bc = g € Ty, ab™'c = ¢° ¢ Ty, abc™' = q' € T4. By Theorem 3.4, we have
Vi(q*, g%, q) is reducible and

(a) Vi, Vs, Vs are submodules of V4(q*, g2, q) and
Vi = Va(gh 1,47, Vo= Vi(q. q.4"), Vi = Vold*. 4" 4
(b) V| and V, are reducible, V, is a submodule of V;
(c) Vs is irreducible,
where V| = Fv(zl’l) + IF'V(;’U + Fvil’l), V, = Fvgl’l) + Fvil’l) and V5 = Fvg_l’l).

Example 4.4. Assume that Vs(a,b,c) has two bases {vgl’l),v(ll’l),v(zl’l),vgl’l),vfll’l),vg.l’l)} and

LD (L) (-L1) (-L1) _(-1,1) _(~1,1)
{Vo T N S }

(1) If we choose a, b, ¢ such that abc,a™'bc,ab™'c,abc™" ¢ Ts = {q“, 71,972, q‘4} , then Vs(a, b, c) is
an irreducible A (a, B,y)-module by Theorem 2.4.
Q) Ifa=q¢*b=gq,c=q"', then

wab,)=q +@+¢ +q+q +q +q7 +q7,

wb,c,d) =@ +¢*+ @ +2+q > +q " +q°%,

wc,a,b)=q¢ +@+@ +q+q ' +q+q7 +q7.
By tedious calculation, it concludes that Ay(@® + ¢* + > + 2+ q 2 +q*+q %, ¢+ P+ @ +q+q ' +
G +q+q, G+ P +@P +q+q +q3 +q +q77) has three 6-dimensional irreducible modules
up to isomorphism. We also have abc = g* € Ts,a'bc = g> € Ts,ab™'c =1 € Ts, abc™' = ¢* € Ts.
By Theorem 3.5, we have Vs(q*, q,q") is reducible and

(a) Vi, Va, Vs and V, are submodules of Vs(¢*, q,q~") and
V] = V}(q4, q3a Q)’ VZ = V] (612’ qs, qs),
Vs = Valgq, 4% 4%, Va2 Vi’ ¢, 1);

(b) Vi and V, are reducible, V, is a submodule of Vy;
(c) Vj is reducible, V, is a submodule of V5 and V, is irreducible,

where V| = Pv(zl’l) + Fvg’]) + Fvil’]) + Fvgl’]), Vo = Fvi_]’l) + Fvg_]’l), Vi = Fv(;l’l) + Fvi_l’l) + Fvg_l’l)
and V4 = Pvﬁl’l) + IFV(ZI’D + IFV(;’I) + Pvil’l) + Fvgl’l).
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