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recent years, and they’ve discovered some interesting results. Furthermore, one of the most important
approaches for finding the combinatorial identities for the degenerate version of special numbers and
polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role
in connecting relationship between special numbers.
In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study
the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials
of order r as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the
degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and
numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of
order r, the degenerate Euler polynomials and numbers of order r, the degenerate Daehee polynomials
of order r, the degenerate Bell polynomials, and so on.
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1. Introduction

In combinatorics, the Catalan numbers are the numbers of Dyck words of length 2n or the numbers
of different ways n+ 1 factors completely parenthesized or the numbers of non-isomorphic ordered
trees with n+1 vertices or the numbers of monotonic lattice paths along the edges of a grid with n×n
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square cells, which do not pass above the diagonal or the numbers of noncrossing partitions of the
set {1, ...,n} and arise in many other counting problems with real-world applications [3, 5, 7, 24, 28].
The Catalan-Daehee numbers are defined by assigning

√
1−4t − 1 instead of t in the definition of

Daehee numbers which play important role in connecting relationship between special numbers [10,
16]. Moreover, the generating function of Catalan numbers can be represented by the fermionic p-adic
integral on Zp of (1−4t)

x
2 and the generating function of Catalan-Daehee numbers can be represented

by the p-adic Volkenborn integral on Zp of the same function (1−4t)
x
2 [16, 17]. Various identities of

Catalan-Daehee polynomials have been studied in [5, 16, 17, 29].

Many scholars in the field of mathematics have worked on degenerate versions of special
polynomials and numbers which include the degenerate Stirling numbers of the first and second kinds,
the degenerate Bernstein polynomials, the degenerate Bell numbers and polynomials, the degenerate
gamma function, the degenerate gamma random variables, and so on [1, 2, 10–15, 19, 20, 30, 31].
We can find the motivation to study degenerate polynomials and numbers in the following real-world
examples. Suppose the probability of a baseball player getting a hit in a match is p. We wonder if the
probability that the player will succeed in the 11th trial after failing 9 times in 10 trials is still p. We
can see cases where the probability is less than p because of the psychological burden that the player
must succeed in the 11th trial [31].

In the 1970s, Rota and his collaborators [22–24] began to construct a rigorous foundation for the
classical umbral calculus, which consisted of a symbolic technique for the manipulation of numerical
and polynomial sequences. The umbral calculus has received much attention from researchers because
of its numerous applications in many fields of mathematics, physics, chemistry, and engineering [4, 6,
9, 11, 13, 15, 16, 20–26, 28]. For instance, the connection between Sheffer polynomials and Riordan
array and the isomorphism between the Sheffer groups and the Riordan Groups are proved [25, 26].
Recently, Kim-Kim [11] introduced the λ -Sheffer sequences and the degenerate Sheffer sequences by
substituting λ -linear functionals and λ -differential operators, respectively, instead of linear functionals
and differential operators.

With these points in mind, in this paper, we first define the degenerate Catalan-Daehee numbers and
polynomials and degenerate Catalan-Daehee polynomials of order r(≥ 1) as one of the generalizations
of the degenerate Catalan-Daehee polynomials. It is difficult to study identities related to degenerate
Catalan-Daehee polynomials and special polynomials using the p-adic integral on Zp or other
properties. Thus, we explore various interesting identities related to the degenerate Catalan-Daehee
polynomials of order r and special polynomials and numbers by using degenerate Sheffer sequences.
At the same time we derive the inversion formulas of these identities. Some of them include the
degenerate and other special polynomials and numbers such as the degenerate falling factorials, the
falling factorials, the degenerate Bernoulli polynomials and numbers of order r, the degenerate Euler
polynomials and numbers of order r, the degenerate Daehee polynomials of order r, the degenerate
Bell polynomials, etc.

Now, we give some definitions and properties needed in this paper.

For any nonzero λ ∈ R, the degenerate exponential function is defined by

ex
λ
(t) = (1+λ t)

x
λ , eλ (t) = (1+λ t)

1
λ , (|x\λ | ≤ 1) (see [10-17]). (1.1)
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By Taylor expansion, we get

ex
λ
(t) =

∞

∑
n=0

(x)n,λ
tn

n!
, (see [10-17]), (1.2)

where (x)0,λ = 1, (x)n,λ = x(x−λ )(x−2λ ) · · ·(x− (n−1)λ ), (n≥ 1).
The degenerate Bernoulli polynomials and degenerate Euler polynomials of order r, respectively,

are given by the generating function(
t

eλ (t)−1

)r

ex
λ
(t) =

∞

∑
n=0

B(r)
n,λ (x)

tn

n!
, (see [1,11−13]), (1.3)

and (
2

eλ (t)+1

)r

ex
λ
(t) =

∞

∑
n=0

E(r)
n,λ (x)

tn

n!
, (see [1, 11, 13]). (1.4)

We note that B(r)
n,λ = B(r)

n,λ (0) and E(r)
n,λ = E(r)

n,λ (0) (n≥ 0), which are called the degenerate Bernoulli and
degenerate Euler numbers of order r, respectively.

The degenerate Bernoulli polynomials of the second kind of order r are defined by the generating
function (

t
logλ (1+ t)

)r

(1+ t)x =
∞

∑
n=0

b(r)n,λ (x)
tn

n!
, (see [8, 11]). (1.5)

When x = 0, b(r)n,λ = b(r)n,λ (0), which are called the degenerate Bernoulli numbers of the second kind of
order r.

The degenerate Daehee polynomials of order r are defined by the generating function

(
logλ (1+ t)

t

)r

(1+ t)x =
∞

∑
n=0

D(r)
n,λ (x)

tn

n!
, (see [6, 11]), (1.6)

where logλ (1+ t) = 1
λ
((1+ t)λ −1) and logλ (eλ (t)) = eλ (logλ (t)) = t.

When x = 0, D(r)
n,λ = D(r)

n,λ (0), which are called the degenerate Daehee numbers of order r.
The Bell polynomials are defined by the generating function

ex(et−1) =
∞

∑
n=0

Beln(x)
tn

n!
, (see [3, 15, 19, 20]).

Kim-Kim introduced the degenerate Bell polynomials given by the generating function

ex
λ
(eλ (t)−1) =

∞

∑
l=0

Bell,λ (x)
t l

l!
, (see [13]). (1.7)

When x = 1, Bel(r)n,λ = Bel(r)n,λ (1) are called the degenerate Bell numbers.
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For n ≥ 0, it is well known that the Stirling numbers of the first and second kind, respectively are
given by

(x)n =
n

∑
l=0

S1(n, l)xl and
1
k!
(log(1+ t))k =

∞

∑
n=k

S1(n,k)
tn

n!
, (see [1, 14]),

and

xn =
n

∑
l=0

S2(n, l)(x)l and
1
k!
(et−1)k =

∞

∑
n=k

S2(n,k)
tn

n!
, (see [1, 14]),

where (x)0 = 1, (x)n = x(x−1) . . .(x−n+1), (n≥ 1).

Moreover, the degenerate Stirling numbers of the first and second kind, respectively are given by

(x)n =
n

∑
l=0

S1,λ (n, l)(x)l,λ and
1
k!
(

logλ (1+ t)
)k

=
∞

∑
n=k

S1,λ (n,k)
tn

n!
, (k ≥ 0), (see [12, 14]),

(1.8)

and

(x)n,λ =
n

∑
l=0

S2,λ (n, l)(x)l and
1
k!
(
eλ (t)−1

)k
=

∞

∑
n=k

S2,λ (n,k)
tn

n!
, (k ≥ 0), (see [12, 14]).

(1.9)

For k≥ 0, as an extension of the notion of the degenerate Stirling numbers of the second kind, Kim
et al. introduced Jindalrae-Stirling numbers of the second kind by

1
k!
(eλ (eλ (t)−1)−1)k =

∞

∑
n=k

S(2)j,λ (n,k)
tn

n!
, (see [18]). (1.10)

From (1.9) and (1.10), we note that

S(2)j,λ (n,k) =
n

∑
m=k

S2,λ (n,m)S2,λ (m,k). (1.11)

Let C be the complex number field and let F be the set of all power series in the variable t over C
with

F =

{
f (t) =

∞

∑
k=0

ak
tk

k!

∣∣∣∣ ak ∈ C
}
.

Let P= C[x] and P∗ be the vector space all linear functional on P:

Pn = { P(x) ∈ C[x] | degP(x)≤ n}, (n≥ 0).
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Then Pn is an (n+1)-dimensional vector space over C.

Recently, Kim-Kim [11] considered λ -linear functional and λ -differential operator as follows:

For f (t)=
∞

∑
k=0

ak
tk

k!
∈F and a fixed nonzero real number λ , each λ gives rise to the linear functional

〈 f (t) | ·〉λ on P, called λ -linear functional given by f (t), which is defined by

〈 f (t) | (x)n,λ 〉λ = an, for all n≥ 0, (see [11]). (1.12)

In particular 〈tk | (x)n,λ 〉λ = n!δn,k, for all n, k ≥ 0, where δn,k is the Kronecker’s symbol.
For λ = 0, we observe that the linear functional 〈 f (t) | ·〉0 agrees with the one in 〈 f (t) | xn〉 = ak,

(k ≥ 0).
For each λ ∈ R and each nonnegative integer k, they also defined the differential operator on P by

(tk)λ (x)n,λ =

{
(n)k(x)n−k,λ , if k ≤ n,

0 if k ≥ n, (see [11]).
(1.13)

and for any power series f (t) =
∞

∑
k=0

ak
tk

k!
∈F , ( f (t))λ (x)n,λ =

n

∑
k=0

(
n
k

)
ak(x)n−k,λ , (n≥ 0).

The order o( f (t)) of a power series f (t)(, 0) is the smallest integer k for which the coefficient of tk

does not vanish. The series f (t) is called invertible if o( f (t)) = 0 and such series has a multiplicative
inverse 1/ f (t) of f (t). f (t) is called a delta series if o( f (t)) = 1 and it has a compositional inverse
f (t) of f (t) with f ( f (t)) = f ( f (t)) = t.

Let f (t) and g(t) be a delta series and an invertible series, respectively. Then there exists a unique
sequence sn,λ (x) such that the orthogonality condition holds〈

g(t)
(

f (t)
)k | sn,λ (x)〉λ = n!δn,k, (n,k ≥ 0), (see [11]). (1.14)

The sequence sn,λ (x) is called the λ -Sheffer sequence for (g(t), f (t)), which is denoted by sn,λ (x) ∼
(g(t), f (t))λ .

The sequence sn,λ (x) ∼ (g(t), f (t))λ if and only if

1
g
(

f (t)
)ex

λ

(
f (t)
)
=

∞

∑
k=0

sk,λ (x)
k!

tk, (n,k ≥ 0), (see [11]). (1.15)

Assume that for each λ ∈ R∗ of the set of nonzero real numbers, sn,λ (x) is λ -Sheffer for
(gλ (t), fλ (t)). Assume also that limλ→0 fλ (t) = f (t) and limλ→0 gλ (t) = g(t), for some delta series
f (t) and an invertible series g(t). Then limλ→0 f λ (t) = f (t), where is the compositional inverse of f (t)
with f ( f (t)) = f ( f (t)) = t. Let limλ→0 sk,λ (x) = sk(x). In this case, Kim-Kim called that the family
{sn,λ (x)}λ∈R−{0} of λ -Sheffer sequences sn,λ is the degenerate (Sheffer) sequences for the Sheffer
polynomial sn(x).

Let sn,λ (x)∼ (g(t), f (t))λ and rn,λ (x)∼ (h(t),g(t))λ , (n≥ 0). Then

sn,λ (x) =
n

∑
k=0

zn,krk,λ (x), (n≥ 0),

where zn,k =
1
k!

〈
h( f (t))
g( f (t))

(
l( f (t))

)k | (x)n,λ

〉
λ

, (n,k ≥ 0), (see [11]).

(1.16)
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2. Degenerate Catalan-Daehee polynomials arising from degenerate Sheffer sequences

In this section, we define the degenerate Catalan-Daehee polynomials of order r, and derive several
identities between the degenerate Catalan-Daehee polynomials of order r and some other polynomials
arising from degenerate Sheffer sequences.

As is known, the Catalan numbers Cn are given by the generating function

1−
√

1−4t
2t

=
2

1+
√

1−4t
=

∞

∑
n=0

Cntn, (see [5, 16, 17]).

The Catalan numbers C(r)
n of order r, as a generalization of Catalan numbers, are given by the

generating function(
1−
√

1−4t
2t

)r

=

(
2

1+
√

1−4t

)r

=
∞

∑
n=0

C(r)
n tn, (see [16, 17]).

Kim-Kim introduced the Catalan-Daehee polynomials which are given by the generating function

1
2 log(1−4t)
√

1−4t−1
(1−4t)

x
2 =

∞

∑
n=0
Cn(x)tn =

∞

∑
n=0

n!Cn(x)
tn

n!
, (see [16, 17]). (2.1)

When x = 0, Cn := Cn(0), which are called Catalan-Daehee numbers.
From (1.6) and (2.1), we note that

∞

∑
n=0
Cn(x)tn =

1
2 log(1−4t)
√

1−4t−1
(1−4t)

x
2 =

∞

∑
n=0

n!Dn, 1
2
(

x
2
)(−4)n tn

n!
.

We introduce the degenerate Catalan-Daehee polynomials Cn,λ (x) which are given by the generating
function ( 1

2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)
ex

λ

(1
2

logλ (1−4t)
)
=

∞

∑
n=0

n!Cn,λ (x)
tn

n!
. (2.2)

When x = 0, Cn,λ := Cn,λ (0), which are called degenerate Catalan Daehee numbers.
When λ → 0, we note that Cn,λ (x) = Cn(x).
As a generalization of the degenerate Catalan-Daehee polynomials, we also introduce degenerate

Catalan-Daehee polynomials C(r)n,λ (x) of order r are given by the generating function

( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r

ex
λ

(1
2

logλ (1−4t)
)
=

∞

∑
n=0

n!C(r)n,λ (x)
tn

n!
. (2.3)

When x = 0, C(r)n,λ := C(r)n,λ (0), which are called degenerate Catalan Daehee numbers of order r.

It easy to see that the compositional inverse of f (t) = 1
4(1−eλ (2t)) such that f ( f (t)) = f ( f (t)) = t

is
f (t) =

1
2

logλ (1−4t). (2.4)
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From(1.15), (2.2), (2.3) and (2.4) we have

n!Cn,λ (x)∼
(

eλ (t)−1
t

,
1
4
(1− eλ (2t))

)
λ

, (2.5)

and

n!C(r)n,λ (x)∼
((

eλ (t)−1
t

)r

,
1
4
(1− eλ (2t)

)
λ

. (2.6)

Theorem 1. For n ∈ N∪{0}, we have

C
(r)
n,λ (x) =

1
n!

n

∑
k=0

((
n
m

)
(−1)m22m−kS1,λ (m,k)(n−m)!C(r)n−m,λ

)
(x)k,λ .

Proof. From (1.2), (1.15) and (2.6), we consider the following two Sheffer sequence as follows:

n!C(r)n,λ (x)∼
((

eλ (t)−1
t

)r

,
1
4
(1− eλ (2t))

)
λ

and (x)n,λ ∼
(
1, t
)

λ
. (2.7)

From (1.16) and (2.7), we have

n!C(r)n,λ (x) =
n

∑
k=0

zn,k(1)k,λ . (2.8)

From (1.8) and (2.3), we obtain

zn,k =
1
k!

〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r(1
2

logλ (1−4t)
)k
∣∣∣∣ (x)n,λ

〉
λ

=
1
2k

〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r ∣∣∣∣( logλ (1+(−4t))k

k!

)
λ

(x)n,λ

〉
λ

=
1
2k

n

∑
m=k

(
n
m

)
(−4)mS1,λ (m,k)

〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r ∣∣∣∣ (x)n−m,λ

〉
λ

=
n

∑
m=k

(
n
m

)
(−1)m22m−kS1,λ (m,k)(n−m)!C(r)n−m,λ .

(2.9)

Therefore, from (2.8) and (2.9), we have the desired result. �

The next theorem gives the inversion formula of Theorem 1.

Theorem 2. For n ∈ N∪{0} and r ∈ N, we have

(1)n,λ =
n

∑
k=0

k!r!
4k (−1)k

( n

∑
l=k

2l
(

n
l

)
(n− l + r)rS2,λ (l,k)S2,λ (n− l + r,r)

)
C
(r)
k,λ (x).
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Proof. From (2.7), we consider the following two degenerate Sheffer sequences

(x)n,λ ∼
(
1, t
)

λ
and n!C(r)n,λ (x)∼

((
eλ (t)−1

t

)r

,
1
4
(1− eλ (2t))

)
λ

. (2.10)

From (1.16) and (2.10) , we have

(1)n,λ =
n

∑
k=0

z̃n,kC
(r)
k,λ (x). (2.11)

First, by (1.9), we observe that(
eλ (t)−1

t

)r

=
r!
tr
(eλ (t)−1)r

r!
= r!

∞

∑
m=0

(m+ r)rS2,λ (m+ r,r)
tm

n!
. (2.12)

Then, from (1.2), (1.9), (1.16) and (2.12) we have

z̃n,k =
1
k!

〈(
eλ (t)−1

t

)r(1
4
(1− eλ (2t))

)k
∣∣∣∣ (x)n,λ

〉
λ

=
1
4k (−1)k

n

∑
l=k

2lS2,λ (l,k)
(

n
l

)〈(
eλ (t)−1

t

)r ∣∣∣∣(x)n−l,λ

〉
λ

=
r!
4k (−1)k

n

∑
l=k

2lS2,λ (l,k)
(

n
l

)
(n− l + r)rS2,λ (n− l + r,r).

(2.13)

Therefore, from (2.11) and (2.13), we have what we want. �

Theorem 3. For n ∈ N∪{0}, we have

C
(r)
n,λ (x) =

1
n!

n

∑
k=0

( n

∑
l=k

n

∑
m=l

n!
m!

(−1)m22m−lS1,λ (m, l)S2,λ (l,k)C
(r)
n−m,λ

)
(x)k.

Proof. We note that
(x)n ∼ (1,eλ (t)−1)λ (2.14)

because of ex
λ
(log(1+ t)) = (1+ t)x =

∞

∑
n=0

(x)n
tn

n!
.

From (2.6) and (2.14), we consider the following two degenerate Sheffer sequences.

n!C(r)n,λ (x)∼
((

eλ (t)−1
t

)r

,
1
4
(1− eλ (2t))

)
λ

and (x)n ∼
(
1, eλ (t)−1

)
λ
. (2.15)

From (1.8), (1.9), (1.16) and (2.15), we observe that

n!C(r)n,λ (x) =
n

∑
k=0

zn,k(x)k, (2.16)
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and (
eλ (

1
2 logλ (1−4t))−1

)k

k!
=

∞

∑
l=k

S2,λ (l,k)

(1
2 logλ (1−4t)

)l

l!

=
∞

∑
m=l

∞

∑
l=k

(−1)m22m−lS1,λ (m, l)S2,λ (l,k)
tm

m!
.

(2.17)

From (1.16) and (2.17), we obtain

zn,k =
1
k!

〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r(
eλ (

1
2

logλ (1−4t))−1
)k
∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
m=l

n

∑
l=k

(−1)m22m−lS1,λ (m, l)S2,λ (l,k)
(

n
m

)〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r ∣∣∣∣(x)n−m,λ

〉
λ

=
n

∑
m=l

n

∑
l=k

(−1)m22m−lS1,λ (m, l)S2,λ (l,k)
(

n
m

)
(n−m)!C(r)n−m,λ

=
n

∑
l=k

n

∑
m=l

n!
m!

(−1)m22m−lS1,λ (m, l)S2,λ (l,k)C
(r)
n−m,λ .

(2.18)

From (2.16) and (2.18), we get the desired result.
�

The next theorem is the inversion formula of Theorem 3.

Theorem 4. For n ∈ N∪{0} and r ∈ N, we have

(x)n =
n

∑
k=0

k!
( n

∑
l=k

n

∑
m=l

(
n
m

)
(−1)k2l−2kS1,λ (m, l)S2,λ (l,k)b

(r)
n−m,λ

)
C
(r)
k,λ (x),

where b(r)n,λ are the Bernoulli numbers of the second kind of order r.

Proof. From (2.15), we consider the following two degenerate Sheffer sequences.

(x)n ∼
(
1, t
)

λ
and n!C(r)n,λ (x)∼

((
eλ (t)−1

t

)r

,
1
4
(1− eλ (2t))

)
λ

. (2.19)

From (1.16) and (2.19), we have

(x)n =
n

∑
k=0

z̃n,kk!C(r)k,λ (x). (2.20)
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From (1.5), (1.8), (1.9) and (1.16), we get

z̃n,k =
1
k!

〈(
t

logλ (1+ t)

)r 1
4k (1− eλ (2logλ (1+ t)))k

∣∣∣∣ (x)n,λ

〉
λ

=
(−1)k

4k

n

∑
l=k

S2,λ (l,k)2
l
〈(

t
logλ (1+ t)

)r ∣∣∣∣((logλ (1+ t))l

l!

)
λ

(x)n,λ

〉
λ

=
(−1)k

4k

n

∑
l=k

S2,λ (l,k)2
l

n

∑
m=l

S1,λ (m, l)
(

n
m

)〈(
t

logλ (1+ t)

)r ∣∣∣∣(x)n−m,λ

〉
λ

=
n

∑
l=k

n

∑
m=l

(
n
m

)
(−1)k2l−2kS1,λ (m, l)S2,λ (l,k)b

(r)
n−m,λ .

(2.21)

Combining (2.20) and (2.21), we prove the theorem. �

Theorem 5. For n ∈ N∪{0}, we have

(1) when r1 = r2, C
(r1)
n,λ (x) =

1
n!

n

∑
k=0

(−1)m22n−kS1,λ (n,k)B
(r2)
k,λ (x),

(2) when r1 , r2, C
(r1)
n,λ (x) =

n

∑
k=0

n

∑
l=k

(
n
l

)
(−1)l22l−k(n− l)!S1,λ (l,k)C

(r1−r2)
n−k,λ B(r2)

k,λ (x),

where B(r)
k,λ (x) are the Bernoulli polynomials of order r.

Proof. From (1.3),(1.15) and (2.6), we consider two degenerate Sheffer sequences as follows:

n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

and B(r2)
n,λ (x)∼

((
eλ (t)−1

t

)r2

, t
)

λ
. (2.22)

From (1.16) and (2.22), we have

n!C(r1)
n,λ (x) =

n

∑
k=0

zn,kB(r2)
k,λ (x), (2.23)

From (1.8) and (1.16), we have
when r1 = r2,

zn,k =
1
k!

〈
1
2k (logλ (1−4t))k

∣∣∣∣ (x)n,λ

〉
λ

=
1
2k S1,λ (n,k)(−4)n = (−1)m22n−kS1,λ (n,k),

(2.24)

when r1 > r2,

zn,k =
1
k!

〈(
eλ (

1
2 logλ (1−4t))−1
1
2 logλ (1−4t)

)r2−r1 1
2k

(
logλ (1−4t)

)k
∣∣∣∣ (x)n,λ

〉
λ

=
1
2k

n

∑
l=k

S1,λ (l,k)(−4)l
(

n
l

)〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r1−r2
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

(−1)l22l−k
(

n
l

)
S1,λ (l,k)(n− l)!C(r1−r2)

n−k,λ ,

(2.25)
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and when r1 < r2,

zn,k =
1
k!

〈(
eλ (

1
2 logλ (1−4t))−1
1
2 logλ (1−4t)

)r2−r1 1
2k

(
logλ (1−4t)

)k
∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

(−1)l22l−k
(

n
l

)
S1,λ (l,k)

〈( 1
2 logλ (1−4t)

eλ (
1
2 logλ (1−4t))−1

)r1−r2
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

(−1)l22l−k
(

n
l

)
S1,λ (l,k)(n− l)!C(r1−r2)

n−k,λ .

(2.26)

Therefore, from (2.23), (2.24), (2.25) and (2.26), we have the desired result. �

The following theorem gives the inversion formula of Theorem 5.

Theorem 6. For n ∈ N∪{0}, we have

(1) when r1 = r2, B(r2)
n,λ (x) =

n

∑
k=0

k!
(
(−1)k2n−2kS2,λ (n,k)

)
C
(r1)
k,λ (x),

(2) when r1 , r2, B(r2)
n,λ (x) =

n

∑
k=0

(−1)kk!
( n

∑
l=k

(
n
l

)
2l−2kS2,λ (l,k)B

(r2−r1)
n−l,λ

)
C
(r1)
k,λ (x).

Proof. From (2.22), we consider the two degenerate Sheffer sequences as follows:

B(r2)
n,λ (x)∼

((
eλ (t)−1

t

)r2

, t
)

λ

and n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

. (2.27)

From (1.16) and (2.27), we have

B(r2)
n,λ (x) =

n

∑
k=0

z̃n,kk!C(r1)
k,λ (x). (2.28)

And from (1.3), (1.5) and (1.16), we get
when r1 = r2,

z̃n,k =
1
k!

〈
(−1)k

4k (eλ (2t)−1)k
∣∣∣∣ (x)n,λ

〉
λ

= (−1)k2−2k
〈

∞

∑
l=k

S2,λ (l,k)2
l t l

l!

∣∣∣∣(x)n,λ

〉
λ

= (−1)k2n−2kS2,λ (n,k),
(2.29)

when r1 > r2,

z̃n,k =
1
k!

〈(
eλ (t)−1

t

)r1−r2 1
4k (1− eλ (2t))k

∣∣∣∣ (x)n,λ

〉
λ

= (−1)k2−2k
n

∑
l=k

S2,λ (l,k)2
l
(

n
l

)〈(
t

eλ (t)−1

)r2−r1
∣∣∣∣(x)n−l,λ

〉
λ

= (−1)k
n

∑
l=k

2l−2k
(

n
l

)
S2,λ (l,k)B

(r2−r1)
n−l,λ ,

(2.30)
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and when r1 < r2,

z̃n,k =
1
k!

〈(
t

eλ (t)−1

)r2−r1 1
4k (1− eλ (2t))k

∣∣∣∣ (x)n,λ

〉
λ

= (−1)k
n

∑
l=k

2l−2k
(

n
l

)
S2,λ (l,k)B

(r2−r1)
n−l,λ .

(2.31)

From (2.28), (2.29), (2.30) and (2.31), we arrive at the desired result. �

Theorem 7. For n ∈ N∪{0} and s ∈ N, we have

C
(r1)
n,λ (x) =

1
n!

n

∑
k=0

(
1

2k+1

n

∑
l=k

S1,λ (l,k)(−4)l
(

n
l

) n−l

∑
m=0

m!C(r1)
m,λ

(
n− l

m

)
×

n−l−m

∑
j=i

r2

∑
i=0

(−1)n−l−m2r2−i− j−2(n−l−m)S2,λ ( j, i)S1,λ (n− l−m, j)
)

E(r2)
k,λ (x),

where E(r)
n,λ (x) are the degenerate Euler polynomials of order r.

Proof. From (1.4), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences

n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

and E(r2)
n,λ (x)∼

((
eλ (t)+1

2

)r2

, t
)

λ

. (2.32)

From (1.16) and (2.32), we give

n!C(r1)
n,λ (x) =

n

∑
k=0

zn,kE(r2)
k,λ (x). (2.33)

Observe that(
eλ (

1
2

log(1−4t))+1
)r

=
(
eλ (

1
2

log(1−4t))−1+2
)r

=
r

∑
i=0

(
r
i

)(
eλ (

1
2

log(1−4t))−1
)i2r−i

=
r

∑
i=0

(
r
i

)
2r−ii!

∞

∑
j=i

S2,λ ( j, i)
(1

2)
j(log(1−4t)) j

j!

=
r

∑
i=0

(
r
i

)
2r−i− ji!

∞

∑
j=i

S2,λ ( j, i)
∞

∑
d= j

S1,λ (d, j)(−4)d td

d!

=
∞

∑
d=i

d

∑
j=i

r

∑
i=0

(−1)d2r−i− j+2dS2,λ ( j, i)S1,λ (d, j)
td

d!
.

(2.34)

AIMS Mathematics Volume 7, Issue 3, 3845–3865.



3857

From (1.2), (1.8), (1.16), (2.3) and (2.34), we obtain

zn,k =
1
k!

〈(
eλ

(1
2 logλ (1−4t)

)
+1

2

)r2
( 1

2(logλ (1−4t))

eλ

(1
2 logλ (1−4t)

)
−1

)r1

× 1
2k

(
logλ (1−4t)

)k
∣∣∣∣ (x)n,λ

〉
λ

=
1

2k+1

n

∑
l=k

S1,λ (l,k)(−4)l
(

n
l

) n−l

∑
m=0

m!C(r1)
m,λ

(
n− l

m

)
×
〈(

eλ

(1
2 logλ (1−4t)

)
+1

2

)r2
∣∣∣∣ (x)n−l−m,λ

〉
λ

=
1

2k+1

n

∑
l=k

S1,λ (l,k)(−4)l
(

n
l

) n−l

∑
m=0

m!C(r1)
m,λ

(
n− l

m

)
×

n−l−m

∑
j=i

r2

∑
i=0

(−1)n−l−m2r2−i− j+2(n−l−m)S2,λ ( j, i)S1,λ (n− l−m, j).

(2.35)

Therefore, from (2.33) and (2.35), we arrive at the desired result. �

Theorem 8. For n ∈ N∪{0} and s ∈ N, we have

E(r2)
n,λ (x) =

n

∑
k=0

k!
(

2−2k(−1)k
n

∑
l=k

n−l

∑
m=0

(
n
l

)(
n− l

m

)
2l(1)n−l−m+1,λ

n− l−m+1

×S2,λ (l,k)E
(r2)
m,λ

)
C
(r1)
k,λ (x),

where E(r)
n,λ (x) are the degenerate Euler polynomials of order r.

Proof. From (1.4), (1.15) and (2.5), we consider two degenerate Sheffer sequences as follows:

E(r2)
n,λ (x)∼

((
eλ (t)+1

2

)r2

, t
)

λ

and n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

. (2.36)

From (1.16) and (2.36), we have

E(r2)
n,λ (x) =

n

∑
k=0

z̃n,kk!C(r1)
k,λ (x), (2.37)

and from (1.2), (1.4), (1.9) and (1.16), we get

z̃n,k =

〈(
2

eλ (t)+1

)r2
(

eλ (t)−1
t

)r1 1
4k

(1− eλ (2t))k

k!

∣∣∣∣ (x)n,λ

〉
λ

.

= 2−2k(−1)k
n

∑
l=k

S2,λ (l,k)2
l
(

n
l

)〈(
eλ (t)−1

t

)r1
∣∣∣∣( 2

eλ (t)+1

)r2

λ

(x)n−l,λ

〉
λ

= 2−2k(−1)k
n

∑
l=k

(
n
l

)
2lS2,λ (l,k)

n−l

∑
m=0

(
n− l

m

)
E(r2)

m,λ

〈(
eλ (t)−1

t

)r1
∣∣∣∣(x)n−l−m,λ

〉
λ

= 2−2k(−1)k
n

∑
l=k

(
n
l

)
2lS2,λ (l,k)

n−l

∑
m=0

(
n− l

m

)
E(r2)

m,λ

(1)n−l−m+1,λ

n− l−m+1
.

(2.38)
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From (2.37) and (2.38), we deduce the desired result. �

Theorem 9. For n ∈ N∪{0} and s ∈ N, we have

C
(r1)
n−m,λ (x) =

1
n!

n

∑
k=0

( n

∑
m=l

m

∑
l=k

(
n
m

)
(−1)m22m−l(n−m)!S1,λ (m, l)S2,λ (l,k)C

(r1+r2)
n−m,λ

)
b(r2)

k,λ (x),

where b(r)n,λ (x) are degenerate Bernoulli polynomials of the second kind of order r.

Proof. From (1.5), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences

n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

and b(r2)
n,λ (x)∼

((
t

eλ (t)−1

)r2

, eλ (t)−1
)

λ

.

(2.39)

From (1.16) and (2.39), we have

n!C(r1)
n,λ (x) =

n

∑
k=0

zn,kb(r2)
k,λ (x). (2.40)

From (1.8), (1.16) and (2.3), we derive

zn,k =

〈( 1
2 logλ (1−4t)

eλ

(1
2 logλ (1−4t)

)
−1

)r1
( 1

2 logλ (1−4t)

eλ

(1
2 logλ (1−4t)

)
−1

)r2

∣∣∣∣ ( 1
k!

(
eλ

(
1
2

logλ (1−4t)
)
−1
)k)

λ

(x)n,λ

〉
λ

=
n

∑
m=l

m

∑
l=k

(−1)m22m−lS2,λ (l,k)S1,λ (m, l)
(

n
m

)〈( 1
2 logλ (1−4t)

eλ

(1
2 logλ (1−4t)

)
−1

)r1+r2
∣∣∣∣ (x)n−m,λ

〉
λ

=
n

∑
m=l

m

∑
l=k

(−1)m22m−l
(

n
m

)
S1,λ (m, l)S2,λ (l,k)(n−m)!C(r1+r2)

n−m,λ .

(2.41)

Therefore, from (2.40) and (2.41), we have the desired result. �

The next theorem is the inversion formula of Theorem 9.

Theorem 10. For n ∈ N∪{0} and s ∈ N, we have

b(r2)
n,λ (x) =

n

∑
k=0

k!
( n

∑
m=k

m

∑
l=k

2l−2k
(

n
m

)
S1,λ (m, l)S2,λ (l,k)b

(r1+r2)
n,λ

)
C
(r1)
k,λ (x),

where b(r)n,λ (x) are degenerate Bernoulli polynomials of the second kind of order r.
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Proof. From (1.8) and (1.9), we observe that

(eλ (2logλ (1+ t))−1)k

k!
=

∞

∑
l=k

S2,λ (l,k)
2l(logλ (1+ t))l

l!

=
∞

∑
l=k

S2,λ (l,k)2
l

∞

∑
m=l

S1,λ (m, l)
tm

m!
=

∞

∑
m=k

m

∑
l=k

2lS1,λ (m, l)S2,λ (l,k)
tm

m!
.

(2.42)

From (2.39), we consider the following two degenerate Sheffer sequences

b(r2)
n,λ (x)∼

((
t

eλ (t)−1

)r2

, eλ (t)−1
)

λ

and n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

.

(2.43)

We have

b(r2)
n,λ (x) =

n

∑
k=0

z̃n,kk!C(r1)
k,λ (x). (2.44)

From (1.5), (1.8), (1.9), (1.16) and (2.42),

z̃n,k =
1
k!

〈(
t

logλ (1+ t)

)r1+r2 1
4k (1− eλ (2logλ (1+ t)))k

∣∣∣∣ (x)n,λ

〉
λ

.

= 2−2k
n

∑
m=k

m

∑
l=k

2lS1,λ (m, l)S2,λ (l,k)
(

n
m

)〈(
t

logλ (1+ t)

)r1+r2
∣∣∣∣(x)n−m,λ

〉
λ

=
n

∑
m=k

m

∑
l=k

2l−2k
(

n
m

)
S1,λ (m, l)S2,λ (l,k)b

(r1+r2)
n,λ .

(2.45)

Thus, from (2.44) and (2.45), we get the desired result.
�

Theorem 11. For n ∈ N∪{0} and s ∈ N, we have

C
(r1)
n,λ (x) =

1
n!

n

∑
k=0

n

∑
l=k

2lS1,λ (n, l)S2,λ (l,k)D
(r2)
n,λ (x),

where D(r)
n,λ (x) are degenerate Daehee polynomials of order r.

Proof. From (1.6), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences

n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

and D(r2)
n,λ (x)∼

((
eλ (t)−1

t

)r2

, eλ (t)−1
)

λ

.

(2.46)

From (1.16) and (2.44), we have

n!C(r1)
n,λ (x) =

n

∑
k=0

zn,kD(r2)
k,λ (x), (2.47)
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and from (1.8), (1.9) and (1.16), we get

zn,k =
1
k!

〈(
eλ

(1
2

logλ (1−4t)
)
−1
)k ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
m=k

m

∑
l=k

2lS1,λ (m, l)S2,λ (l,k)
1

m!

〈
tm
∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

2lS1,λ (n, l)S2,λ (l,k).
(2.48)

From (2.47) and (2.48), we have the desired result. �

The next theorem represents the inversion formula of Theorem 11.

Theorem 12. For n ∈ N∪{0} and s ∈ N, we have

D(r2)
n,λ (x) =

n

∑
k=0

k!
( n

∑
l=k

2l−2k(−1)kk!S1,λ (n, l)S2,λ (l,k)
)
C
(r1)
k,λ (x),

where D(r)
n,λ (x) are degenerate Daehee polynomials of order r.

Proof. By (2.46), we consider the following two degenerate Sheffer sequences

D(r2)
n,λ (x)∼

((
eλ (t)−1

t

)r2

, eλ (t)−1
)

λ

and n!C(r1)
n,λ (x)∼

((
eλ (t)−1

t

)r1

,
1
4
(1− eλ (2t))

)
λ

,

(2.49)

and from (1.16) and (2.49), we get

D(r2)
n,λ (x) =

n

∑
k=0

z̃n,kk!C(r1)
k,λ (x). (2.50)

From (1.8), (1.9),(1.16) and (2.42), we have

z̃n,k =
1
k!

〈
1
4k (1− eλ (2logλ (1+ t)))k

∣∣∣∣ (x)n,λ

〉
λ

=
(−1)k

4k

n

∑
m=k

m

∑
l=k

2lS1,λ (m, l)S2,λ (l,k)
1

m!

〈
tm
∣∣∣∣(x)n,λ

〉
λ

= (−1)k
n

∑
l=k

2l−2kS1,λ (n, l)S2,λ (l,k).

(2.51)

From (2.50) and (2.51), we obtain the desired result. �

Theorem 13. For n ∈ N∪{0} and s ∈ N, we have

C
(r)
n,λ (x) =

1
n!

n

∑
k=0

( n

∑
m=k

m

∑
l=k

(−1)m22m−l
(

n
m

)
(n−m)!

S1,λ (m, l)S1,λ (l,k)C
(r)
n−m,λ

)
Belk,λ (x),

where Beln,λ (x) are degenerate Bell polynomials.
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Proof. From (1.8) and (2.3), we observe that

logλ (1+
1
2 logλ (1−4t))k

k!
=

∞

∑
l=k

S1,λ (l,k)

(1
2

)l( logλ (1−4t))l

l!

=
∞

∑
m=k

m

∑
l=k

(−1)m22m−lS1,λ (l,k)S1,λ (m, l)
tm

m!
.

(2.52)

From (1.7) and (1.15), we consider the following two degenerate Sheffer sequences as follows:

n!C(r)n,λ (x)∼
((

eλ (t)−1
t

)r

,
1
4
(1− eλ (2t))

)
λ

and Belk,λ (x)∼
(

1, logλ (1+ t)
)

λ

. (2.53)

From (1.16) and (2.53), we have

n!C(r)n,λ (x) =
n

∑
k=0

zn,kBelk,λ (x). (2.54)

From (1.16), (2.3) and (2.52), we get

zn,k =
1
k!

〈( 1
2 logλ (1−4t)

eλ

(1
2 logλ (1−4t)

)
−1

)r(
logλ (1+

1
2
(logλ (1−4t)))k

∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
m=k

m

∑
l=k

(−1)m22m−lS1,λ (l,k)S1,λ (m, l)
(

n
m

)〈( 1
2 logλ (1−4t)

eλ

(1
2 logλ (1−4t)

)
−1

)r ∣∣∣∣ (x)n−m,λ

〉
λ

=
n

∑
m=k

m

∑
l=k

(−1)m22m−l
(

n
m

)
(n−m)!S1,λ (m, l)S1,λ (l,k)C

(r)
n−m,λ .

(2.55)

Thus, from (2.54) and (2.55), we have the desired result. �

The next theorem is the inversion formula of Theorem 13.

Theorem 14. For n ∈ N∪{0} and s ∈ N, we have

Beln,λ (x) =
n

∑
k=0

k!r!
( n

∑
m=k

m

∑
l=k

n−m

∑
d=0

d+r

∑
j=r

(
n
m

)(
n−m

d

)
(−1)k2l−2k(d + r)r

×S2,λ (m, l)S2,λ (l,k)S2,λ (d + r, j)S2,λ ( j,r)B(r)
n−m−d,λ

)
C
(r)
k,λ (x),

where Beln,λ (x) are degenerate Bell polynomials.

Proof. From (2.53), we consider two degenerate Sheffer sequences as follows:

Belk,λ (x)∼
(

1, logλ (1+ t)
)

λ

and n!C(r)n,λ (x)∼
((

eλ (t)−1
t

)r

,
1
4
(1− eλ (2t))

)
λ

. (2.56)
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From (1.16) and (2.56), we have

Beln,λ (x) =
n

∑
k=0

z̃n,kk!C(r)k,λ (x). (2.57)

First, from (1.2), (1.9) and (1.10), we have two identities as follows:

(eλ (2(eλ (t)−1))−1)k

k!
= (−1)k

∞

∑
l=k

S2,λ (l,k)
2l(eλ (t)−1)l

l!

=
∞

∑
m=k

m

∑
l=k

S2,λ (l,k) 2lS2,λ (m,k)
tm

m!
,

(2.58)

and (
eλ (eλ (t)−1)

t

)r

=
r!
tr

1
r!
(
eλ (eλ (t)−1)−1

)r
= r!

1
tr

∞

∑
d=r

SJ,λ (d,r)
td

d!

= r!
∞

∑
d=0

SJ,λ (d + r,r)
td

(d + r)!
= r!

∞

∑
l=0

(d + r)rSJ,λ (d + r,r)
td

d!
,

(2.59)

where SJ,λ (n,r) are the Jindalrae-Stirling numbers of the second kind [18].
From (1.11), (1.16), (2.58) and (2.59), we observe that

z̃n,k =
1
k!

〈(
eλ (eλ (t)−1)−1

eλ (t)−1

)r 1
4k (1− eλ (2(eλ (t)−1)))k

∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
m=k

m

∑
l=k

(−1)k2l−2k
(

n
m

)
S2,λ (m, l)S2,λ (l,k)

×
〈(

t
eλ (t)−1

)r ∣∣∣∣((eλ (eλ (t)−1)−1
t

)r)
λ

(x)n−m,λ

〉
λ

=
n

∑
m=k

m

∑
l=k

(−1)k2l−2k
(

n
m

)
S2,λ (m, l)S2,λ (l,k)r!

n−m

∑
d=0

(d + r)r

×
d+r

∑
j=r

S2,λ (d + r, j)S2,λ ( j,r)
(

n−m
d

)
B(r)

n−m−d,λ .

(2.60)

From (2.57) and (2.60), we get the desired result.
�

3. Conclusions

In this paper, we introduced the degenerate Catalan-Daehee numbers and polynomials of order r
(r ≥ 1). It was shown that the degenerate Catalan-Daehee polynomials of order r were expressed
based on the degenerate falling factorials, the falling factorials, the degenerate Bernoulli polynomials
of order r, the Euler polynomials (of order r), the degenerate Bernoulli polynomials of the second kind
of order r, the degenerate Deahee polynomials of order r, and the degenerate Bell polynomials. We
also obtained inverse formula for each of them.
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It is difficult to single out where and why these formulas play an important role, but we do not
doubt that they will be helpful to researchers in need of these identities. Further research would be
related with the degenerate versions of some special combinatorial numbers and polynomials and then
contribution in mathematics and physics applications.
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