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Abstract: In this study, we deal with the problem of extended dissipativity analysis for memristive
neural networks (MNNs) with two-delay components. The goal is to get less conservative extended
dissipativity criteria for delayed MNNs. An improved Lyapunov-Krasovskii functional (LKF) with
some generalized delay-product-type terms is constructed based on the dynamic delay interval (DDI)
method. Moreover, the derivative of the created LKF is estimated using the integral inequality
technique, which includes the information of higher-order time-varying delay. Then, sufficient
conditions are attained in terms of linear matrix inequalities (LMIs) to pledge the extended dissipative
of MNNs via the new negative definite conditions of matrix-valued cubic polynomials. Finally, a
numerical example is shown to prove the value and advantage of the presented approach.
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1. Introduction

The idea of neural networks (NNs) was put forth using biological brain modeling. Numerous studies
have used NNs for fault diagnosis, associative memory and multi-agent systems [1], making them a
focus of research for scholars in recent decades. In 1971, according to the circuit’s symmetry and
completion principles, some scholars proposed that there may be a fourth basic element of the circuit
that represents the link between charge and magnetic flux, which is “resistance with memory”, namely
memristor [2]. It was not until 2008 that this theory was confirmed by Hewlett-Packard Labs and the
circuit element named memristor was first made using Tio2 [3]. In addition, memristor is a kind of
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nonlinear resistance element and also has memory function. This means that after a power failure, it
can also store the amount of charge that flowed through it at the previous moment [4]. Thus, when
we use memristor instead of traditional resistance to realize NN, MNN is born. Compared with the
traditional NN, the connection weight of MNN changes with the variation of state variables, and it can
also remember the past state, which is more practical and can better mimic the structure and function
of the human brain [5]. Therefore, MNNs have gradually become the focus of research in information
processing, nonlinear systems and other fields. MNNs’ dynamic behavior has become a hot topic of
research [6–8].

Time delays are inevitable in some MNNs related to the slow speed at which neurons transmit
signals [9, 10]. As everyone is aware, time delays are often the source of oscillation and
instability [11–16]. In a practical MNN, signals transmitted from one point to another may experience
several segments of networks, and the resulting time delays have different properties due to variable
network transmission conditions [17]. Therefore, time delays are generally more than one in practical
MNNs. Thus, the MNNs can take a form with additive delays or multiple delays. Therefore, the
dynamic performance analysis of MNNs with additive or multiple delays has been investigated, such
as stability analysis [18], stabilization [19, 20], synchronization [21–23], passivity analysis [24] and
so on.

The theory of dissipativity was primally proposed by Willems [25], referring to supply rates and
storage functions. Dissipativity refers to that more energy is being provided from outside than is being
lost within the system. It is valuable in circuit systems. Moreover, dynamic control systems always
need to attenuate external interference. Therefore, it is indispensable to use the extended dissipativity
index to achieve the unity of dissipativity, passivity, H∞ performance and L2 − L∞ performance. The
first attempt to meet this demand was made in [26]. In the past few years, the extended dissipativity
anglysis of delayed MNNs has been adopted by an increasing number of researchers [27,28]. Although
fruitful achievements have been acquired for extended dissipativity analysis of delayed MNNs, there is
limited related literature concerned with this problem for delayed MNNs with two-delay components.
Furthermore, although [28] has obtained some useful results, there is room to further explore.

We research the extended dissipativity analysis for MNNs with two-delay components. The major
contributions are listed as follows.

1) By considering more information about the state vectors, delayed state vectors, and integral state
vectors, an original improved delay-product-type LKF is constructed based on the dynamic
delay interval method. In the constructed LKF, the augmented candidates enhance the
connection between each state variable, which helps to reduce the conservatism.

2) When taking the derivative of the LKF, its negative definite condition not only includes some
linear terms about delays, but also contains some square terms and cubic terms about delays,
which have been neglected in most of the literature. Obviously, this type of LKF can take
additional time-delay information into account and lead to less conservative results. Then, some
sufficient extended dissipativity criteria are established in terms of LMIs using a matrix-valued
cubic polynomial.

Notations: In this research paper, Rm×n denotes the set of m × n real matrices; a block-diagonal
matrix is denoted by the notation diag{· · ·}; the symbol 0 (I) stands for the zero-matrix (unit matrix);
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L > 0 signifies that L is a positive-define matrix; in a symmetric matrix, symmetric terms are denoted
by ∗; Sym {R} = R + RT.

2. Problem formulation

The two-delay MNN is described by:{
ẋ(t) = −W(x(t))x(t) + C(x(t))g(x(t)) +D(x(t))g(x(t − κ1(t) − κ2(t))) + ω(t)
Y(t) = x(t) + x(t − κ1(t) − κ2(t))

, (2.1)

where x(·) = [x1(·), x2(·), ..., xn(·)]T is the state vector; g(·) = [g1(·), g2(·), ..., gn(·)]T is the neuron
activation function; ω(t) is the external input; Y(t) is the output;
W(x(t)) = diag{w1(x1(t)),w2(x2(t)), ...,wn(xn(t))} > 0 is the self-feedback connection weight matrix;
C(x(t)) = [ci j(xi(t))]n×n andD(x(t)) = [di j(xi(t))]n×n are the memristor-based weights with :

wi(xi(t)) =


w(1)

i , signi jġi(xi(t))−ẋi(t)<0
unchanged, signi jġi(xi(t))−ẋi(t)=0
w(2)

i , signi jġi(xi(t))−ẋi(t)>0
,

ci j(xi(t)) =


c(1)

i j , signi jġ j(x j(t))−ẋi(t)<0
unchanged, signi jġ j(x j(t))−ẋi(t)=0
c(2)

i j , signi jġ j(x j(t))−ẋi(t)>0
,

di j(xi(t)) =


d(1)

i j , signi jġ j(x j(t − κ(t))) − ẋi(t) < 0
unchanged, signi jġ j(x j(t − κ(t))) − ẋi(t) > 0
d(2)

i j , signi jġ j(x j(t − κ(t))) − ẋi(t) = 0
,

signi j =

{
1, i , j
−1, i = j

where w(1)
i ,w

(2)
i , c

(1)
i j , c

(2)
i j , d

(1)
i j and d(2)

i j are known constants. Furthermore, “unchanged” denotes that the
memristance retains its present value. It is easy to see that each weight varies between two different
constant values, i.e., wi(xi(t)) can be either w(1)

i or w(2)
i , likewise, ci j(xi(t)) and di j(xi(t)) also have two

options. In summary, the combination number of the possible form of W(x(t)),C(x(t)) and D(x(t))
is 22n2+n, then, order these 22n2+n cases in the following way:

(W1,C1,D1), (W2,C2,D2), ..., (W22n2+n ,C22n2+n ,D22n2+n).

Then,W(x(t)),C(x(t)) and D(x(t)) must be one of the 22n2+n cases at any fixed time t, which implies
that, there exists p ∈ N =

{
1, 2, ..., 22n2+n

}
such thatW(x(t)) =Wp,C(x(t)) = Cp and D(x(t)) = Dp.

Hence, system (2.1) may be expressed as

ẋ(t) =
22n2+n∑

p=1

πi(t)[−Wpx(t) + Cpg(x(t)) +Dpg(x(t − κ1(t) − κ2(t))) + ω(t)]

= −W(t)x(t) + C(t)g(x(t)) +D(t)g(x(t − κ1(t) − κ2(t))) + ω(t), (2.2)

where
∑22n2+n

p=1 πp(t) = 1 and πp(t) =
{

1, W(x(t)) =Wp,C(x(t)) = Cp, andD(x(t)) = Dp,

0, otherwise.
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The time-varying delays, κ1(t) and κ2(t), are assumed to be continuous differentiable functions,
which meet the two cases listed below:

Case 1 : 0 ≤ κ1(t) ≤ κ1M, |κ̇1(t)| ≤ µ1; 0 ≤ κ2(t) ≤ κ2M, |κ̇2(t)| ≤ µ2. (2.3)
Case 2 : 0 ≤ κ1(t) ≤ κ1M, κ̇1(t) ≤ µ1; 0 ≤ κ2(t) ≤ κ2M, κ̇2(t) ≤ µ2. (2.4)

Where κiM and µi (i = 1, 2) are scalars. And g(·) is continuous and satisfies

ϕ−i ≤
gi(ϱ1)−gi(ϱ2)
ϱ1 − ϱ2

≤ϕ+i , i=1, 2, · · · , n, (2.5)

where ϱ1 , ϱ2, gi(0) = 0, ϕ−i and ϕ+i are given real constants.

Definition 1. [29]. For real symmetric matrices ℶ1, ℶ2, ℶ3 and ℶ4 ∈ R
n×n with ℶ1 ≤ 0, ℶ3 > 0, ℶ4 ⩾ 0

and (||ℶ1|| + ||ℶ2||)||ℶ4|| = 0, MNN (2.2) is extended dissipative if there exists a scalar δ such that:∫ t∗

0

(
YT(t)ℶ1Y(t) + 2YT(t)ℶ2ω(t) + ωT(t)ℶ3ω(t)

)
dt ⩾ sup

0≤k≤t∗
YT(k)ℶ4Y(k) + δ. (2.6)

3. Main results

The examination of extended dissipativity for two-delay MNNs in two situations will be covered in
this section, along with the establishment of numerous improved dissipativity criteria.

H(t) = ακ1(t) + βκ2(t), (α, β) ∈
{
ℵ = {[0, 1] × [0, 1] − (0, 0) ∪ (1, 1)}, µ1 + µ2 < 1
ℵ ∩ {(α, β)|αµ1 + βµ2 < 1}, µ1 + µ2 > 1

,

κ(t) = κ1(t) + κ2(t), κM = κ1M + κ2M, K1 = diag{ϕ+1 , ϕ
+
2 , · · · , ϕ

+
n }, K2 = diag{ϕ−1 , ϕ

−
2 , · · · , ϕ

−
n },

ℑ(t) =
[
xT(t), xT(t−H(t)), xT(t−κM), xT(t−κ(t)), gT(x(t)), gT(x(t − κ(t))), υT

1 (t), υT
2 (t), υT

3 (t), υT
4 (t), ωT(t)

]T
,

υ1(t) =
∫ t

t−H(t)

x(ν)
H(t)

dν, υ2(t) =
∫ t−H(t)

t−κM

x(ν)
κM −H(t)

dν, υ3(t) =
∫ t

t−H(t)

∫ t

ν

x(ϵ)
H2(t)

dϵdν,

υ4(t) =
∫ t−H(t)

t−κM

∫ t−H(t)

ν

x(ϵ)
(h −H(t))2 dϵdν, ei =

[
0n×(i−1)n, In, 0n×(11−i)n

]
(i = 1, 2, · · · , 11),

Ω1 =
{
κ1(t) ∈ {0, κ1M} , κ2(t) ∈ {0, κ2M}

}
, Ω2 =

{
κ̇1(t) ∈

{
−µ1, µ1

}
, κ̇2(t) ∈

{
−µ2, µ2

} }
. (3.1)

We start by providing the dissipativity criterion for Case 1.

Theorem 1. For given scalars κ1M ≥ 0, κ2M ≥ 0, µ1 ≥ 0, µ2 ≥ 0, 0 < σ < 1 and symmetric matrices
ℶ1, ℶ2, ℶ3 and ℶ4 ∈ R

n×n satisfying Definition 1, MNN (2.2) satisfying (2.3) is extended dissipative
if there exist matrices P1, P2, P3 ∈ R

3n×3n > 0, Z1,Z2 ∈ R
3n×3n > 0, Z3 ∈ R

n×n > 0, R1,R3 ∈ R
n×n > 0,

R2 ∈R
2n×2n > 0, any symmetric matrices S 1, S 2 ∈R

4n×4n, any matrices S 3, S 4 ∈R
4n×4n,M∈R22n×11n and

diagonal matrices Λ1, Λ2, Λ3 ∈ R
n×n > 0, Hi = diag{ℏi1, ℏi2, · · · , ℏin} ∈ R

n×n > 0 (i = 1, 2) satisfying the
following LMIs for p∈N, (κ1(t), κ2(t))∈Ω1 and (κ̇1(t), κ̇2(t))∈Ω2 :[

R̃2 − S 1 −S 3

∗ R̃2

]
> 0,

[
R̃2 −S 4

∗ R̃2 − S 2

]
> 0, (3.2)
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σP∗1 − ℶ4 −ℶ4

∗ (1 − σ)P∗1 − ℶ4

]
> 0, (3.3)

Ωp(H(t), Ḣ(t)) < 0, (3.4)

where

Ωp(H(t), Ḣ(t)) =
 ∆p

0 +H(t)∆p
1

H(t)
2 ∆2

∗ H(t)∆3

 + Sym
{
M

[
−H(t)I, I

]}
,

∆
p
0 = Sym

{
ΓT

1aP1Γ2a + Γ
T
3aP2Γ5a + Γ

T
4aP3Γ6a + Γ

T
9 Z2Γ12a

}
+ Ḣ(t)ΓT

3aP2Γ3a − Ḣ(t)ΓT
4aP3Γ4a

+ ΓT
7 (Z1 + Z2)Γ7 − (1 − Ḣ(t))ΓT

8aZ1Γ8a − Γ
T
11aZ2Γ11a + eT

1 Z3e1 − (1 − κ̇(t))eT
4 Z3e4 +

κ2M
2

eT
spR3esp

−

[
Γ13a

Γ14a

]T

ℜ1

[
Γ13a

Γ14a

]
−

1 − Ḣ(t)
ακ1M + βκ2M

ΥT
1 R̃1Υ1 + κ

2
M

[
esp

e1

]T

R2

[
esp

e1

]
−

κM

ακ1M + βκ2M
ΥT

1 R̃03Υ1

− ΠT
1 R̃3Π1 − Π

T
2 R̃3Π2 + Sym

{
eT

5 (H1 − H2)esp + eT
1 (K1H2 − K2H1)esp + (e5 − K2e1)TΛ1(K1e1 − e5)

+ (e6 − K2e4)TΛ2(K1e4 − e6) + [(e5 − e6) − K2(e1 − e4)]TΛ3[K1(e1 − e4) − (e5 − e6)]
}

− (e1 + e4)Tℶ1(e1 + e4) − Sym
{
(e1 + e4)Tℶ2e11

}
− eT

11ℶ3e11,

∆
p
1 = Sym

{
ΓT

1aP1Γ2b + Γ
T
1bP1Γ2a + Γ

T
3bP2Γ5a + Γ

T
3aP2Γ5b + Γ

T
4bP3Γ6a + Γ

T
4aP3Γ6b + Γ

T
9 Z1Γ10b

+ΓT
9 Z2Γ12b + Ḣ(t)ΓT

3aP2Γ3b − Ḣ(t)ΓT
4aP3Γ4b − (1 − Ḣ(t))ΓT

8aZ1Γ8b − Γ
T
11aZ2Γ11b −

[
Γ13a

Γ14a

]T

ℜ1

[
Γ13b

Γ14b

]
+ eT

spR1esp +
1

ακ1M + βκ2M
ΥT

1 R̃03Υ1 −

[
Γ13a

Γ14a

]T

ℜ2

[
Γ13a

Γ14a

]
,

∆2 = Sym

ΓT
1bP1Γ2b + Γ

T
1aP1Γ2c + Γ

T
3bP2Γ5b + Γ

T
4bP3Γ6b + Γ

T
9 Z1Γ10c + Γ

T
9 Z2Γ12c −

[
Γ13a

Γ14a

]T

ℜ2

[
Γ13b

Γ14b

]
+ Ḣ(t)(ΓT

3bP2Γ3b − Γ
T
4bP3Γ4b) − (1 − Ḣ(t))ΓT

8bZ1Γ8b − Γ
T
11bZ2Γ11b −

[
Γ13b

Γ14b

]T

ℜ1

[
Γ13b

Γ14b

]
,

∆3 = Sym
{
ΓT

1bP1Γ2c

}
−

[
Γ13b

Γ14b

]T

ℜ2

[
Γ13b

Γ14b

]
,

Γ
p
1 = H(t)Γ1b + Γ

p
1a, Γ2 = H

2(t)Γ2c +H(t)Γ2b + Γ2a, Γ3 = H(t)Γ3b + Γ3a, Γ4 = H(t)Γ4b + Γ4a,

Γ
p
5 = H(t)Γp

5b + Γ5a, Γ
p
6 = H(t)Γp

6b + Γ
p
6a, Γ7 =

[
eT

1 , e
T
1 , 0

]T
, Γ8 = H(t)Γ8b + Γ8a, Γ

p
9 =

[
eT

sp, 0, e
T
1

]T
,

Γ10 = H
2(t)Γ10c +H(t)Γ10b, Γ11 = H(t)Γ11b + Γ11a, Γ12 = H

2(t)Γ12c +H(t)Γ12b + Γ12a,

Γ13 = H(t)Γ13b + Γ13a, Γ14 = H(t)Γ14b + Γ14a, Γ
p
1a =

[
eT

sp, e
T
1 − eT

3 , κMeT
1 − κMeT

8

]T
,

Γ1b =
[
0, 0, eT

8 − eT
7

]T
,Γ2a =

[
eT

1 , κMeT
8 , κ

2
MeT

10

]T
, Γ2b =

[
0, eT

7−eT
8 , κMeT

7−2κMeT
10

]T
,

Γ2c =
[
0, 0, eT

9 + eT
10 − eT

7

]T
,Γ3a =

[
eT

1 , e
T
7 , 0

]T
,Γ3b =

[
0, 0, eT

9

]T
,Γ4a =

[
eT

1 , e
T
8 , κMeT

10

]T
,
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Γ4b =
[
0, 0,−eT

10

]T
,Γ5a =

[
0, eT

1−(1−Ḣ(t))eT
2−Ḣ(t)eT

7 , 0
]T
,

Γ
p
5b =

[
eT

sp, 0, e
T
1−(1−Ḣ(t))eT

7−Ḣ(t)eT
9

]T
, Γ

p
6b =

[
− eT

sp, 0,−(1 − Ḣ(t))eT
2 + eT

8 − Ḣ(t)eT
10

]T
,

Γ
p
6a =

[
κMeT

sp,(1 − Ḣ(t))eT
2−eT

3+Ḣ(t)eT
8 , κM(1 − Ḣ(t))eT

2−κMeT
8+κMḢ(t)eT

10)
]T
, Γ8a =

[
eT

1 , e
T
2 , 0

]T
,

Γ8b =
[
0, 0, eT

7

]T
, Γ10b =

[
eT

1 , e
T
7 , 0

]T
, Γ10c =

[
0, 0, eT

9

]T
,Γ11a =

[
eT

1 , e
T
3 , κMeT

8

]T
,Γ11b =

[
0, 0, eT

7 − eT
8

]T
,

Γ12a =
[
κMeT

1 , κMeT
8 , κ

2
MeT

10

]T
,Γ12b =

[
0, eT

7 − eT
8 , κMeT

7 − 2κMeT
10

]T
,Γ12c =

[
0, 0, eT

9 + eT
10 − eT

7

]T
,

Γ13a =
[
eT

1 − eT
2 , 0, e

T
1 + eT

2 − 2eT
7 , 0

]T
,Γ13b =

[
0, eT

7 , 0, e
T
7 − 2eT

9

]T
, Γ14b =

[
0,−eT

8 , 0, 2eT
10 − eT

8

]T
,

Γ14a =
[
eT

2 − eT
3 , κMeT

8 , e
T
2 + eT

3 − 2eT
8 , κMeT

8 − 2κMeT
10

]T
, esp = −Wpe1 + Cpe5 +Dpe6 + e11 (p ∈ N),

R̃1 = diag{R1, 3R1, 5R1}, R̃2 = diag{R2, 3R2}, R̃3 = diag{2R3, 4R3}, R̃03 = diag{R3, 3R3, 5R3},

P∗1 = [I, 0, 0] P1 [I, 0, 0]T, Υ1 =
[
eT

1 − eT
2 , e

T
1 + eT

2 − 2eT
7 , e

T
1 − eT

2 + 6eT
7 − 12eT

9

]T
,

Πi =

[
ei − ei+6

ei + 2ei+6 − 6ei+8

]
(i = 1, 2),ℜ1 =

 R̃2 + S 1 S 4

∗ R̃2

 ,ℜ2 =

 − 1
κM

S 1
1
κM

S 3 −
1
κM

S 4

∗ 1
κM

S 2

 . (3.5)

Proof. We choose LKF V(xt, t) =
∑4

i=1Vi(xt, t), where

V1(xt, t) = λT
1 (t)P1λ1(t) +H(t)λT

2 (t)P2λ2(t) + (κM −H(t))λT
3 (t)P3λ3(t),

V2(xt, t) =
∫ t

t−H(t)
λT

4 (t, ν)Z1λ4(t, ν)dν +
∫ t

t−κM
λT

4 (t, ν)Z2λ4(t, ν)dν +
∫ t

t−κ(t)
xT(ν)Z3x(ν)dν,

V3(xt, t) =
∫ 0

−H(t)

∫ t

t+θ
ẋT(ν)R1 ẋ(ν)dνdθ + κM

∫ 0

−κM

∫ t

t+θ
λT

5 (ν)R2λ5(ν)dνdθ

+

∫ 0

−κM

∫ 0

θ

∫ t

t+ϵ
ẋT(ν)R3 ẋ(ν)dνdϵdθ,

V4(xt, t) = 2
n∑

j=1

∫ x j(t)

0
[ℏ1 j(g j(ν) − ϕ−j ν) + ℏ2 j(ϕ+j ν − g j(ν))]dν,

with λ1(t) =
[
xT(t),

∫ t

t−κM
xT(ν)dν,

∫ t

t−κM

∫ t

ν
xT(ϵ)dϵdν

]T
, λ2(t) =

[
xT(t), υT

1 (t), H(t)υT
3 (t)

]T
,

λ3(t) =
[
xT(t), υT

2 (t), (κM −H(t))υT
4 (t)

]T
, λ4(t) =

[
xT(t), xT(ν),

∫ t

ν
xT(u)du

]T
, λ5(t) =

[
ẋT(t), xT(t)

]T
.

Taking the derivative of V(xt, t), we have

V̇1(xt, t) = ℑT(t)
[
2Γp

1
TP1Γ2 + Ḣ(t)ΓT

3 P2Γ3 − Ḣ(t)ΓT
4 P3Γ4 + 2ΓT

3 P2Γ
p
5 + 2ΓT

4 P3Γ
p
6

]
ℑ(t), (3.6)

V̇2(xt, t) = ℑT(t)
[
ΓT

7 (Z1 + Z2)Γ7 − (1 − Ḣ(t))ΓT
8 Z1Γ8 + 2Γp

9
TZ1Γ10 − Γ

T
11Z2Γ11

+ 2Γp
9

TZ2Γ12 + eT
1 Z3e1 − (1 − κ̇(t))eT

4 Z3e4

]
ℑ(t), (3.7)

V̇3(xt, t) = ℑT(t)

H(t)eT
spR1esp + κ

2
M

[
esp

e1

]T

R2

[
esp

e1

]
+
κ2M
2

eT
spR3esp

ℑ(t)

− (1 − Ḣ(t))
∫ t

t−H(t)
ẋT(ν)R1 ẋ(ν)dν − κM

∫ t

t−κM
λT

5 (ν)R2λ5(ν)dν
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−

∫ t−H(t)

t−κM

∫ t−H(t)

ν

ẋT(ϵ)R3 ẋ(ϵ)dϵdν −
∫ t

t−H(t)

∫ t

ν

ẋT(ϵ)R3 ẋ(ϵ)dϵdν

− (κM −H(t))
∫ t

t−H(t)
ẋT(ϵ)R3 ẋ(ϵ)dϵ, (3.8)

V̇4(xt, t) = 2ℑT(t)
[
eT

5 (H1 − H2)esp + eT
1 (K1H2 − K2H1)esp

]
ℑ(t), (3.9)

where Γi(i = 1, 2, ..., 12) are defined in (3.5).
Through Lemma 5.1 in [30], the R1 and R3-dependent integral term in (3.8) can be rebounded as

−(1 − Ḣ(t))
∫ t

t−H(t)
ẋT(ν)R1 ẋ(ν)dν ≤ −

1 − Ḣ(t)
ακ1M + βκ2M

ℑT (t)ΥT
1 R̃1Υ1ℑ(t), (3.10)

−(κM −H(t))
∫ t

t−H(t)
ẋT(ν)R3 ẋ(ν)dν ≤ −

κM −H(t)
ακ1M + βκ2M

ℑT(t)ΥT
1 R̃03Υ1ℑ(t), (3.11)

−

∫ t

t−H(t)

∫ t

ν

ẋT(ϵ)R3 ẋ(ϵ)dϵdν ≤ −ℑT(t)ΠT
1 R̃3Π1ℑ(t), (3.12)

−

∫ t−H(t)

t−κM

∫ t−H(t)

ν

ẋT(ϵ)R3 ẋ(ϵ)dϵdν ≤ −ℑT(t)ΠT
2 R̃3Π2ℑ(t). (3.13)

With conditions (3.2), by using Corollary 5 in [31] and Lemma 2 in [32] to rebound the R2-dependent
integral term in (3.8), one yields

−κM

∫ t

t−κM
λT

5 (ν)R2λ5(ν)dν = −κM

∫ t

t−H(t)
λT

5 (ν)R2λ5(ν)dν − κM

∫ t−H(t)

t−κM
λT

5 (ν)R2λ5(ν)dν

≤ −ℑT(t)
(
κM

H(t)
ΓT

13R̃2Γ13 +
κM

κM −H(t)
ΓT

14R̃2Γ14

)
ℑ(t)

≤ −ℑT(t)
[
Γ13

Γ14

]T (
ℜ1 +H(t)ℜ2

) [ Γ13

Γ14

]
ℑ(t). (3.14)

Based on (2.5), one has

2
[
g(x(t))−K2x(t)

]T
Λ1

[
K1x(t)−g(x(t))

]
⩾ 0, (3.15)

2
[
g(x(t − κ(t)))−K2x(t − κ(t))

]T
Λ2

[
K1x(t − κ(t))−g(x(t − κ(t)))

]
⩾ 0, (3.16)

2
[
g(x(t)) − g(x(t − κ(t))) − K2(x(t) − x(t − κ(t)))

]T
Λ3

[
K1(x(t) − x(κ(t))) − g(x(t)) + g(x(t − κ(t)))

]
⩾ 0.

(3.17)

Recommending the cost function Jt∗ =
∫ t∗

0
(YT(t)ℶ1Y(t) + 2YT(t)ℶ2ω(t) +ωT(t)ℶ3ω(t))dt. It can be

readily derived from (3.6) to (3.17) that∫ t∗

0
V̇(xt)dt − Jt∗ ≤

∫ t∗

0
ℑT(t)Θ(H(t))ℑ(t)dt, (3.18)
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where Θ(H(t)) = ∆3H
3(t) + ∆2H

2(t) + ∆1H(t) + ∆0. Then, it follows Lemma 3 in [33] that if (3.4)
meets for (κ1(t), κ2(t)) ∈ Ω1 and (κ̇1(t), κ̇2(t)) ∈ Ω2, Θ(H(t)) < 0 holds, which implies V̇(xt, t) − Jt∗ ≤ 0.
Integrating two sides of the above-mentioned inequality from 0 to t gains∫ t

0
Jt∗dα ⩾ V(t) − V(0) ⩾ xT(t)P∗1x(t) + δ, (3.19)

where P∗1 is defined in (3.5).
Next, two cases will be considered in the proof. First, if ||ℶ4|| = 0, (3.19) means that for any t∗ ⩾ 0∫ t∗

0
Jt∗dα ⩾ xT(t∗)P∗1x(t∗) + δ ⩾ δ, (3.20)

this indicates that Definition 1 is accurate. If ||ℶ4|| , 0, as mentioned in (2.3), we can figure out that
the matrices ℶ1 = 0, ℶ2 = 0 and ℶ3 > 0, therefore, for any t∗ ≥ t ≥ 0,∫ t∗

0
Jt∗dα ⩾

∫ t

0
Jt∗dα ⩾ xT(t)P∗1x(t) + δ, (3.21)

when t > κ(t), 0 < t − κ(t) ≤ t∗. Therefore,∫ t∗

0
Jt∗dα ⩾ xT(t − κ(t))P∗1x(t − κ(t)) + δ. (3.22)

For a positive constant 0 < σ < 1, we have∫ t∗

0
Jt∗dα ⩾ δ + σxT(t)P∗1x(t) + (1 − σ)xT(t − κ(t))P∗1x(t − κ(t)). (3.23)

Taking note of the fact

YT(t)ℶ4Y(t) = −
[

x(t)
x(t − κ(t))

]T [
σP∗1 − ℶ4 −ℶ4

∗ (1 − σ)P∗1 − ℶ4

] [
x(t)

x(t − κ(t))

]
+ σxT(t)P∗1x(t) + (1 − σ)xT(t − κ(t))P∗1x(t − κ(t)). (3.24)

If (3.3) is satisfied, then

YT(t)ℶ4Y(t) ≤ σxT(t)P∗1x(t) + (1 − σ)xT(t − κ(t))P∗1x(t − κ(t)). (3.25)

It is explicit that, for any t∗ ≥ t ≥ 0, one has
∫ t∗

0
Jt∗dα ⩾ YT(t)ℶ4Y(t)+δ. Consequently, (2.6) meets for

any t∗ ≥ 0. On the basis of the above analysis, whether ||ℶ4|| = 0 or ||ℶ4|| , 0, system (2.1) with (2.3)
is extended dissipative. This completes the proof. □

Remark 1. An improved LKF, which incorporates the information of state variables and integral
state variables, is designed to heighten the association between various state variables in this paper.
By multiplying time delays with an augmented single integral term, a novel delay-product-type LKF
V1(xt, t) is constructed. When taking the derivative of the LKF, its negative definite condition not only
includes some linear terms about delays, but also contains some square terms and cubic terms about
delays. Obviously, it takes additional time-delay information into account. This type of LKF can lead
to less conservative outcomes. These time-delay information have not been considered in most of the
literature in the same domain [28].
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Remark 2. If no new state variables are added, we discover that the time derivative of the LKF is the
cubic polynomial about the time-varying delay. Then, we find in [33] that Lemma 3 skillfully settle
the problem by regulating the positions of matrices ∆i . Moreover, the computation complexity and the
LMIs’ dimension are decreased.

Remark 3. Upon most of existing achievements in regard to the analysis of dissipativity for MNNs
with two-delay components, the integral terms constructed in LKFs usually were selected as∫ t

t−κ1(t)
UTNUds or

∫ t

t−κ2(t)
UTNUds, which means that the delay intervals were fixed [28]. To

consider the two-delay components information more comprehensively, more single integral terms or
double integral terms need to be established into the LKFs, which significantly increases the
complexity of the obtained results. In this research paper, we develop a dynamic delay interval
method. With the help of this method, the lower and upper limits of the integral terms can be
converted to variable ones. It is obvious that our constructed integral terms are with more freedom
and contain more general cases, thereby can take more time-delay information into account.

Theorem 2 will be used to explain the situation where the bottom bound of the delays are unknown.

Theorem 2. For given scalars κ1M ≥ 0, κ2M ≥ 0, µ1 ≥ 0, µ2 ≥ 0, 0 < σ < 1 and symmetric matrices
ℶ1, ℶ2, ℶ3 and ℶ4 ∈ R

n×n satisfying Definition 1, MNN (2.2) satisfying (2.4) is extended dissipative if
there exist matrices P1 ∈ R

3n×3n > 0, Z1,Z2 ∈ R
3n×3n > 0, Z3 ∈ R

n×n > 0, R1,R3 ∈ R
n×n > 0, R2 ∈ R

2n×2n

> 0,M∈R22n×11n, any symmetric matrices S 1, S 2 ∈R
4n×4n, any matrices S 3, S 4 ∈R

4n×4n and diagonal
matrices Λ1, Λ2, Λ3 ∈ R

n×n > 0, Hi = diag{ℏi1, ℏi2, · · · , ℏin} ∈ R
n×n > 0 (i = 1, 2) satisfying LMIs (3.2)

and (3.3) and Ω∗(H(t), Ḣ(t)) < 0 for p ∈ N, (κ1(t), κ2(t)) ∈ Ω1 and κ̇1(t) = µ1, κ̇2(t) = µ2, where
Ωp∗(H(t), Ḣ(t)) is given by taking P2 = 0 and P3 = 0 of Ωp(H(t), Ḣ(t)) in Theorem 1.

4. A numerical example

A numerical example presented in this part aims to reveal the validity and preponderance of the
proposed methods.

Example 1. Consider delayed MNN (2.2) with:

C(t) =
[

c11(x1(t)) c12(x1(t))
c21(x2(t)) −1.1

]
, D(t) =

[
−0.01 d12(x1(t))

d21(x2(t)) d22(x2(t))

]
,

W(t) = diag{w1(x1(t)), w2(x1(t))}, K1 = diag{0.9, 0.9}, K2 = diag{−0.1, − 0.1},
w1(x1(t)) ∈ {5, 4}, w2(x1(t)) ∈ {4, 5}, c11(x1(t)) ∈ {0.5, 0.3}, c12(x1(t)) ∈ {1.4, 1.6},
c21(x2(t)) ∈ {−0.7,−0.3}, d12(x1(t)) ∈ {0.3, 0.6}, d21(x2(t)) ∈ {−0.3,−0.2}, d22(x2(t)) ∈ {0.09, 0.1}.

The analysis of extended dissipativity for delayed MNN (2.1) is covered in this example. The
dissipativity, the passivity, the H∞ performance and the L2−L∞ performance are united by the extended
dissipativity.

Choosing κ1M = 0.4, κ2M = 0.2, µ1 = 0.2 and µ2 = 0.1, specifically,
1) Q, S, R−dissipativity: Let ℶ1 = Q, ℶ2 = S, ℶ3 = R − γ0I, ℶ4 = 0, the allowable maximum

dissipativity level γ∗0 that pledge MNN (2.1) strictly Q, S, R − γ− dissipative is displayed in Table 1.
2) H∞ performance: When ℶ1 = −I, ℶ2 = 0, ℶ3 = γ

2I, ℶ4 = 0 , the H∞ performance is obtained
and given in Table 2.
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3) Passivity: By choosing ℶ1 = 0, ℶ2 = I, ℶ3 = γI, ℶ4 = 0, the passivity performance is derived
and the allowable minimum passivity performance γ∗ is given in Table 3.

4) l2 − l∞ performance: When ℶ1 = 0, ℶ2 = 0, ℶ3 = γ
2I, ℶ4 = I , the l2 − l∞ performance is obtained

and the allowable minimum l2 − l∞ performance γ∗ is given in Table 4.
Choosing g(x(t)) = [0.9tanh(t), 0.9tanh(t)], x(0) = [0.1,−0.1]T, κ1(t) = 0.2sin(t) + 0.2, κ2(t) =

−0.1cos(t) + 0.1. In this example, four performance derived by this paper and Theorem 3.1 [28] are
displayed in Tables 1–4, respectively. If the system is dissipative, then it must be asymptotic stable.
The state trajectory simulation figure is depicted in Figure 1. As can be seen from Figure 1, the final
state of the MNNs (2.1) converges to zero, verifying the aymptotically stability of the simulated MNN.
The outcomes of this study are superior to those of Theorem 3.1 [28], as seen in Tables 1–4, which
demonstrates the merits of the analysis strategy proposed in this study.

Table 1. Maximum dissipativity performance γ∗0. Table 2. Minimum H∞ performance γ∗.
Criteria κ1M = 0.4, κ2M = 0.2 Criteria κ1M = 0.4, κ2M = 0.2

Theorem 1 0.1488 Theorem 1 0.6805
Theorem 2 0.1488 Theorem 2 0.6777

Theorem 3.1 [28] 0.0072 Theorem 3.1 [28] 2.6455

Table 3. Minimum passivity performance γ∗. Table 4 Minimum l2 − l∞ performance γ∗.
Criteria κ1M = 0.4, κ2M = 0.2 Criteria κ1M = 0.4, κ2M = 0.2

Theorem 1 0.2313 Theorem 1 0.6685
Theorem 2 0.2313 Theorem 2 0.6637

Theorem 3.1 [28] 2.0949 Theorem 3.1 [28] –
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t/s
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Figure 1. The state trajectory of system (2.1) with ω(t) = 0.

5. Conclusions

We have explored the extended dissipativity analysis of MNNs with two additive time-delays. To
consider the effects of these two delays more comprehensively, the DDI method is used to build a
novel augmented LKF. When taking the derivative of the constructed LKF, its negative definite
condition not only contains some linear terms about delays, but also contains some square terms and
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cubic terms about delay. Obviously, this condition contains more information about time delays, but
cannot be solved directly. Then, by utilizing the inequality technique, some less conservative extended
dissipativity criteria have been firsthand gained in terms of LMIs. Finally, an example has been
provided to prove the viability of our presented approaches. From the work we have done, in future
work, the study of extended dissipative state estimation for MNNs is our main research direction.
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