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1. Introduction and main results

In this paper, we consider the two-dimensional viscous, compressible and heat conducting
magnetohydrodynamic equations in the Eulerian coordinates (see [1])

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇P = µ△u + (µ + λ)∇(divu) + H · ∇H − 1

2∇|H|
2,

cv ((ρθ)t + div(ρuθ)) + Pdivu = κ∆θ + λ(divu)2 + ν|curlH|2 + 2µ|D(u)|2,
Ht + u · ∇H − H · ∇u + Hdivu = ν∆H, divH = 0.

(1.1)

Here x = (x1, x2) ∈ Ω is the spatial coordinate, Ω is a bounded smooth domain in R2, t ≥ 0 is the
time, and the unknown functions ρ = ρ(x, t), θ = θ(x, t), u = (u1, u2)(x, t) and H = (H1,H2)(x, t)
denote, respectively, the fluid density, absolute temperature, velocity and magnetic field. In addition,
the pressure P is given by

P(ρ) = Rθρ, (R > 0),
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where R is a generic gas constant. The deformation tensor D(u) is defined by

D(u) =
1
2

(∇u + (∇u)tr).

The shear viscosity µ and the bulk one λ satisfy the hypotheses as follows

µ > 0, µ + λ ≥ 0.

Positive constants cv, κ and ν represent, respectively, the heat capacity, heat conductivity and magnetic
diffusivity coefficient.

The initial condition and boundary conditions for Eq (1.1) are given as follows

(ρ, θ, u,H)(x, t = 0) = (ρ0, θ0, u0,H0), (1.2)

∂θ

∂n
= 0, u = 0, H · n = 0, curlH = 0, on ∂Ω, (1.3)

where n denotes the unit outward normal vector of ∂Ω.

Remark 1.1. The boundary condition imposed on H (1.3) is physical and means that the container is
perfectly conducting, see [1–4].

In the absence of electromagnetic effect, namely, in the case of H ≡ 0, the MHD system reduces to
the Navier-Stokes equations. Due to the strong coupling and interplay interaction between the fluid
motion and the magnetic field, it is rather complicated to investigate the well-posedness and
dynamical behaviors of MHD system. There are a huge amount of literature on the existence and
large time behavior of solutions to the Navier-Stokes system and MHD one due to the physical
importance, complexity, rich phenomena and mathematical challenges, see [1,5–26] and the reference
therein. However, many physically important and mathematically fundamental problems are still open
due to the lack of smoothing mechanism and the strong nonlinearity. When the initial density contain
vacuum states, the local large strong solutions to Cauchy problem of 3D full MHD equations and 2D
isentropic MHD system have been obtained, respectively, by Fan-Yu [5] and Lü-Huang [6]. For the
global well-posedness of strong solutions, Li-Xu-Zhang [7] and Lü-Shi-Xu [8] established the global
existence and uniqueness of strong solutions to the 3D and 2D MHD equations, respectively, provided
the smooth initial data are of small total energy. In particular, the initial density can have compact
support in [7, 8]. Furthermore, Hu-Wang [9, 10] and Fan-Yu [11] proved the global existence of
renormalized solutions to the compressible MHD equations for general large initial data. However, it
is an outstanding challenging open problem to establish the global well-posedness for general large
strong solutions with vacuum.

Therefore, it is important to study the mechanism of blow-up and structure of possible singularities
of strong (or smooth) solutions to the compressible MHD system (1.1). The pioneering work can be
traced to Serrin’s criterion [12] on the Leray-Hopf weak solutions to the 3D incompressible Navier-
Stokes equations, that is

lim
t→T ∗
∥u∥Ls(0,t; Lr) = ∞, for

3
r
+

2
s
= 1, 3 < r ≤ ∞, (1.4)
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where T ∗ is the finite blow up time. Later, He-Xin [13] established the same Serrin’s criterion (1.4) for
strong solutions to the incompressible MHD equations.

First of all, we recall several known blow-up criteria for the compressible Navier-Stokes equations.
In the isentropic case, Huang-Li-Xin [14] established the Serrin type criterion as follows

lim
t→T ∗

(
∥u∥Ls(0,t; Lr) + ∥divu∥L1(0,t; L∞)

)
= ∞, for

3
r
+

2
s
= 1, 3 < r ≤ ∞. (1.5)

For the full compressible Navier-Stokes equations, Fan-Jiang-Ou [15] obtained that

lim
t→T ∗

(
∥θ∥L∞(0,t; L∞) + ∥∇u∥L1(0,t; L∞)

)
= ∞, (1.6)

under the condition
7µ > λ. (1.7)

Later, the restriction (1.7) was removed in Huang-Li-Xin [16]. Recently, Wang [17] established a
blow-up criterion for the initial boundary value problem (IBVP) on a smooth bounded domain in R2,
namely,

lim
t→T ∗
∥divu∥L1(0,t; L∞) = ∞. (1.8)

Then, let’s return to the compressible MHD system (1.1). Under the three-dimensional isentropic
condition, Xu-Zhang [18] founded the same criterion (1.5) as [14]. For the three-dimensional full
compressible MHD system, the criterion (1.6) is also established by Lu-Du-Yao [19] under the
condition

µ > 4λ. (1.9)

Soon, the restriction (1.9) was removed by Chen-Liu [20]. Later, for the Cauchy problem and the IBVP
of three-dimensional full compressible MHD system, Huang-Li [21] proved that

lim
t→T ∗

(
∥u∥Ls(0,t; Lr) + ∥ρ∥L∞(0,t; L∞)

)
= ∞, for

3
r
+

2
s
≤ 1, 3 < r ≤ ∞. (1.10)

Recently, Fan-Li-Nakamura [22] extended the results of [17] to the MHD system and established a
blow-up criterion which depend only on H and divu as follows

lim
t→T ∗

(
∥H∥L∞(0,t; L∞) + ∥divu∥L1(0,t; L∞)

)
= ∞. (1.11)

In fact, if H ≡ 0 in (1.11), the criterion (1.11) becomes (1.8).
The purpose of this paper is to loosen and weaken the regularity of H required in the blow-up

criterion (1.11) for strong solutions of the IBVP (1.1)–(1.3).
In this paper, we denote ∫

·dx ≜
∫
Ω

·dx.

Furthermore, for s ≥ 0 and 1 ≤ r ≤ ∞, we define the standard Lebesgue and Sobolev spaces as followsLr = Lr(Ω), W s,r = W s,r(Ω), H s = W s,2,

W s,r
0 = { f ∈ W s,r| f = 0 on ∂Ω}, H s

0 = W s,2
0 .
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To present our results, we first recall the local existence theorem of the strong solution. Fan-Yu [5]
attained the local existence and uniqueness of strong solution with full compressible MHD system in
R3. In fact, when Ω is a bounded domain in R2, the method applied in [5, 23] can also be used to the
case here. The corresponding result can be expressed as follows.

Theorem 1.1. (Local existence theorem) For q > 2, assume that the initial data (ρ0, θ0, u0,H0) satisfies0 ≤ ρ0 ∈ W1,q, 0 ≤ θ0 ∈ H2, u0 ∈ H1
0 ∩ H2, H0 ∈ H2, divH0 = 0,

∂θ0
∂n |∂Ω = 0, u0|∂Ω = 0, H0 · n|∂Ω = curlH0|∂Ω = 0,

(1.12)

and the compatibility conditions as follows

−µ△u0 − (µ + λ)∇divu0 + R∇(ρ0θ0) − H0 · ∇H0 +
1
2
∇|H0|

2 = ρ1/2
0 g1, (1.13)

−κ△θ0 − 2µ|D(u0)|2 − λ(divu0)2 − ν(curlH0)2 = ρ1/2
0 g2, (1.14)

for some g1, g2 ∈ L2. Then there exists a time T0 > 0 such that the IBVP (1.1)–(1.3) has a unique
strong solution (ρ, θ, u,H) on Ω × (0,T0] satisfying that

0 ≤ ρ ∈ C([0,T0]; W1,q), ρt ∈ C([0,T0]; Lq),
(u, θ,H) ∈ C([0,T0]; H2) ∩ L2(0,T0; W2,q), θ ≥ 0,
(ut, θt,Ht) ∈ L2(0,T0; H1), (

√
ρut,
√
ρθt,Ht) ∈ L∞(0,T0; L2).

(1.15)

Then, our main result is stated as follows.

Theorem 1.2. Under the assumption of Theorem 1.1 , suppose (ρ, θ, u,H) is the strong solution of the
IBVP (1.1)–(1.3) obtained in Theorem 1.1. If T ∗ < ∞ is the maximum existence time of the strong
solution, then

lim
t→T ∗

(
∥H∥L∞(0,t;Lb) + ∥divu∥L1(0,t;L∞)

)
= ∞, (1.16)

for any b > 2.

Remark 1.2. Compared to the blow-up criterion (1.11) attained in [22], Theorem 1.2 demonstrates
some new message about the blow-up mechanism of the MHD system (1.1)–(1.3). Particularly, beside
the same regularity on ∥divu∥L1(0,t;L∞) as (1.11) in [22], our result (1.16) improves the regularity on
∥H∥L∞(0,t;L∞) by relaxing it to ∥H∥L∞(0,t;Lb) for any b > 2.

The rest of the paper is arranged as follows. We state several basic facts and key inequalities which
are helpful for later analysis in Section 2. Sections 3 is devoted to a priori estimate which is required
to prove Theorem 1.2, while we give its proof in Section 4.

2. Preliminaries

In this section, we will recall several important inequalities and well-known facts. First of all,
Gagliardo-Nirenberg inequality (see [27]) is described as follows.
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Lemma 2.1. (Gagliardo-Nirenberg) For q ∈ (1,∞), r ∈ (2,∞) and s ∈ [2,∞), there exists some
generic constant C > 0 which may depend only on q, r and s such that for f ∈ C∞0 (Ω), we have

∥ f ∥sLs(Ω) ≤ C∥ f ∥2L2(Ω)∥∇ f ∥s−2
L2(Ω), (2.1)

∥g∥L∞(Ω) ≤ C∥g∥q(r−2)/(2r+q(r−2))
Lq(Ω) ∥∇g∥2r/(2r+q(r−2))

Lr(Ω) . (2.2)

Then, we give several regularity results for the following Lamé system with Dirichlet boundary
condition (see [24]) LU ≜ µ∆U + (µ + λ)∇divU = F, x ∈ Ω,

U = 0, x ∈ ∂Ω.
(2.3)

We assume that U ∈ H1
0 is a weak solution of the Lamé system, due to the uniqueness of weak solution,

it could be denoted by U = L−1F.

Lemma 2.2. Let r ∈ (1,∞), then there exists some generic constant C > 0 depending only on µ, λ, r
and Ω such that

• If F ∈ Lr, then
∥U∥W2,r(Ω) ≤ C∥F∥Lr(Ω). (2.4)

• If F ∈ W−1,r (i.e., F = div f with f = ( fi j)2×2, fi j ∈ Lr), then

∥U∥W1,r(Ω) ≤ C∥ f ∥Lr(Ω). (2.5)

Furthermore, for the endpoint case, if fi j ∈ L2 ∩ L∞, then ∇U ∈ BMO(Ω) and

∥∇U∥BMO(Ω) ≤ C∥ f ∥L∞(Ω) +C∥ f ∥L2(Ω). (2.6)

The following Lp-bound for elliptic systems, whose proof is similar to that of [28, Lemma 12],
is a direct consequence of the combination of a well-known elliptic theory due to Agmon-Douglis-
Nirenberg [29, 30] with a standard scaling procedure.

Lemma 2.3. For k ≥ 0 and p > 1, there exists a constant C > 0 depending only on k and p such that

∥∇k+2v∥Lp(Ω) ≤ C∥∆v∥Wk,p(Ω), (2.7)

for every v ∈ Wk+2,p(Ω) satisfying either

v · n = 0, rotv = 0, on ∂Ω,

or

v = 0, on ∂Ω.

Finally, we give two critical Sobolev inequalities of logarithmic type, which are originally due to
Brezis-Gallouet [31] and Brezis-Wainger [32].

Lemma 2.4. Let Ω ⊂ R2 be a bounded Lipschitz domain and f ∈ W1,q with q > 2, then it holds that

∥ f ∥L∞(Ω) ≤ C∥ f ∥BMO(Ω) ln
(
e + ∥ f ∥W1,q(Ω)

)
+C, (2.8)

with a constant C depending only on q.

Lemma 2.5. Let Ω ⊂ R2 be a smooth domain and f ∈ L2(s, t; H1
0 ∩W1,q) with q > 2, then it holds that

∥ f ∥2L2(s,t;L∞) ≤ C∥ f ∥2L2(s,t;H1) ln
(
e + ∥ f ∥L2(s,t;W1,q)

)
+C, (2.9)

with a constant C depending only on q.
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3. A priori estimate

Let (ρ, θ, u,H) be the strong solution of the IBVP (1.1)–(1.3) obtained in Theorem 1.1. Assume
that (1.16) is false, namely, there exists a constant M > 0 such that

lim
t→T ∗

(
∥H∥L∞(0,t;Lb) + ∥divu∥L1(0,t;L∞)

)
≤ M < ∞, for any b > 2. (3.1)

First of all, the upper bound of the density can be deduced from (1.1)1 and (3.1),
see [14, Lemma 3.4].

Lemma 3.1. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t ∈ [0,T ∗),

sup
0≤s≤t
∥ρ∥L1∩L∞ ≤ C, (3.2)

where (and in what follows) C represents a generic positive constant depending only on µ, λ, cv, κ, ν,
q, b, M, T ∗ and the initial data.

Then, we give the following estimates, which are similar to the energy estimates.

Lemma 3.2. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t ∈ [0,T ∗),

sup
0≤s≤t

(
∥ρθ∥L1 + ∥ρ1/2u∥2L2 + ∥H∥2L2

)
+

∫ t

0

(
∥∇u∥2L2 + ∥∇H∥2L2

)
ds ≤ C. (3.3)

Proof. First, using the standard maximum principle to (1.1)3 together with θ0 ≥ 0 (see [15, 25]) gives

inf
Ω×[0,t]

θ(x, t) ≥ 0. (3.4)

Then, utilizing the standard energy estimates to (1.1) shows

sup
0≤s≤t

(
∥ρθ∥L1 + ∥ρ1/2u∥2L2 + ∥H∥2L2

)
≤ C. (3.5)

Next, adding (1.1)2 multiplied by u to (1.1)4 multiplied by H, and integrating the summation by
parts, we have

1
2

d
dt

(
∥ρ1/2u∥2L2 + ∥H∥2L2

)
+ µ∥∇u∥2L2 + ν∥∇H∥2L2 + (µ + λ)∥divu∥2L2 ≤ C∥ρθ∥L1∥divu∥L∞ ,

(3.6)

where one has used the following well-known fact

∥∇H∥L2 ≤ C∥curlH∥L2 , (3.7)

due to divH = 0 and H · n|∂Ω = 0.
Hence, the combination of (3.6) with (3.1), (3.4) and (3.5) yields (3.3). This completes the proof of

Lemma 3.2. □
The following lemma shows the estimates on the spatial gradients of both the velocity and the

magnetic, which are crucial for obtaining the higher order estimates of the solution.
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Lemma 3.3. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t ∈ [0,T ∗),

sup
0≤s≤t

(
∥ρ1/2θ∥2L2 + ∥∇u∥2L2 + ∥curlH∥2L2

)
+

∫ t

0

(
∥ρ1/2u̇∥2L2 + ∥∇θ∥

2
L2 + ∥Ht∥

2
L2 + ∥∆H∥2L2

)
ds ≤ C,

(3.8)

where ḟ ≜ u · ∇ f + ft represents the material derivative of f .

Proof. Above all, multiplying the equation (1.1)3 by θ and integrating by parts yield

cv

2
d
dt
∥ρ1/2θ∥2L2 + κ∥∇θ∥

2
L2 ≤ ν

∫
θ|curlH|2dx +C

∫
θ|∇u|2dx +C∥ρ1/2θ∥2L2∥divu∥L∞ . (3.9)

Firstly, integration by parts together with (3.1) and Gagliardo-Nirenberg inequality implies that

ν

∫
θ|curlH|2dx ≤C∥∇θ∥L2∥H∥Lb∥∇H∥Lb̃ +C∥θ∥Lb̃∥H∥Lb∥∇2H∥L2

≤C∥∇θ∥L2∥∇H∥Lb̃ +C∥∇2H∥L2(∥∇θ∥L2 + 1)
≤ε∥∇θ∥2L2 +C∥∇2H∥2L2 +C(∥∇H∥2L2 + 1),

(3.10)

where b̃ ≜ 2b
b−2 > 2 satisfies 1/b + 1/b̃ = 1/2, and in the second inequality where one has applied the

estimate as follows
∥θ∥Lr ≤ C(∥∇θ∥L2 + 1), for any r ≥ 1. (3.11)

Indeed, denote the average of θ by θ̄ = 1
|Ω|

∫
θdx, it follows from (3.2) and (3.3) that

θ̄

∫
ρdx ≤

∫
ρθdx +

∫
ρ|θ − θ̄|dx ≤ C +C∥∇θ∥L2 , (3.12)

which together with Poincaré inequality yields

∥θ∥L2 ≤C(1 + ∥∇θ∥L2). (3.13)

And consequently, (3.11) holds.
Secondly, according to [17,21,33], Multiplying equations (1.1)2 by uθ and integrating by parts yield

µ

∫
θ|∇u|2dx + (µ + λ)

∫
θ|divu|2dx

= −

∫
ρu̇ · θudx − µ

∫
u · ∇θ · ∇udx − (µ + λ)

∫
divuu · ∇θdx

−

∫
∇P · θudx +

∫
H · ∇H · θudx −

1
2

∫
∇|H|2 · θudx

≜
6∑

i=1

Ii.

(3.14)
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Using the same arguments in [17, 33], we have
4∑

i=1

Ii ≤η∥ρ
1/2u̇∥2L2 + ε∥∇θ∥

2
L2 +C∥ρ1/2θ∥2L2∥divu∥L∞

+C
(
∥ρ1/2θ∥2L2 + ∥∇u∥2L2

)
∥u∥2L∞ .

(3.15)

Besides, according to (3.1) and (3.11) yields
6∑

i=5

Ii ≤C∥θ∥Lb̃∥H∥Lb∥∇H∥L2∥u∥L∞ ≤ ε∥∇θ∥2L2 +C∥∇H∥2L2∥u∥2L∞ +C. (3.16)

Substituting (3.10), (3.15) and (3.16) into (3.9), and choosing ε suitably small, we have

cv
d
dt
∥ρ1/2θ∥2L2 + κ∥∇θ∥

2
L2

≤ 2η∥ρ1/2u̇∥2L2 +C1∥∆H∥2L2

+C
(
∥ρ1/2θ∥2L2 + ∥∇u∥2L2 + ∥∇H∥2L2 + 1

) (
∥divu∥L∞ + ∥u∥2L∞ + 1

)
,

(3.17)

where one has applied the key fact as follows

∥∇2H∥L2 ≤ C∥∆H∥L2 . (3.18)

Furthermore, it follows from (3.1) and (1.1)4 that

∥Ht∥
2
L2 + ν

2∥∆H∥2L2 + ν
d
dt
∥curlH∥2L2

≤ C∥∇u∥L2∥∇u∥L2b̃∥H∥Lb∥H∥L2b̃ +C∥∇H∥2L2∥u∥2L∞
≤ C∥∇u∥L2∥∇u∥L2b̃(∥∇H∥L2 + 1) +C∥∇H∥2L2∥u∥2L∞ .

(3.19)

In order to estimate ∥∇u∥L2b̃ , according to [24, 26], we divide u into v and w. More precisely, let

u = v + w, and v = L−1∇P, (3.20)

then we get

Lw = ρu̇ − H · ∇H +
1
2
∇|H|2. (3.21)

And hence, Lemma 2.2 implies that for any r > 1,

∥∇v∥Lr ≤ C∥θρ∥Lr , (3.22)

and
∥∇2w∥Lr ≤ C∥ρu̇∥Lr +C∥|H||∇H|∥Lr . (3.23)

Consequently, it follows from Gagliardo-Nirenberg inequality, (3.2), (3.11), (3.20), (3.22)
and (3.23) that for any s ≥ 2,

∥∇u∥Ls ≤C∥∇v∥Ls +C∥∇w∥Ls

≤C∥ρθ∥Ls +C∥∇w∥L2 +C∥∇w∥2/s
L2 ∥∇

2w∥1−2/s
L2

≤C∥ρθ∥Ls +C∥∇w∥L2 +C∥∇w∥2/s
L2 (∥ρu̇∥L2 + ∥|H||∇H|∥L2)1−2/s

≤η∥ρ1/2u̇∥L2 +C∥ρθ∥Ls +C∥∇w∥L2 +C∥|H||∇H|∥L2

≤η∥ρ1/2u̇∥L2 +C∥∇u∥L2 +C∥∇θ∥L2 +C∥∇H∥L2 +C∥∆H∥L2 +C.

(3.24)
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Putting (3.24) into (3.19) and utilizing Young inequality lead to

∥Ht∥
2
L2 +

ν2

2
∥∆H∥2L2 + ν

d
dt
∥curlH∥2L2

≤ ε∥∇θ∥2L2 + η∥ρ
1/2u̇∥2L2 +C

(
∥∇u∥2L2 + ∥u∥2L∞ + 1

) (
∥∇H∥2L2 + 1

)
.

(3.25)

Adding (3.25) multiplied by 2ν−2(C1 + 1) to (3.17) and choosing ε suitably small, we have

κ

2
∥∇θ∥2L2 + 2ν−2(C1 + 1)∥Ht∥

2
L2 + ∥∆H∥2L2

+
d
dt

(
cv∥ρ

1/2θ∥2L2 + 2ν−1(C1 + 1)∥curlH∥2L2

)
≤ C

(
∥ρ1/2θ∥2L2 + ∥∇u∥2L2 + ∥∇H∥2L2 + 1

) (
∥∇u∥2L2 + ∥u∥2L∞ + ∥divu∥L∞ + 1

)
+Cη∥ρ1/2u̇∥2L2 .

(3.26)

Then, multiplying (1.1)2 by ut and integrating by parts, we get

1
2

d
dt

(
µ∥∇u∥2L2 + (µ + λ)∥divu∥2L2

)
+ ∥ρ1/2u̇∥2L2

≤ η∥ρ1/2u̇∥2L2 +C∥∇u∥2L2∥u∥2L∞

+
d
dt

(∫
Pdivudx +

1
2

∫
|H|2divudx −

∫
H · ∇u · Hdx

)
−

∫
Ptdivudx −

∫
H · Htdivudx +

∫
Ht · ∇u · Hdx +

∫
H · ∇u · Htdx.

(3.27)

Notice that ∫
Ptdivudx =

∫
Ptdivvdx +

∫
Ptdivwdx, (3.28)

integration by parts together with (3.20) leads to∫
Ptdivvdx =

1
2

d
dt

(
(µ + λ)∥divv∥2L2 + µ∥∇v∥2L2

)
. (3.29)

Moreover, define

E ≜ cvθ +
1
2
|u|2,

according to (1.1) that E satisfies

(ρE)t + div(ρuE + Pu) =∆
(
κθ +

1
2
µ|u|2

)
+ µdiv(u · ∇u) + λdiv(udivu)

+ H · ∇H · u −
1
2

u · ∇|H|2 + ν|curlH|2.
(3.30)
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Motivated by [17, 21], it can be deduced from (3.30) that

−

∫
Ptdivwdx

= −
R
cv

(∫
(ρE)tdivwdx −

∫
1
2

(ρ|u|2)tdivwdx
)

= −
R
cv

{∫ (
(cv + R)ρθu +

1
2
ρ|u|2u − κ∇θ − µ∇u · u − µu · ∇u − λudivu

)
· ∇divwdx

−
1
2

∫
ρ|u|2u · ∇divwdx −

∫
ρu̇ · udivwdx

−

∫
divHH · udivwdx −

∫
H · ∇u · Hdivwdx −

∫
(H · u)H · ∇divwdx

+
1
2

∫
divu|H|2divwdx +

1
2

∫
|H|2u · ∇divwdx

−ν

∫
∇divw × curlH · Hdx − ν

∫
curl(curlH) · Hdivwdx

}
≤ Cη∥ρ1/2u̇∥2L2 +C∥∇θ∥2L2 +C∥∆H∥2L2

+C
(
∥∇u∥2L2 + ∥u∥2L∞ + 1

) (
∥ρ1/2θ∥2L2 + ∥∇u∥2L2 + ∥∇H∥2L2 + 1

)
.

(3.31)

Additionally, combining (3.1) and (3.24) yields∫
Ht · ∇u · Hdx +

∫
H · ∇u · Htdx −

∫
H · Htdivudx

≤ C∥Ht∥
2
L2 +C∥∇u∥2

Lb̃∥H∥
2
Lb

≤ Cη∥ρ1/2u̇∥2L2 +C
(
∥Ht∥

2
L2 + ∥∇θ∥

2
L2 + ∥∇u∥2L2 + ∥∇H∥2L2 + ∥∆H∥2L2 + 1

)
.

(3.32)

Substituting (3.28), (3.29), (3.31) and (3.32) into (3.27) yields

∥ρ1/2u̇∥2L2 +
d
dt

(
µ

2

(
∥∇u∥2L2 + ∥∇v∥2L2

)
+
µ + λ

2

(
∥divu∥2L2 + ∥divv∥2L2

)
− A(t)

)
≤ C2

(
∥∇θ∥2L2 + ∥Ht∥

2
L2 + ∥∆H∥2L2

)
+Cη∥ρ1/2u̇∥2L2

+C
(
∥∇u∥2L2 + ∥u∥2L∞ + 1

) (
∥∇u∥2L2 + ∥∇H∥2L2 + ∥ρ

1/2θ∥2L2 + 1
)
,

(3.33)

where

A(t) ≜
1
2

∫
|H|2divudx +

∫
Pdivudx −

∫
H · ∇u · Hdx, (3.34)

satisfies
A(t) ≤

µ

4
∥∇u∥2L2 +C3

(
∥ρ1/2θ∥2L2 + ∥curlH∥2L2 + 1

)
. (3.35)

Recalling the inequality (3.26), let

C4 = min{2ν−2(C1 + 1),
κ

2
, 1}, C5 = min{2ν−1(C1 + 1), cv}, (3.36)
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adding (3.26) multiplied by C6 = max{C−1
4 (C2 + 1),C−1

5 (C3 + 1)} into (3.33) and choosing η suitably
small, we have

d
dt

Ã(t) +
1
2
∥ρ1/2u̇∥2L2 + ∥∇θ∥

2
L2 + ∥Ht∥

2
L2 + ∥∆H∥2L2

≤ C
(
∥ρ1/2θ∥2L2 + ∥∇u∥2L2 + ∥∇H∥2L2 + 1

) (
∥∇u∥2L2 + ∥u∥2L∞ + ∥divu∥L∞ + 1

)
,

(3.37)

where
Ã(t) ≜C6

(
cv∥ρ

1/2θ∥2L2 + 2ν−1(C1 + 1)∥curlH∥2L2

)
+
µ

2
(∥∇u∥2L2 + ∥∇v∥2L2) +

µ + λ

2
(∥divu∥2L2 + ∥divv∥2L2) − A(t),

(3.38)

satisfies
∥ρ1/2θ∥2L2 +

µ

4
∥∇u∥2L2 + ∥curlH∥2L2 −C

≤ Ã(t) ≤ C∥ρ1/2θ∥2L2 +C∥∇u∥2L2 +C∥curlH∥2L2 +C.
(3.39)

Finally, integrating (3.37) over (τ, t), along with (3.39) yields

ψ(t) ≤ C
∫ t

τ

(
∥∇u∥2L2 + ∥u∥2L∞ + ∥divu∥L∞ + 1

)
ψ(s)ds +Cψ(τ), (3.40)

where

ψ(t) ≜
∫ t

0

(
∥ρ1/2u̇∥2L2 + ∥∇θ∥

2
L2 + ∥Ht∥

2
L2 + ∥∆H∥2L2

)
ds

+ ∥ρ1/2θ∥2L2 + ∥∇u∥2L2 + ∥curlH∥2L2 + 1.
(3.41)

Combined with (3.1), (3.3) and Gronwall inequality implies that for any 0 < τ ≤ t < T ∗,

ψ(t) ≤ Cψ(τ) exp
{∫ t

τ

(
∥∇u∥2L2 + ∥u∥2L∞ + ∥divu∥L∞ + 1

)
ds

}
≤ Cψ(τ) exp

{∫ t

τ

∥u∥2L∞ds
}
.

(3.42)

Utilizing Lemma 2.5, we have

∥u∥2L2(τ,t;L∞) ≤ C∥u∥2L2(τ,t;H1) ln
(
e + ∥u∥L2(τ,t;W1,b)

)
+C. (3.43)

Combining (3.1), (3.2), (3.11), (3.22), (3.23) and Sobolev inequality leads to

∥u∥W1,b ≤ ∥v∥W1,b +C∥w∥W2,2b/(b+2)

≤ C∥ρu̇∥L2b/(b+2) +C∥ρθ∥Lb +C∥u∥L2 +C∥|H||∇H|∥L2b/(b+2)

≤ C∥ρ1/2∥Lb∥ρ1/2u̇∥L2 +C∥∇θ∥L2 +C∥∇u∥L2 +C∥H∥Lb∥∇H∥L2 +C

≤ C∥ρ1/2u̇∥L2 +C∥∇θ∥L2 +C∥∇u∥L2 +C∥∇H∥L2 +C,

(3.44)

this implies that
∥u∥L2(τ,t;W1,b) ≤Cψ1/2(t). (3.45)
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Substituting (3.45) into (3.43) indicates

∥u∥2L2(τ,t;L∞) ≤ C +C∥u∥2L2(τ,t;H1) ln (Cψ(t)) ≤ C + ln (Cψ(t))C7∥u∥2L2(τ,t;H1) . (3.46)

Using (3.3), one can choose some τ which is close enough to t such that

C7∥u∥2L2(τ,t;H1) ≤
1
2
, (3.47)

which together with (3.42) and (3.46) yields

ψ(t) ≤ Cψ2(τ) ≤ C. (3.48)

Noticing the definition of ψ in (3.41), we immediately have (3.8). The proof of Lemma 3.3 is
completed. □

Now, we show some higher order estimates of the solutions which are needed to guarantee the
extension of local solution to be a global one under the conditions (1.12)–(1.14) and (3.1).

Lemma 3.4. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t ∈ [0,T ∗),

sup
0≤s≤t

(∥ρ∥W1,q + ∥θ∥H2 + ∥u∥H2 + ∥H∥H2) ≤ C. (3.49)

Proof. First , it follows from (3.8), Gagliardo-Nirenberg and Poincaré inequalities that for 2 ≤ q < ∞,

∥u∥Lq + ∥H∥Lq ≤ C. (3.50)

Combining (1.1)4, (3.3), (3.8) and (3.18) yields

∥H∥H2 + ∥∇H∥2L4 ≤ C∥∇u∥L4 +C∥Ht∥L2 +C. (3.51)

Furthermore, it can be deduced from (3.8), (3.24), (3.50) and (3.51) that

∥∇u∥L4 ≤ C∥ρ1/2u̇∥L2 +C∥∇θ∥L2 +C∥Ht∥L2 +C. (3.52)

Then, according to (3.11) and Sobolev inequality, we get

∥θ∥2L∞ ≤ ε∥∇
2θ∥2L2 +C∥∇θ∥2L2 +C, (3.53)

which combined with (1.1)3 , (3.8), and choosing ε suitably small yield

∥θ∥2H2 ≤ C∥ρ1/2θ̇∥2L2 +C∥∇θ∥2L2 +C∥∇u∥4L4 +C∥∇H∥4L4 +C. (3.54)

Therefore, the combination of (3.51) and (3.52) yields

sup
0≤s≤t

(∥θ∥Lr + ∥∇θ∥L2 + ∥∇u∥L4 + ∥H∥H2 + ∥∇H∥L4) ≤ C, ∀ r ≥ 1. (3.55)

Together with (3.53) and (3.54) gives

sup
0≤s≤t

(∥θ∥H2 + ∥θ∥L∞) ≤ C. (3.56)
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Now, we bound ∥∇ρ∥W1,q and ∥u∥H2 . For r ∈ [2, q], it holds that

d
dt
∥∇ρ∥Lr ≤ C∥∇ρ∥Lr (∥∇u∥L∞ + 1) +C∥∇2u∥Lr

≤ C∥∇ρ∥Lr (∥∇v∥L∞ + ∥∇w∥L∞ + 1) +C∥∇2v∥Lr +C∥∇2w∥Lr

≤ C∥∇ρ∥Lr (∥∇v∥L∞ + ∥∇w∥L∞ + 1) +C∥∇2w∥Lr +C,

(3.57)

where in the last inequality one has applied the following fact

∥∇2v∥Lr ≤ C∥∇ρ∥Lr +C. (3.58)

Taking (3.2), (3.56), (3.58) and Lemmas 2.2–2.4, we get

∥∇v∥L∞ ≤ C ln(e + ∥∇ρ∥Lr ) +C. (3.59)

Putting (3.59) into (3.57), it can be deduced from Gronwall inequality that

∥∇ρ∥Lr ≤ C. (3.60)

Finally, let r = 2 in (3.60), according to Lemma 2.2, (3.50), (3.55) and (3.58) yields

∥u∥H2 ≤ C. (3.61)

Therefore, together with (3.55), (3.56), (3.60) and (3.61), we get (3.49). The proof of Lemma 3.4 is
completed. □

4. Proof of Theorem 1.2

With the priori estimates in Lemmas 3.1–3.4, we can prove Theorem 1.2.
Proof of Theorem 1.2. Assume that (1.16) is false, namely, (3.1) holds. Notice that the general constant
C in Lemmas 3.1–3.4 is independent of t, that is, all the priori estimates attained in Lemmas 3.1–3.4
are uniformly bounded for any t ≤ T ∗. Therefore, the function

(ρ, θ, u,H)(x,T ∗) ≜ lim
t→T ∗

(ρ, θ, u,H)(x, t)

satisfies the initial conditions (1.12) at t = T ∗.
Due to

(ρu̇, ρθ̇)(x,T ∗) = lim
t→T ∗

(ρu̇, ρθ̇) ∈ L2,

therefore

−µ△u − (µ + λ)∇divu + R∇(ρθ) − H · ∇H +
1
2
∇|H|2|t=T ∗ = ρ

1/2(x,T ∗)g1(x),

−κ△θ − 2µ|D(u)|2 − λ(divu)2 − ν(curlH)2|t=T ∗ = ρ
1/2(x,T ∗)g2(x),

with

g1(x) ≜

ρ−1/2(x,T ∗)(ρu̇)(x,T ∗), for x ∈ {x|ρ(x,T ∗) > 0},
0, for x ∈ {x|ρ(x,T ∗) = 0},
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and

g2(x) ≜

ρ−1/2(x,T ∗)(cvρθ̇ + Rθρdivu)(x,T ∗), for x ∈ {x|ρ(x,T ∗) > 0},
0, for x ∈ {x|ρ(x,T ∗) = 0},

satisfying g1, g2 ∈ L2. Thus, (ρ, θ, u,H)(x,T ∗) also satisfies (1.13) and (1.14).
Hence, Theorem 1.1 shows that we could extend the local strong solutions beyond T ∗, while taking

(ρ, θ, u,H)(x,T ∗) as the initial data. This contradicts the hypothesis of Theorem 1.2 that T ∗ is the
maximum existence time of the strong solution. This completes the proof of theorem 1.2. □

5. Conclusions

This paper concerns the blow-up criterion for the initial boundary value problem of the
two-dimensional full compressible magnetohydrodynamic equations in the Eulerian coordinates.
When the initial density allowed to vanish, and the magnetic field H satisfies the perfect conducting
boundary condition H · n = curlH = 0, we prove the blow-up criterion
lim
t→T ∗

(
∥H∥L∞(0,t;Lb) + ∥divu∥L1(0,t;L∞)

)
= ∞ for any b > 2, which depending on both H and divu.
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