Research article

A numerical study of swirling axisymmetric flow characteristics in a cylinder with suspended PEG based magnetite and oxides nanoparticles

  • † These two authors contributed equally and are co-first authors.
  • Received: 23 October 2022 Revised: 22 November 2022 Accepted: 26 November 2022 Published: 06 December 2022
  • MSC : 76-10, 76R10

  • For entire heat transfer practitioners from the last ten years, heat transmission performance in cooling and heating applications has become foremost concern. Hence, research towards innovative heat transference fluids is enormously powerful and stimulating. This study examines flow and thermal management in axisymmetric magneto hydrodynamic Polyethylene glycol (PEG) based hybrid nanofluid flow induced by a swirling cylinder. Flow and heat transfer is analyzed and compared for PEG+ Cu2O + MgO and PEG+Graphene+ Cu + Ag hybrid nanofluid flow. Shooting technique (R-K 4th order) is applied to work out the flow equations numerically. Simulated results are demonstrated via graphs. The computational results are validated with the published research work and found a modest concurrence. The foremost outcome of this investigation is found to be the axial, swirl and radial velocities in hybrid nanofluid are observed to decay with improvement in Reynolds number, nanofluid volume fraction and magnetic parameter. Platelet shaped nanoparticle colloidal suspension exhibit more decaying axial, swirl and radial velocity compared to spherical shaped nanoparticle colloidal suspension. It is detected that heat transmission rate is higher in PEG + Cu2O + MgO Hybrid nanofluid compared with PEG + Graphene + Cu + Ag Hybrid nanofluid. For cooling purpose one can adopt PEG+Cu2O + MgO hybrid nanofluid.

    Citation: C. S. K. Raju, S.V. Siva Rama Raju, S. Mamatha Upadhya, N. Ameer Ahammad, Nehad Ali Shah, Thongchai Botmart. A numerical study of swirling axisymmetric flow characteristics in a cylinder with suspended PEG based magnetite and oxides nanoparticles[J]. AIMS Mathematics, 2023, 8(2): 4575-4595. doi: 10.3934/math.2023226

    Related Papers:

  • For entire heat transfer practitioners from the last ten years, heat transmission performance in cooling and heating applications has become foremost concern. Hence, research towards innovative heat transference fluids is enormously powerful and stimulating. This study examines flow and thermal management in axisymmetric magneto hydrodynamic Polyethylene glycol (PEG) based hybrid nanofluid flow induced by a swirling cylinder. Flow and heat transfer is analyzed and compared for PEG+ Cu2O + MgO and PEG+Graphene+ Cu + Ag hybrid nanofluid flow. Shooting technique (R-K 4th order) is applied to work out the flow equations numerically. Simulated results are demonstrated via graphs. The computational results are validated with the published research work and found a modest concurrence. The foremost outcome of this investigation is found to be the axial, swirl and radial velocities in hybrid nanofluid are observed to decay with improvement in Reynolds number, nanofluid volume fraction and magnetic parameter. Platelet shaped nanoparticle colloidal suspension exhibit more decaying axial, swirl and radial velocity compared to spherical shaped nanoparticle colloidal suspension. It is detected that heat transmission rate is higher in PEG + Cu2O + MgO Hybrid nanofluid compared with PEG + Graphene + Cu + Ag Hybrid nanofluid. For cooling purpose one can adopt PEG+Cu2O + MgO hybrid nanofluid.



    加载中


    [1] P. M. Kumar, D. Sudarvizhi, P. M. J. Stalin, A. Aarif, R. Abhinandhana, A. Renuprasanth, N. et al., Thermal characteristics analysis of a phase change material under the influence of nanoparticles, Mater. Today: P., 45 (2021), 7876–7880. https://doi.org/10.1016/j.matpr.2020.12.505 doi: 10.1016/j.matpr.2020.12.505
    [2] O. K. Koriko, K. S. Adegbie, I. L. Animasaun, M. A. Olotu, Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: the case of blood-gold Carreau nanofluid and dusty fluid, Numer. Methods Part. Differ. Equ., 7 (2021), 1–15. https://doi.org/10.1002/num.22754 doi: 10.1002/num.22754
    [3] H. Faraji, M. El Alami, A. Arshad, Investigating the effect of single and hybrid nanoparticles on melting of phase change material in a rectangular enclosure with finite heat source, Int. J. Energ. Res., 45 (2021), 4314–4330. https://doi.org/10.1002/er.6095 doi: 10.1002/er.6095
    [4] A. N. Sadr, M. Shekaramiz, M. Zarinfar, A. Esmaily, H. Khoshtarash, D. Toghraie, Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder, J. Energy Storage, 47 (2022), 103606. https://doi.org/10.1016/j.est.2021.103606 doi: 10.1016/j.est.2021.103606
    [5] N. A. Shah, A. Wakif, E. R. El-Zahar, T. Thumma, S.-J. Yook, Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana-Baleanu time-fractional integral, Alexandria Eng. J., 61 (2022), 10045–10053. https://doi.org/10.1016/j.aej.2022.03.048 doi: 10.1016/j.aej.2022.03.048
    [6] R. K. Sahu, S. H. Somashekhar, P. V. Manivannan, Investigation on copper nanofluid obtained through micro electrical discharge machining for dispersion stability and thermal conductivity, Procedia Eng., 64 (2013), 946–955. https://doi.org/10.1016/j.proeng.2013.09.171 doi: 10.1016/j.proeng.2013.09.171
    [7] X. Zhang, Z. Huang, B. Ma, R. Wen, X. Min, Y. Huang, et al., Preparation and performance of novel form-stable composite phase change materials based on polyethylene glycol/white carbon black assisted by superultrasound-assisted, Thermochim. Acta., 638 (2016), 35–43. https://doi.org/10.1016/j.tca.2016.06.012 doi: 10.1016/j.tca.2016.06.012
    [8] D. Cabaleiro, S. Hamze, J. Fal, M. A. Marcos, P. Estellxe, G. Zyła, Thermal and physical characterization of PEG phase change materials enhanced by carbon-based nanoparticles, Nanomaterials, 10 (2020), 1168.
    [9] M. A. Marcos, D. Cabaleiro, M. J.G. Guimarey, M. J. P. Comu˜nas, L. Fedele, J. Fernxandez, et al., PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets, Nanomaterials, 8 (2018), 16.
    [10] S. M. Upadhya, C. S. K. Raju, K. Vajravelu, S. Sathy, U. Farooq, Significance of radiative magnetohydrodynamic flow of suspended PEG based ZrO2 and MgO2 within a conical gap, Wave. Random Complex, 2022, 1–19. https://doi.org/10.1080/17455030.2021.2020372 doi: 10.1080/17455030.2021.2020372
    [11] S. M. Upadhya, S. S. R. Raju, C. S. K. Raju, N. A. Shah, J. D. Chung, Importance of entropy generation on Casson, Micropolar and Hybrid magneto-nanofluids in a suspension of cross diffusion, Chinese J. Phys., 77 (2022), 1080–1101. https://doi.org/10.1016/j.cjph.2021.10.016 doi: 10.1016/j.cjph.2021.10.016
    [12] M. Dinesh Kumar, C. S. K. Raju, K. Sajjan, E. R. El-Zahar, N. A. Shah, Linear and quadratic convection on 3D flow with transpiration and hybrid nanoparticles, Int. Commun. Heat Mass, 134 (2022), 105995. https://doi.org/10.1016/j.icheatmasstransfer.2022.105995 doi: 10.1016/j.icheatmasstransfer.2022.105995
    [13] N. A. Shah, S. J. Yook, O. Tosin, Analytic simulation of thermophoretic second grade fluid flow past a vertical surface with variable fluid characteristics and convective heating, Sci. Rep., 12 (2022), 1–17. https://doi.org/10.1038/s41598-022-09301-x doi: 10.1038/s41598-022-09301-x
    [14] G. K. Ramesh, J. K. Madhukesh, R. Das, N. A. Shah, S. J. Yook, Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink, Wave. Random Complex, 2022, 1–21. https://doi.org/10.1080/17455030.2022.2053237 doi: 10.1080/17455030.2022.2053237
    [15] S. Saleem, I. L. Animasaun, S. J. Yook, Q. M. Al-Mdallal, N. A. Shah, M. Faisal, Insight into the motion of water conveying three kinds of nanoparticles on a horizontal surface: significance of thermo-migration and Brownian motion of different nanoparticles, Surf. Interfaces, 30 (2022), 101854. https://doi.org/10.1016/j.surfin.2022.101854 doi: 10.1016/j.surfin.2022.101854
    [16] F. Shah, S. A. Khan, K. Al‐Khaled, M. I. Khan, S. U. Khan, N. A. Shah, et al., Impact of entropy optimized Darcy‐Forchheimer flow in MnZnFe2O4 and NiZnFe2O4 hybrid nanofluid towards a curved surface, ZAMM J. Appl. Math. Mech., 102 (2022), e202100194. https://doi.org/10.1002/zamm.202100194 doi: 10.1002/zamm.202100194
    [17] A. Mahesh, S. V. K. Varma, C. S. K. Raju, M. J. Babu, K. Vajravelu, W. Al-Kouz, Significance of non-Fourier heat flux and radiation on PEG–Water based hybrid Nanofluid flow among revolving disks with chemical reaction and entropy generation optimization, Int. Commun. Heat Mass, 127 (2021), 105572. https://doi.org/10.1016/j.icheatmasstransfer.2021.105572 doi: 10.1016/j.icheatmasstransfer.2021.105572
    [18] H. P. Greenspan, The theory of rotating fluids, London: Cambridge University Press, 1968.
    [19] I. V. Shevchuk, Modelling of convective heat and mass transfer in rotating flows, New York: Springer, 2016.
    [20] S. S. K. Raju, M. J. Babu, C. S. K. Raju, Irreversibility analysis in hybrid nanofluid flow between two rotating disks with activation energy and cross-diffusion effects, Chinese J. Phys., 72 (2021), 499–529. https://doi.org/10.1016/j.cjph.2021.03.016 doi: 10.1016/j.cjph.2021.03.016
    [21] B. Ali, Y. Nie, S. Hussain, D. Habib, S. Abdal, Insight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo–Christov heat transfer, Coriolis force, and Arrhenius activation energy, Comput. Math. Appl., 93 (2021), 130–143. https://doi.org/10.1016/j.camwa.2021.04.006 doi: 10.1016/j.camwa.2021.04.006
    [22] S. M. Upadhya, R. L. V. Devi, C. S. K. Raju, H. M. Ali, Magnetohydrodynamic nonlinear thermal convection nanofluid flow over a radiated porous rotating disk with internal heating, J. Therm. Anal. Calorim., 143 (2021), 1973–1984. https://doi.org/10.1007/s10973-020-09669-w doi: 10.1007/s10973-020-09669-w
    [23] L. J. Crane, Boundary layer flow due to a stretching cylinder, Z. Angew Math. Phy., 26 (1975), 619–622.
    [24] A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder, Energy Convers. Manage., 49 (2008), 3265–3269. https://doi.org/10.1016/j.enconman.2007.11.013 doi: 10.1016/j.enconman.2007.11.013
    [25] M. F. Javed, M. I. Khan, N. B. Khan, R. Muhammad, M. U. Rehman, S. W. Khan, et al., Axisymmetric flow of Casson fluid by a swirling cylinder, Results Phys., 9 (2018), 1250–1255. https://doi.org/10.1016/j.rinp.2018.04.015 doi: 10.1016/j.rinp.2018.04.015
    [26] M. Sarfraz, A. Ahmed, M. Khan, M. M. Iqbal Ch, M. Azam, Significance of the Cattaneo–Christov theory for heat transport in swirling flow over a rotating cylinder, Wave. Random Complex, 2021, 1–13. https://doi.org/10.1080/17455030.2021.2015545 doi: 10.1080/17455030.2021.2015545
    [27] M. Khan, M. Sarfraz, A. Ahmed, M. Y. Malik, A. S. Alqahtani, Study of engine-oil based CNT nanofluid flow on a rotating cylinder with viscous dissipation, Phys. Scr., 96 (2021), 075005. https://doi.org/10.1088/1402-4896/abfacd doi: 10.1088/1402-4896/abfacd
    [28] H. Moayedi, Investigation of heat transfer enhancement of Cu-water nanofluid by different configurations of double rotating cylinders in a vented cavity with different inlet and outlet ports, Int. Commun. Heat Mass, 126 (2021), 105432. https://doi.org/10.1016/j.icheatmasstransfer.2021.105432 doi: 10.1016/j.icheatmasstransfer.2021.105432
    [29] K. U. Rehman, W. Shatanawi, Q. M. Al-Mdallal, A comparative remark on heat transfer in thermally stratified MHD Jeffrey fluid flow with thermal radiations subject to cylindrical/plane surfaces, Case Stud. Therm. Eng., 32, (2022), 101913. https://doi.org/10.1016/j.csite.2013.08.004 doi: 10.1016/j.csite.2013.08.004
    [30] A. Alsaedi, K. Muhammad, T. Hayat, Numerical study of MHD hybrid nanofluid flow between two coaxial cylinders, Alex. Eng. J., 61 (2022), 8355–8362. https://doi.org/10.1016/j.aej.2022.01.067 doi: 10.1016/j.aej.2022.01.067
    [31] S. Bilal, S. U. Mamatha, C. S. K. Raju, B. M. Rao, M. Y. Malik, A. Akgül, Dynamics of chemically reactive Jeffery fluid embedded in permeable media along with influence of magnetic field on associated boundary layers under multiple slip conditions, Results Phys., 28 (2021), 104558. https://doi.org/10.1016/j.rinp.2021.104558 doi: 10.1016/j.rinp.2021.104558
    [32] M. Arif, P. Kumam, D. Khan, W. Watthayu, Thermal performance of GO-MoS2/engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder, Case Stud. Therm. Eng., 27 (2021), 101290. https://doi.org/10.1016/j.csite.2021.101290 doi: 10.1016/j.csite.2021.101290
    [33] M. Turkyilmazoglu, Stagnation-point flow and heat transfer over stretchable plates and cylinders with an oncoming flow: exact solutions, Chem. Eng. Sci., 238 (2021), 116596. https://doi.org/10.1016/j.ces.2021.116596 doi: 10.1016/j.ces.2021.116596
    [34] Abbas, S. Nadeem, A. Saleem, M. Y. Malik, A. Issakhov, F. M. Alharbi, Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder, Chinese J. Phys., 69 (2021), 109–117. https://doi.org/10.1016/j.cjph.2020.11.019 doi: 10.1016/j.cjph.2020.11.019
    [35] J. Ahmed, A. Shahzad, A. Farooq, M. Kamran, S. Ud-Din Khan, Thermal analysis in swirling flow of titanium dioxide–aluminum oxide water hybrid nanofluid over a rotating cylinder, J. Therm. Anal. Calorim., 144 (2021), 2175–2185. https://doi.org/10.1007/s10973-020-10190-3 doi: 10.1007/s10973-020-10190-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(945) PDF downloads(55) Cited by(1)

Article outline

Figures and Tables

Figures(23)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog