In this work, we look at homogenization results for nonlinear hyperbolic problem with a non-local boundary condition. We use the periodic unfolding method to obtain a homogenized nonlinear hyperbolic equation in a fixed domain. Due to the investigation's peculiarity, the unfolding technique must be developed with special attention, creating an unusual two-scale model. We note that the non-local boundary condition caused a damping on the homogenized model.
Citation: Mogtaba Mohammed. Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition[J]. AIMS Mathematics, 2023, 8(5): 12093-12108. doi: 10.3934/math.2023609
In this work, we look at homogenization results for nonlinear hyperbolic problem with a non-local boundary condition. We use the periodic unfolding method to obtain a homogenized nonlinear hyperbolic equation in a fixed domain. Due to the investigation's peculiarity, the unfolding technique must be developed with special attention, creating an unusual two-scale model. We note that the non-local boundary condition caused a damping on the homogenized model.
[1] | D. Andreucci, R. Gianni, Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions, Adv. Differential Equ., 1 (1996), 729–752. http://dx.doi.org/10.57262/ade/1366896017 doi: 10.57262/ade/1366896017 |
[2] | M. Amar, D. Andreucci, R. Gianni, C. Timofte, Homogenization of a heat conduction problem with a total flux boundary condition, In: Proceedings of XXIV AIMETA conference 2019, 2020 (2020), 1475–1487. http://dx.doi.org/10.1007/978-3-030-41057-5_119 |
[3] | M. Amar, D. Andreucci, R. Gianni, C. Timofte, Homogenization results for a class of parabolic equations with a non-local interface condition via time-periodic unfolding, Nonlinear Differ. Equ. Appl., 26 (2019), 52. http://dx.doi.org/10.1007/s00030-019-0592-4 doi: 10.1007/s00030-019-0592-4 |
[4] | M. Amar, D. Andreucci, D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Anal. Theor., 153 (2017), 56–77. http://dx.doi.org/10.1016/j.na.2016.05.018 doi: 10.1016/j.na.2016.05.018 |
[5] | M. Amar, D. Andreucci, D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Rend. Lincei Mat. Appl., 28 (2017), 663–700. http://dx.doi.org/10.4171/RLM/781 doi: 10.4171/RLM/781 |
[6] | M. Amar, D. Andreucci, R. Gianni, C. Timofte, Well-posedness of two pseudo-parabolic problems for electrical conduction in heterogeneous media, J. Math. Anal. Appl., 493 (2021), 124533. http://dx.doi.org/10.1016/j.jmaa.2020.124533 doi: 10.1016/j.jmaa.2020.124533 |
[7] | M. Bellieud, Torsion effects in elastic composites with high contrast, SIAM J. Math. Anal., 41 (2010), 2514–2553. http://dx.doi.org/10.1137/07069362X doi: 10.1137/07069362X |
[8] | M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients, Electron. J. Differ. Eq., 1998 (1998), 1–21. |
[9] | D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, Comptes Rendus Math., 335 (2002), 99–104. http://dx.doi.org/10.1016/S1631-073X(02)02429-9 doi: 10.1016/S1631-073X(02)02429-9 |
[10] | D. Cioranescu, A. Damlamian, T. Li, Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach, Chin. Ann. Math. Ser. B, 34 (2013), 213–236. http://dx.doi.org/10.1007/s11401-013-0765-0 doi: 10.1007/s11401-013-0765-0 |
[11] | D. Cioranescu, P. Donato, An introduction to homogenization, New York: Oxford University Press, 1999. |
[12] | D. Cioranescu, P. Donato, R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), 209–235. |
[13] | P. Donato, Z. Yang, The periodic unfolding method for the wave equation in domains with holes, Adv. Math. Sci. Appl., 22 (2012), 521–551. |
[14] | A. C. Esposito, C. D'Apice, A. Gaudiello, A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes, Asymptot. Anal., 31 (2002), 297–316. |
[15] | H. Ebadi-Dehaghani, M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanopart. Technol., 23 (2012), 519–540. http://dx.doi.org/10.5772/33842 doi: 10.5772/33842 |
[16] | F. Gaveau, Homog$\acute{e}$n$\acute{e}$isation et correcteurs pour quelques probl$\grave{e}$mes hyperboliques, Université Pierre et Marie Curie, Paris. |
[17] | F. Li, Existence and uniqueness of bounded weak solution for non-linear parabolic boundary value problem with equivalued surface, Math. Method. Appl. Sci., 27 (2004), 1115–1124. http://dx.doi.org/10.1002/mma.437 doi: 10.1002/mma.437 |
[18] | T. Li, A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis, J. Comput. Appl. Math., 28 (1989), 49–62. http://dx.doi.org/10.1016/0377-0427(89)90320-8 doi: 10.1016/0377-0427(89)90320-8 |
[19] | T. Li, S. Zheng, Y. Tan, W. Shen, Boundary value problems with equivalued surfaces and resistivity well-logging, Boca Raton: CRC Press, 1998. |
[20] | M. Mohammed, Homogenization and correctors for linear stochastic equations via the periodic unfolding methods, Stoch. Dynam., 19 (2019), 1950040. http://dx.doi.org/10.1142/S0219493719500400 doi: 10.1142/S0219493719500400 |
[21] | M. Mohammed, M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal., 97 (2016), 301–327. http://dx.doi.org/10.3233/ASY-151355 doi: 10.3233/ASY-151355 |
[22] | M. Mohammed, M. Sango, Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing, Netw. Heterog. Media, 14 (2019), 341–369. http://dx.doi.org/10.3934/nhm.2019014 doi: 10.3934/nhm.2019014 |
[23] | G. Nguetseng, Deterministic homogenization of a semilinear elliptic partial differential equation of order 2 m, Math. Rep., 8 (2006), 167. |
[24] | K. M. F. Shahil, A. A. Balandin, Graphene-multilayer nanocomposites as highly efficient thermal interface materials, Nano Lett., 12 (2012), 861–867. http://dx.doi.org/10.1021/nl203906r doi: 10.1021/nl203906r |
[25] | J. L. Woukeng, D. Dongo, Multiscale homogenization of nonlinear hyperbolic equations with several time scales, Acta Math. Sci., 31 (2011), 843–856. http://dx.doi.org/10.1016/S0252-9602(11)60281-6 doi: 10.1016/S0252-9602(11)60281-6 |
[26] | L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites, Compos. Commun., 8 (2018), 74–82. http://dx.doi.org/10.1016/j.coco.2017.11.004 doi: 10.1016/j.coco.2017.11.004 |