Research article Special Issues

Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition

  • Received: 09 January 2023 Revised: 13 March 2023 Accepted: 14 March 2023 Published: 21 March 2023
  • MSC : 35B27, 35K57

  • In this work, we look at homogenization results for nonlinear hyperbolic problem with a non-local boundary condition. We use the periodic unfolding method to obtain a homogenized nonlinear hyperbolic equation in a fixed domain. Due to the investigation's peculiarity, the unfolding technique must be developed with special attention, creating an unusual two-scale model. We note that the non-local boundary condition caused a damping on the homogenized model.

    Citation: Mogtaba Mohammed. Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition[J]. AIMS Mathematics, 2023, 8(5): 12093-12108. doi: 10.3934/math.2023609

    Related Papers:

  • In this work, we look at homogenization results for nonlinear hyperbolic problem with a non-local boundary condition. We use the periodic unfolding method to obtain a homogenized nonlinear hyperbolic equation in a fixed domain. Due to the investigation's peculiarity, the unfolding technique must be developed with special attention, creating an unusual two-scale model. We note that the non-local boundary condition caused a damping on the homogenized model.



    加载中


    [1] D. Andreucci, R. Gianni, Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions, Adv. Differential Equ., 1 (1996), 729–752. http://dx.doi.org/10.57262/ade/1366896017 doi: 10.57262/ade/1366896017
    [2] M. Amar, D. Andreucci, R. Gianni, C. Timofte, Homogenization of a heat conduction problem with a total flux boundary condition, In: Proceedings of XXIV AIMETA conference 2019, 2020 (2020), 1475–1487. http://dx.doi.org/10.1007/978-3-030-41057-5_119
    [3] M. Amar, D. Andreucci, R. Gianni, C. Timofte, Homogenization results for a class of parabolic equations with a non-local interface condition via time-periodic unfolding, Nonlinear Differ. Equ. Appl., 26 (2019), 52. http://dx.doi.org/10.1007/s00030-019-0592-4 doi: 10.1007/s00030-019-0592-4
    [4] M. Amar, D. Andreucci, D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Anal. Theor., 153 (2017), 56–77. http://dx.doi.org/10.1016/j.na.2016.05.018 doi: 10.1016/j.na.2016.05.018
    [5] M. Amar, D. Andreucci, D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Rend. Lincei Mat. Appl., 28 (2017), 663–700. http://dx.doi.org/10.4171/RLM/781 doi: 10.4171/RLM/781
    [6] M. Amar, D. Andreucci, R. Gianni, C. Timofte, Well-posedness of two pseudo-parabolic problems for electrical conduction in heterogeneous media, J. Math. Anal. Appl., 493 (2021), 124533. http://dx.doi.org/10.1016/j.jmaa.2020.124533 doi: 10.1016/j.jmaa.2020.124533
    [7] M. Bellieud, Torsion effects in elastic composites with high contrast, SIAM J. Math. Anal., 41 (2010), 2514–2553. http://dx.doi.org/10.1137/07069362X doi: 10.1137/07069362X
    [8] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients, Electron. J. Differ. Eq., 1998 (1998), 1–21.
    [9] D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, Comptes Rendus Math., 335 (2002), 99–104. http://dx.doi.org/10.1016/S1631-073X(02)02429-9 doi: 10.1016/S1631-073X(02)02429-9
    [10] D. Cioranescu, A. Damlamian, T. Li, Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach, Chin. Ann. Math. Ser. B, 34 (2013), 213–236. http://dx.doi.org/10.1007/s11401-013-0765-0 doi: 10.1007/s11401-013-0765-0
    [11] D. Cioranescu, P. Donato, An introduction to homogenization, New York: Oxford University Press, 1999.
    [12] D. Cioranescu, P. Donato, R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), 209–235.
    [13] P. Donato, Z. Yang, The periodic unfolding method for the wave equation in domains with holes, Adv. Math. Sci. Appl., 22 (2012), 521–551.
    [14] A. C. Esposito, C. D'Apice, A. Gaudiello, A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes, Asymptot. Anal., 31 (2002), 297–316.
    [15] H. Ebadi-Dehaghani, M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanopart. Technol., 23 (2012), 519–540. http://dx.doi.org/10.5772/33842 doi: 10.5772/33842
    [16] F. Gaveau, Homog$\acute{e}$n$\acute{e}$isation et correcteurs pour quelques probl$\grave{e}$mes hyperboliques, Université Pierre et Marie Curie, Paris.
    [17] F. Li, Existence and uniqueness of bounded weak solution for non-linear parabolic boundary value problem with equivalued surface, Math. Method. Appl. Sci., 27 (2004), 1115–1124. http://dx.doi.org/10.1002/mma.437 doi: 10.1002/mma.437
    [18] T. Li, A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis, J. Comput. Appl. Math., 28 (1989), 49–62. http://dx.doi.org/10.1016/0377-0427(89)90320-8 doi: 10.1016/0377-0427(89)90320-8
    [19] T. Li, S. Zheng, Y. Tan, W. Shen, Boundary value problems with equivalued surfaces and resistivity well-logging, Boca Raton: CRC Press, 1998.
    [20] M. Mohammed, Homogenization and correctors for linear stochastic equations via the periodic unfolding methods, Stoch. Dynam., 19 (2019), 1950040. http://dx.doi.org/10.1142/S0219493719500400 doi: 10.1142/S0219493719500400
    [21] M. Mohammed, M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal., 97 (2016), 301–327. http://dx.doi.org/10.3233/ASY-151355 doi: 10.3233/ASY-151355
    [22] M. Mohammed, M. Sango, Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing, Netw. Heterog. Media, 14 (2019), 341–369. http://dx.doi.org/10.3934/nhm.2019014 doi: 10.3934/nhm.2019014
    [23] G. Nguetseng, Deterministic homogenization of a semilinear elliptic partial differential equation of order 2 m, Math. Rep., 8 (2006), 167.
    [24] K. M. F. Shahil, A. A. Balandin, Graphene-multilayer nanocomposites as highly efficient thermal interface materials, Nano Lett., 12 (2012), 861–867. http://dx.doi.org/10.1021/nl203906r doi: 10.1021/nl203906r
    [25] J. L. Woukeng, D. Dongo, Multiscale homogenization of nonlinear hyperbolic equations with several time scales, Acta Math. Sci., 31 (2011), 843–856. http://dx.doi.org/10.1016/S0252-9602(11)60281-6 doi: 10.1016/S0252-9602(11)60281-6
    [26] L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites, Compos. Commun., 8 (2018), 74–82. http://dx.doi.org/10.1016/j.coco.2017.11.004 doi: 10.1016/j.coco.2017.11.004
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(964) PDF downloads(32) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog