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1. Introduction

The study of integral-type, non-local boundary conditions are fascinating area of rapidly evolving
differential equations theory. Non-local boundary conditions are useful in a variety of contexts,
including wave equations, electric conduction, petroleum exploitation, heat diffusion, and the elastic
behavior of perforated materials, see for instance [1, 15, 24, 26]. Mathematicians, engineers and
applied scientist intensively invest gated problems with non-local boundary conditions, from
theoretical and computational point of views, see for instance [7, 10, 17-19]. For homogenization for
boundary value problems with Dirichlet Nuemann and Robin conditions, we refer to [9, 12, 14]. The
first work dealing with homogenization for non-local boundary problems we refer to [10], where the
authors investigated the periodic homogenization using the periodic unfolding techniques for the
elastic torsion problem of an infinite 3-dimensional rod along with the overall electro-conductivity
problem within presence of a significant number of excellent conductors. Their results were further
developed to time-dependent problems by Amar et al. in [2, 3], where the authors obtained
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homogenization for classes of linear parabolic problems with non-local boundaries using the periodic
unfolding techniques. The results in [2] are for a linear parabolic problem with special oscillations in
the coefficients, whereas the results in [3] are for a linear parabolic problem with time space
oscillations in the coefficients. To the best of the author’s knowledge, there are no results for
homogenization of boundary value problems with non-local boundary conditions in the hyperbolic
framework. The goal of this paper is to extend the results of [2] by looking into homogenization
results for a nonlinear hyperbolic problem with a non-local boundary condition involving the
solution’s time derivative. The author’s forthcoming studies will concentrate on homogenization of
hyperbolic problems with nonlocal boundary conditions when the coefficients oscillate in both the
space and time variables at different scales, which is more technical and requires more complicated
analysis. As for homogenization of deterministic linear hyperbolic problems with Dirichlet and
Neumann boundary conditions, we refer to [13, 16] and the references therein. For homogenization
for nonlinear hyperbolic problems with Dirichlet boundary condition, see [25], where the authors
obtained homogenization for similar model to the one in this paper, but with Dirichlet condition using
multi-scale convergence in fixed domain. We also mention the work on homogenization of
hyperbolic SPDEs, see [20-22]. Here, we consider the following nonlinear hyperbolic problem with
non-local boundary condition.

T — div (AVve) + (v, V) = fin D€ x (0, T),
o _ 1 o €

y& =1 frg s—do on Ty x (0,T), n € X,

Ve = B,(tyonTg x (0,T), ne X, (1.1)

(0, x) = 2-(0,x) = 0 in D,

ve=0ondD x (0,7).

For all (x,y,t) € D X Y, X (0,T). The domain in which this problem is studied is described further
below.

e Fis an open subset of R” such that F' + z = F forall z € Z".

eV, =(00,1)x(0,1)x---x(0,1) cR".

e F,=FnY,F,=Y\F, T =3FNnY,and 6F, N dY, = ¢ which implies that 6F, =T.
e D is an open connected and bounded subset of R" and and Dy = D X (0, T).

o X, ={neZ":e(mn+Y, C D}, where € represents a sequence of positive real numbers that tends
to zero.

Foi=e(F,+mn)and I} = GF;.

F€ = Uyex, F) is disconnected with smooth boundary and I'* = 9F*.

D¢ = D\ Fe€ is connected.

v is the unit outward normal on I" and it is extended to R” by periodicity.

Ve =V (f) is the unit outward normal on I'¢.

= i1 Gij (’—E‘) Vv (f) g—f;. For a better understanding of the domain, we add

Let us mention that
Figure 1.

ave
6V€Ae
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Figure 1. The domain D¢.

Let us state our data assumptions.

(H1) B, (?) is a constant function with respect to the spatial variable x depending on 7 and ¢.
(H2) A = (ai)1<ij<n @ symmetric matrix such that a;; € L*(D; Ll‘;‘gr(Yx)) where A(x) = A (x, f) such
that

Q| < A(x, y)é - &€ < ap)él?, forall ¢ e R, ay,a, > 0. (1.2)

(H3) g(t, x,ve,Vve) = (f, Ve, va) is measurable with respect to (¢, ) € R X R" and Y,-periodic with
respect to the first arguments, such that
(@) 1B @, )l < co(1 + [l + [).
(®) By, @, YD = 1l @ — co(1 + |D]ly]).
(© | 280000 < o1 + Igh).

@) |VuBO, e, 9| < .
(e) For all (1, 1, ®1),(¢2, Y3, D) € RXR" X R, we have

B, ¢1,¥1) = B, @2, ¥2)) (P — D2)
> —c4 (Joil” + l2l") o1 = @al| D1 — Dy
= csly — || @; — Doy, (1.3)

where ¢y, ¢y, - - , cs are positive constants and

r€[1,00), ifn=1,2,
(1.4)

rell.),  ifn23.

(H4) y > 0.
(H5) f € L*(Dy).

We shall refer to both the original function and its extension to the entire of D as v¢ for the
simplicity’s sake. Following [2, 10], we introduce the following spaces

HE = {(p e L*(0,T; Wy) : ‘2—": € L*(0,T; L7) } (1.5)
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a ’
He = {90 e L*(0.T;L2): a—f € L (0,7; [Wg] )} (1.6)
where, see [10]
Li = {gp e L*(D) : elrs = G, for all p € Xf} ,
W§ = {¢ € WS’Z(D) t¢lpe = C foralln € Xe} ,

and [Wg ] is the dual space of W;. The existence and uniqueness results for system (1.1) for fixed € > 0,
are obtained by combining ideas from [1,8]. With this, we can write system (1.1) in the following weak

formulation:
T azve T
f f—godxdt+f fAEVVGV(,dedt
0 DE 0t O DE

f f B (v, Vv6)¢dxdt+z f avA godO'xdt
l"E € €

neXe

= f Sfedxdt, (1.7)
0 JbDe

for all ¢ € D(D) x (0, T). For a better formulation of our system we introduce the following set of test
function

U, = {pc € DD) : @lre = C, forall n € X, . (1.8)

Now, testing our problem by a function from the set U, we have

T 2ye T
f f—z(pedxdt+f fASvaVgoedxdt
0
v, Vv©) o, f f cdxdt
f f F pexdt ot

= f fedxdt. (1.9)
0 D¢

2. A priori estimates

Since v¢ is somehow taken to be constant in each F}, we may take ¢, = 2%5 in (1.9). We have

ffazveavt ff e fv(
ove O
+2f POy |F|ffe(9t ot
_szfav 2.1)
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Simple calculations on the first and second terms of (2.1) give

+ (AVVe(D), Vve(t))Lg

2y (" [ v o
2 v
" f A |Fu|fof,wat o Xt

dxdt.

[

From (H3(b)), we see that

!
foﬁ z,vE,VvE

6
>2c1ff [ve]"ve dxdt—2c2ff( '—‘leel)dxdt

2
! ff |v €2 dtdx 2csz(
r+2
2 r+2
= Sl - 26 dxdt.
r+ .
Using (H2), (H4), (2.3) and Young’s inequality, we get
2
sup +a; sup IV
refo,r1 11 Ot I? 1e[0,T] €
2a3 e ?
+ sup |[v(0)||" 2 f dxdt
2tE[OIY)"] Le |F| Fel OF

o

SL1+L2‘[{
0

This inequality and Grownall’s inequality gives

o+ ||va(¢)||§§} di

2

sup
1€[0,7]

+ sup [IVV@)l7. + sup IIVE(r)IIZifz <C.
L2 1€[0,T] € 1€[0,T]

ot

From (H3(a)), one easily see that

2
f ‘5(59 VE9 VVE)
De €

2(r+1 2
< C (1 VI + 19V, )

EI) dxdt

dx < C f (1 + EPUD 4 |va|2)dx
DE

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Thanks to this and (2.5), we claim that ,8( ve, Ve ) belongs to L*(DS), by which and the leading

equation in (1.1) we have that
82
o (0.7:[wg]).
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3. Time-space periodic unfolding operator

In this section, we give some definitions and properties of the time-space periodic unfolding
operator, that was essentially given in [2], see also [4,5]. For this, we set

o D¢ =Int{U,ex, €(n+7,)} and A, = D x (0, T).

o Y€ = e([e“x]yx + Yx)x = 6([X6_1]YX + {xe‘l}yx), where [a] is the integer part of any real number
a.

Definition 3.1. [2,4] Let u be a Lebesgue measurable function on the set D X (0,T), then we define
the periodic unfolding operator for this function as
u (e [xe‘l]y + €y, t) (t,x,y) € AL, XY,
T (), x,y) =

0 otherwise .

If u is an integrable function in D X (0, T), we define the average operator as:
(€)7" [y ult.y)dy (1.x) €AS,.
Ac(u)(t, x) =

0 otherwise .

Note that
A(u)(t, x) = f T (u)(t, x,y, T)dydt = My, (T(u)) (¢, x),
Yy

where My stands for the usual integral average on the set V. We also define the oscillation operator
as

Oc(p)(1, x,y) = Te(@)(t, x,y) — Ac(@)(t, X).
The following proposition gives some of the main properties for the time-space unfolding operator:

Proposition 3.1. [2, 4, 10] The operator T, : L*(D x (0,T)) — L*(D x (0,T); L*(E)) satisfies the
following:

(1) T, is linear, continuous and
T(p192) = T(p)Te(p2),

for all ¢, p, € L>(D % (0,T)).
(2) Forevery ¢ € L>(D x (0,T)), we have

”TE(QO)l|L2(D><(O,T);L2(YX)) < llell2pxo.y) »

T T
f f ddxdt — f f f T(p)dydxdt
o Jp 0o JpJy,

< f pdxdst. (3.1)
0,7) J D\Ds¢

AIMS Mathematics Volume 8, Issue 5, 12093-12108.
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(3) For every ¢ € W"2(D x (0, T)), the following are true.

(a) Te(p) — @ strongly in L*(D x (0, T); L*(Yy)),
(b) T.(Vo) — Vo strongly in L*(D x (0, T); L*(Y,)),
(c) Te (%) — % strongly in LX(D x (0, T); LX(Y,)).

(4) If ¢ € L*(Y,) is given by ¢¢(x) = ¢ (xe‘l)for all x € R", then
(a)

e (x,y) €D xY,,
To(¢)(x,y) =

0 otherwise .

(b) T(¢) — ¢ strongly in L*>(D x (0, T); L*(Y,)).
(c) Furthermore if Vyp € L*(Y,), then

V., (T(pe)) — Vyp strongly in L*(D x Y,).
(5) Let u€ € L* (D x (0, T)) such that u¢ — u strongly in L> (D x (0, T)), then
T.(u¢) — u strongly in L*(D x (0, T); L*(Y,)). (3.2)
(6) Let {u} be a bounded sequence in L* (D x (0, T)), then

T (u€) — u weakly in L*(D x (0, T); L*(Y,)), (3.3)
u¢ — A (u€) weakly in L*(D x (0, T)). (3.4

(7) Foru € L*> (D x (0,T)), we have

e [O(u)] = y*V,u strongly in L*(D x (0, T); L*(Y,)), 3.5)

where y* = (yl Ly =Ly, - %)
(8) Assume that {u} be abounded sequence in L*0,T; W(;’Z(D)), and that

u® — u weakly in L*(0,T; W,*(D)). (3.6)

Then there exists it = (t,x,y) in L*(Dr; W;’Z(Yx)), where My (1) = 0 such that up to sub-
sequence

T, (V,u) — V,u + Vit weakly in L*(Dr; L*(Y,)), (3.7)

€' [0(u)] = y*Vu + it weakly in L*(Dr; W, (Y,)). (3.8)

4. Homogenization

In this section, we use the unfolding operator to pass to the limit in the weak formulation (1.9).
Before that, let us introduce the following spaces, see [2,11]

H = {go el? (0, T, WS’Z(D)) : Z—f el? (O, T;LZ(D)) }

AIMS Mathematics Volume 8, Issue 5, 12093-12108.
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oy _
i 2 .72 . 2 . 1,-1
H, = {(pEL (0.7 2): e (013w (D))},
(Wg(Yx) = {cp € W;’Z(Yx) : ¢|lp, = constant },
WN(Dr; Y,) := L0, T) X Yo; Wy (D)) N W(Dr; Ly(Yy)) N LA(Dy; Wi(Yy)),

W(Dr;Y,) := {(v, D) :veH, and D € LX(Dr; W, (Y,)),
My (P) =0,y" - V,v + ¥ is independent of y on Dr X Fu}.

Theorem 4.1. Suppose that (HI)—(HS) hold true and v¢ be the solution for system (1.1). There exists
a pair (v,v) € W(Dr; Y,) such that up to sub-sequence

T. (v¢) = v, weakly in L*(D x (0, T); L*(Y,)), 4.1)
N\ 0

Te( (9vt ) ~ a—:, weakly in LX(D x (0, T); LX(Y,)), (4.2)
T. (v¢) = v, strongly in L*"*D(Dy x Y,), 4.3)
T. (v¥) = v, strongly in L*(D x (0, T); L*(Y,)), (4.4)
T, (V,v) = Vv + V.9, weakly in L*(D x (0, T); L*(F)), (4.5)
T, (V) — 0, weakly in L*(D x (0, T); L*(F.)), (4.6)

1
-0, (v) = y*V, + D, weakly in L*(D x (0, T); L*(Y,)), 4.7)

€
V'V, + 7, is independent of y on Dy X F, . 4.8)

Proof. Convergences (4.1) and (4.2), easily obtained using Definition 3.1, estimates (2.5) and [13,
Theorem 2.19, P. 536]. Regarding convergence (4.3), we not that v e L*"*Y(0,T;W,*(D)),
where 1 < 2(r+1) < n%”z = 2. Then, Sobolev embedding theorem [11, Theorem 3.27, P.49], shows
that Wol’z(D) is compactly embedded in L*"*V(D), which implies the strong convergence of V¢ to v
in L>"*Y(D x (0,T), this gives (4.3). Similarly, we note that v¢ € € and by [11, Theorem 3.59,
P. 61], H¢ is compactly embedded in L?>(Dy), which leads to (4.4). Convergences (4.5)—(4.8) obtained
asin [2, Lemma 4.1, P. 1482].

Let us state the main results of this subsection.

Theorem 4.2. Assume that (HI)—(HS5) hold and
T.(A€) — A, strongly in L*(D X Y,). (4.9)

Then, the pair (v,v) € W(Dr; Y,) uniquely satisfies the following system

0%y A A
fDT fF {Wfﬁdydxdt +A (Vv + Vyv) . (V¢ + qub)} dydxdt

AIMS Mathematics Volume 8, Issue 5, 12093—-12108.
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+ j; T j; | B(v, Vv + V,0)pdydxdr + |tgu| fD T fF “ (E)gbdydxdt
f ffqﬁdydxdt, (4.10)
Dy JFy

We first acquire some preliminaries before establishing this result.

Lemma 4.1. Let ® = (&, Dy, -+ ,D,), where O, € Cy (D7) ® Cper(Yy) and V€ is the solution of
system (1.1). Then

where (¢, p) € W(Dr; Yy).

T, (°) (t. x, v, ®°) = B(1.y,v, @), weakly in L* (Dr; W'2(Y,)), (4.11)
where 3¢ (t, x,v¢, D) = 8 (t, e lx,ve(¢, x), ® (t, X, e‘lx)).
Proof. Tt is easy to see from estimate (2.6) that (¢, y,v, ®) € L*(Dr; C per(Yy), we also have
T, (B°) (¢, x, v, D)
=B(1t, € 'xly + , Te(v), TP, x,))
=B (t,y, T(v9), T(D)(1, x,)) . (4.12)
From (4.12) and (1.3), we obtain the following

- f (T (B°) (1, x, v, @) — B(t,y,v, D))pdxdt
Dr
< C4f (ITe )"+ ) [Te (v) = vlIgpldxdt
Dr

+ C5 f |T (D) — D||pldxdt
Dr
< Cy (IITc 6 oy, + M) ITe ) = Vil Il 20
+ Cs|ITe (D) = Dll2p, 1l 20, (4.13)

where we have used the generalized Holder inequality in the first term on the right hand side
for £ + i + 3 = 1 such that p = 2(r + 1). But,

T.(v) — v strongly in L”(Dr X Y,), 4.14)
T(®°) — @ strongly in L*(Dr; Wyr(Y:). (4.15)
Since ¢ is an arbitrary, we have
i [ (T (5 130,09 = B 1., O 0. (4.16)
(s Dr
Thus,
T. (B°) (1, x,v°, @) = B(t,y, v, ®) weakly in L*(Dr; Wi} (E)). (4.17)

AIMS Mathematics Volume 8, Issue 5, 12093-12108.
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Remark 4.1. As in [25], if we let Y€ = @y(t, x) + ¢ (t, X, f) where ¢y € D(D7) and ¢, € D(Dr) ®
Dyer(Yy), we see that

Te (B (1 x, v, V) = (1., v. Vo + V1) weakly in L*(Dr; Wi(E)). (4.18)

per
Now, we state and proof the following lemma.

Lemma 4.2. The nonlinear term 3¢ (t, x, v¢, Vv°) satisfies the following convergence
T () (1 x,v<, V') = B (v. Vv + V,9) weakly in L*(Dy; Wy (Y). (4.19)

per

where
B (V, Vv + Vyf/) = fy;ﬁ (t, v, v, Vv + Vyf/) dy.

Proof. First note that the sequence T, (5¢) is bounded in L?>(D;y x Y,) thus, there exists a
functions 8* € L*(Dr X Y,) such that up to sub-sequence

T. (8% (¢, x,v¢, Vv) — B* weakly in L*(D7 X V). (4.20)

We use (1.3) to obtain

f f [B° (2. Te (V) T (V¥)) = B (1, Te (v, T (V¥9))]
Dr JY,
[Te (v) = T (¥€)] dxdtdy
+ Cs f f IT: (Vv) = T (VP9)| T (v6) — Te (V)| dxdtdy
Dy JY,
> 0.

Alternatively, to be more specific

f f [B° (2,3, Te (v) , Te (V) = B (1,3, Te (v) , Te (V)]
Dr JY,

[T (V) = T (P)] dxdrdy
+ Cs [T (V) = Te (VI 20 v ITe ) = Te (FM200px,
2 0. 4.21)

Before passing to the limit in (4.21). We first note that by (4.3) one easily obtain
ITe () = Te (PN 2prxr = IV = @oll2ppxy,) - (4.22)
Using the same steps as in [23, Theorem 2.2], we can demonstrate that

ITe (V) = Te (V¥)lr2(0,xv,)
> ||(or + 9,0) = (Vo + V)

. (4.23)

L2(DrxYy)

AIMS Mathematics Volume 8, Issue 5, 12093-12108.
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Now, we use (4.18), (4.20), (4.22) and (4.23) to pass to the limit in (4.21), we get

fD f): [’8* _’B(t’ Y5 Vs Vepo + V)"Pl)] [v = @o] dxdtdy

(va + Vyf/) - (VXQDO + Vy‘Pl)

+Csllv - ()DOHLZ(DTXYX)

> 0.

LA(DyxYy)

Take ¢y = v — Au and ¢; = ¥V — Ait where (u, it) € W(Dr; Y,), we are led to

f f B = B(t.3.v. (Vv = AVu) + (V,0 = AV,i))| Audxdrdy
Dr JY,
Vo + V,0)| >0

LX(DrxYy) = 77

2
+ CsAull2pyxy,)

Divide both sides of the above inequality by A and then let 1 — 0. We get

f f [ﬁ* -B (y, T,v, Vv + Vyf/)] udxdtdydr > 0.
Dr

Y,

Because u was arbitrarily chosen, this completes the proof.

(4.24)

(4.25)

(4.26)

(4.27)

Proof of Theorem 4.2. Following [2], we use as test function in (1.7) ®¢(¢, x) = e (t, X, f) such that

@ (1, x,y) = Ac(Y)(t, )b (y) + Y (1, )c(y),

where ¢ € C*([0, T]; D(D)), b € D(Y,) N W;(Yx), c € Co(Y,) and c|r, = 0. We have

T
e[ [ v aawb + el da
0 D¢

T
+ f f AV (AW)V,b + YV c) dxdt
0 D¢

T
+ef fAEVvE (Vo) dxdt
0 Jbpe

T
+ ef f B, V) ([Ac(W)b + yc]) dxdt
0 Jbe

T
IIZI f f v (A)b + W,) dxdt
u 0 Fe

T
=€ f £ (A )b + y) dxdt.
0 D¢

— €

Unfolding (4.29) and using (4.1) to pass to the limit we obtain

fD fF T (A)T(Vv) (Te(a) | Te (AcW)V,b) + T(wV,c) |) dydaxdt

N f f AV +V,9) - V(b + c)wdydxd.
DT Fx

(4.28)

(4.29)

(4.30)

AIMS Mathematics Volume 8, Issue 5, 12093-12108.
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All of the remaining terms on (4.29) converge to zero. Therefore we have
f f AV +9,9) - V(b + c)wdydxdt = 0. (4.31)
D
See [2], this can always be written as

f f A(V.w +V,9) - V,Wdydxdt = 0. (4.32)
D s

Where ¥ € W' (Dr;Y,). Now, we replace our test function by ®<(t, x) = ® (t, X, f) such that

O (1, x,y) = AcW)(#, 0)b (y) + Y1, x) (1 = b (y)), (4.33)
where ¢ and b as in (4.28) and b|r, = 1. From this it is clear that

®° — y strongly in L*(Dy X Y,). (4.34)
Then we have
T
f f Vv (AcWu)b + (1 — b)) dxdt
0 Jbe
T
+ f f AV - (€7 [Acw) - ¥] Vyb + V(1 — b)) dxdt
0 €

T
+ f f B (v, V) (AW)b + y(1 — b)) dxdt
0 D¢

T
‘|1Z| f f v (AW)b + (1 - b)) dxdt
ul Jo Fe

T
= f f(AW)b + (1 — b)) dxdt. (4.35)
0 Jbe
Let us unfold (4.35) and pass to the limit as € goes to zero.

f f To0%) (TUAW)b) + Tl — b)) dydixdt
Dr JF;

- f f v dydxdt, (4.36)
Dr JF,

where, we have used (4.1) and (4.34). For the second term on the R.H.S, we have

f f T(A9)T.(V)
Dr JF;

(€ [AcW) = T TV, b) + TV 4(1 - b)) dydxdr
N f f Vo +9,0) - (Vo = V, (07 - V.w) b)) dydxdt, (4.37)

AIMS Mathematics Volume 8, Issue 5, 12093-12108.
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where we have used (3.5), (4.5) and (4.9). As for the nonlinear term, we have
f f Te(B° (v, Vv) (AT (D) + Te(Y(1 - b))) dydxdt
Dr JF,

N f f B(t.3.v. Vv + V,9) wdydxdt, (4.38)
Dr JF,

where we have used (4.19) and (4.34). The limit for the boundary term is given by

Y f f T.0%) (ATLW)b) + To(wi(1 - b)) dydxdr
pr JF,

|F
4 f f wdydxdt. (4.39)
|Fu| Dr JVF,
We also have
T
f f f(AW)b + (1 = b)) dxdt — f f Sfwdydxdt. (4.40)
0 D¢ Dy JF;

Combining all the above convergences namely, (4.32), (4.36)—(4.40), we obtain the following system

f f tﬁdydxdt
Dr

+ f V.o + Vyf/) . (Vxl// +V, (¥ -V b)) dydxdt
Dr

ffﬁ 1y, v, Vv+Vv)1//dydxdt+ ff( )zﬁdydxdt
Dy JF |Fu|

s

f f furdydxdt. 4.41)
Dr JF,

This corresponds to (4.10), when putting

r»

+

(e, x,y) = P(t, x,y) = " - V.p(t, ) b(y) — f Yt x,y) = (" - Vap(t, x)) b(y)dy.
y

Part (e) of assumption (H3) and estimate (2.2), gives the uniqueness of (v, v) € W(Dr;Y,). This gives
the convergence of the whole sequence instead of sub-sequence. Following [2, 6, 10], we state that
problem (4.32) has the following unique solution

V= x(x,y) - V(e x), (4.42)
such that y(x, y), is the corrector of the first-order that uniquely solve the following:

—divA(x, )V, (x(x,y) —y) =0in ¥,

My(x) =0
Xx(x,y) —yis independent of y on F),. (4.43)
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By substituting (4.42) into (4.41), we arrive at

32
f f a—tszdydxdt
DT F K

+ f f AoV, - Voudydxdt
Dr JF,

y ov
+ v, Vv) Yydydxdt + — | wdydxdt
I pevnudaars ff(at)*” y

Dr JF
= f Sfudydxdt, 4.44)
DT F.v

where A is coercive and elliptic matrix given by

Ao(x) = fy AV (e, y) =) - Vy (e(x,y) — ) dy,

with this in hand one can easily obtain the strong formulation of (4.44) as the following nonlinear
damped wave equation

PN 3
Yy div(AgY) + B (v, V) = IFJf, (4.45)

F,|—
IF| or? ot

where

L, Vy) = f B, Vv)dy.
Fy

v

The initial conditions v(x, 0) = &

(x,0) = 0 are obtained in the standard way.
Conclusions

Nonlinear hyperbolic problem with special oscillated coefficients and non-local boundary
conditions involving the solution’s time derivative in perforated domain was considered in this paper.
To obtain homogenization results, we used the unfolding periodic operator. The following are the
paper’s main challenges:

e The non-linearity presented on the function 5°(v¢, Vv¢), which was introduced in [8] for studying
existence and uniqueness for nonlinear hyperbolic problem and in [25] when dealing with
homogenization of nonlinear hyperbolic problem with Dirichlet condition in a fixed domain. In
this paper we used the concept unfolding operator to pass to the limit in this function in
Lemma 4.2.

e In order to address the non-local boundary condition y% = El fre o
n

BvEAe
use of unfolding techniques in the conventional sense, we followed the settings in [10] and [2].

do ., which prevents the

With theses, we obtained a damped nonlinear hyperbolic problem in fixed domain.
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