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1. Introduction

In recent years, the variational problems with nonstandard growth conditions have been extensively
studied by many researchers. The interest in variational problems with variable exponents is based in
their popularity in diverse fields of mathematical physics, such as electrorheological fluid dynamics,
elastic mechanics and image processing. We refer the readers to [2,8,9,25,28,40,43].

Set

C,®Y) = {1 e CR®Y) : inf I(x) > 1} .

XxeRN

For any m € C,.(R"), we define

m" =supm(x) and m = inf m(x).
xeRN xeRN

In the present paper, we establish several multiplicity results of nontrivial weak solutions to the p(:)-
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Laplacian-like equations of Kirchhoff-Schrodinger type:
_M(/ Do(x, Vy) dx) div(e(x, V) + B [y y = oy 7y + g(x,y) in Y, (Py)
RN

where p € C,(R") is Lipschitz continuous with 1 < p~ < p* < N, p,g,t € C,R") and 1 < 1 <
r<p <pt<q <q" <pi(x) forall x € RY, p(x,&) = VDp(x,&) with @y : RV xRY - R
being continuously differentiable with respect to the second variable; M € C(R") is a real function, the
function ¢(x, £) is of type |£[7™2 & with p € C.(RY), g : R¥Y x R — R is a Carathéodory function and
B : RY — (0, ) is a potential function with

(V) B e L, (RY), essinf ey B(x) > 0, and limy_,e B(x) = +o0.
Also the Kirchhoff function M : [0, c0) — R* fulfills the conditions as follows:
(K1) M € C(R") fulfills inf,cg+ M(t) > my > 0, where my is a constant.
(K2) There exists ¢ € [1, —L;u) such that IM(t) = 9 fot M(t)dt > M(#)t for any t > 0.

Regarding the nonlocal Kirchhoff term, it was first provided by Kirchhoff [29] to study an extension

of the classical D’ Alembert’s wave equation by taking into account the changes in the length of the

strings during the vibrations. Elliptic problems of Kirchhoff type have a strong background in diverse

applications in physics and have been intensively investigated by many researchers in recent years; see

for example, [3,4,6,7,12,15,16,19,22,23,26,31,35,36,39,42,48,49] and the references therein.
Suppose that ¢, @, and g satisfy the assumptions as follows:

(®1) The equality
(D()(X, 0) =0

holds for almost all x € RV.

(®2) There is a constant b > 0 such that

lo(x, )] < bl
holds for almost all x € RY and for all & € R,

(®3) There is a positive constant d such that the relations
dIEPY < o(x,€)- € and  diEP™ < p*Do(x, &)
hold for all x € RY and ¢ € RV,

(®4) Dy(x, ) is strictly convex in RY for all x € RV,

(®5) The relation
r()®@o(x,&) — ¢(x,8) - £ =20

holds for all £ € R, where r € C,(RY) is Lipschitz continuous with p(-) < r(-) < p*(*).

(H1) 0 < g € Lit® (RY) n L= (RY) with meas|x € RV : o(x) # 0} > 0.
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(P1) g : RY x R — R satisfies the Carathéodory condition and there exist a positive constant b; and a
nonnegative function oy € LYO(RY) N L°(R") such that

lg(x, )| < oo(x) + by |S|q(X)—1
for all (x, s) € RY x R.

(P2) There are u > ¥r*, T > 0 and a function w with 0 < w € LP<‘[;2” (ADon A :={xeR": p(x) >
p~} and w(x) = positive constant @ on A, := {x € RY : p(x) = p~} such that meas{x € R" :
w(x) > 0} # 0 and

uG(x, s) < sg(x, s) + w(x)|s|”

for all x € RY and |s| > T, where G(x, s) = fos g(x, 1) dt.

(P3) Thereexist C >0, 1 <k~ < k™ < p~ < p*, 7(x) > 1 with p(x) < 7/ (x)k(x) < p*(x) for all x € RY
and a positive function 7 € L™(RY) N L*(RY) such that

lim inf — 89 >
50" () 5] 2 s

uniformly for almost all x € R",

The main goal of this paper is deriving several existence results of multiple solutions to the p(-)-
Laplacian-like equations of Kirchhoftf-Schrodinger type with concave-convex nonlinearities. The first
one is to discuss that the problem (P,) has a sequence of infinitely many large energy solutions. The
other one is to establish the existence of a sequence of infinitely many small energy solutions to the
problem (P,). The primary tools to obtain such multiplicity results are the fountain theorem and the
dual fountain theorem, respectively. Such existence results of multiple solutions to nonlinear elliptic
problems are particularly motivated by the contributions in recent studies [1,5,17,18,20,24,28,31,32,
34,36-38,44,46], and the references therein. In particular, Alves and Liu [1] obtained the existence
and multiplicity results to the superlinear p(x)-Laplacian problems:

—div(|Vy["72Vy) + Bo)[y"Y 2y = g(x,y) in RY.
Here, the potential function 8 € C(RY) satisfies the appropriate conditions and the Carathéodory
function g : RY X R — R satisfies the following assumptions:
(f1) G(x, ) = o(|t|P™) as £ — 0 uniformly for all x € RV,
(f2) There is a constant 8 > 1 such that

0G(x, ) = G(x, st)
for (x,£) € R¥Y xR and s € [0, 1], where G(x, £) = g(x, )¢ — p*G(x, {).

The condition (f2) is initially provided by the works of Jeanjean [21]. In the last few decades,
there were substantial studies dealing with the p-Laplacian problem by assuming (f2); see [37, 38];
see also [26, 45] for the case of variable exponents p(-). Recently, Lin and Tang [34] established
various theorems on the existence of solutions of p-Laplacian equations with mild conditions for the
superlinear term f, which is deeply different from those investigated in [21, 34, 37, 38]. Also, the
authors of [20] obtained the existence results of infinitely many weak solutions to quasilinear elliptic
equations with variable exponents under the following condition:
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(f3) There exists a constant C > 0 such that

tg(x,6) = p*G(x,6) < 6g(x,6) = pG(x,6) + C

forany x € Qand 0 < £ < gorg < € < 0, where Q c R" is a bounded domain with a smooth
boundary,

which was first provided by Miyagaki and Souto [41]. Let us consider the function

) |g|q(x)—l ¢
g(x,0) = () 1119 eIn (1 + |€]) + T
with its primitive function
G(x,0) = (1) 1199 In (1 + |£])
q(x)

forall £ € Rand g € C,(R"), where p* < g(x) for all x € RY and o € C(RY,R) with 0 < inf, gy 0(x) <
sup gy 0(x) < co. Then, this example satisfies the assumptions (f1)—(f3), but not (‘¥'3).

Remark 1.1. If we consider the function
Kk(x)—2 p -2 2 .
g(x,8) = o(x)|n(x)|s| s+ s s+ —sins
4
with its primitive function

1 -2 2
G(x,s) = o(x) (@ s + — 5P — —cos s + —_),
K(x) p p p
where o € C(RY,R) with 0 < inf gy 07(x) < sup, gy 0(x) < o0, and k and 1 are given in (¥3), then it
is clear that this example satisfies the conditions (Y1)—(¥Y3), but not (f1)—(f3).

In this direction, regarding a new class of nonlinear term g which is different from the previous
related works, we give the existence results of a sequence of infinitely many energy solutions by
employing variational methods. However, our proof of the existence of multiple small energy solutions
is slightly different from those of the previous related works [5,17,20,32,36,46,47]. Roughly speaking,
in view of [5,17,20,32], the condition (f1) plays an important role in ensuring all assumptions in the
dual fountain theorem; however, we verify them when (f1) is changed into (‘*Y3).

The outline of this paper is as follows. We present some necessary preliminary knowledge of
function spaces which we will use throughout the paper. Next, we provide the variational framework
related to the problem (P,) and then obtain various existence results of infinitely many nontrivial
solutions to the p(-)-Laplacian-like equations with concave-convex-type nonlinearities under suitable
conditions on g.

2. Preliminaries
In this section, we briefly demonstrate some definitions and essential properties of Lebesgue-
Sobolev spaces with a variable exponent in RY, which are main analysis tools for our work. For a

deeper treatment on these spaces, we refer the reader to [8,9, 14].
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For any [ € C,(R"), we introduce the variable exponent Lebesgue space
LO®RY) := {y : y is a measurable real-valued function, / ly(x)"™ dx < oo},
RN
endowed with the Luxemburg norm

IylLl(‘)(RN) = inf {A >0: /
RN

The dual space of L'O(RN) is L'O(RY), where 1/1(x) + 1/I'(x) = 1.

I(x)
@‘ dx < 1}.
1

The variable exponent Sobolev space WHO(RY) is defined by
WHORY) = [y e LORY) : [Vl € LO®RY)},
with the norm
[Ylwiowyy = [Vylpowyy + 1Ylpo@y)- (2.1)
We list some well-known results.

Lemma 2.1. [I14] The space L'O(R") is a uniformly convex and separable Banach space. For any
y e L'O®RN) and z € L'ORY), we have

1 1
‘/ Yz dx‘ <\ = + T | Pleoeylrogyy < 21vlpoemzlrogy.
RN l (l )_

Lemma 2.2. ( [14]) If 1/I(x) + 1/m(x) + 1/n(x) = 1, then, for any y € L'ORN),z € L"RN) and

w € L"ORM),
/ yzwdx
RN

Lemma 2.3. ([14]) Denote

1 1 1
<|{l—+—+ — 1MRNZ 7 mO@RNYIW | 7 n() (RN
(l‘ - n_)IyIL R )| 7 ® )| 7 RN)

< 3lylpoemylzl o @y wlpo gy

() = / Wl dx forally € LORY).
RN

Then,
(1) p(y) > 1 (= 1; < 1)ifand only if |ylpowy) > 1 (= 1; < 1), respectively;
(2) if olpog > 1, then Iyl o < PO) < Il
(3) if Do) < 1, then Ly < PO) < Dy

Lemma 2.4. ([10]) Let [ € C.(RN) and n € L*(RN) be such that 1 < I(x)n(x) < oo for almost all
x € RN, Ify € L'O"O@RN) with y # 0, then the following is true:
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(]) ifb’lL“')’l(‘)(RN) > 1, then Iyl:;(jn(»)(RN) < ||y|"(x) IL’(')(RN) < |y|r£l(»)n(~)(RN)’.

(2) if Dluono < 1 then g, < TV oy < om0y

Lemma 2.5. ( [14]) Assume that h : RN — R is Lipschitz continuous with 1 < h™ < h* < N. Let
n € L°(RY) and h(x) < n(x) < h*(x) for almost all x € RN. Then, we have a continuous embedding
Wl,h(~)(RN) s Ln(')(RN).

When p € C,(R") and the potential function B satisfies (V), let us define the linear subspace

X = {y e WORY): / (19517 + B(x) p1"?) dx < +oo}
RN

p(x)
) dx < 1} ,

with the norm
p(x)

I LB

\Y
|y|X:inf{/l>O:/(
v\ 2

which is equivalent to the norm (2.1).
Remark 2.6. ( [13]) Denote

p(y) = / (|Vy|”(x) + ﬂ}(x)lyl”(")) dx forallye X.
RN

If the assumption (V) is satisfied, then

Y
A

(1) p(y) > 1(=1; < 1)ifand only if lylx > 1 (= 1; < 1), respectively;
(2) if Iylx > 1, then yly < p() < Iyly ;

(3) if Iylx < 1, then yly < p(y) < Iyl -
Lemma 2.7. ([1]) If the assumption (V) is satisfied, then
(1) we have a compact embedding X — LPO(RN);

(2) for any measurable function g : RY — R with p(x) < q(x) for all x € RY, there exists a compact
embedding X — Li1ORN) if inf (p"(x) - g(x)) > 0.
xeR:

Throughout this paper, let p € C,(R") be Lipschitz continuous with 1 < p~ < p* < N and the
potential B satisfy the condition (V). Furthermore, (-, -) denotes the pairing of X and its dual X*.

3. Existence of infinitely many solutions

In this section, we present the existence of infinitely many nontrivial solutions to the problem (P,)
by utilizing the fountain theorem and the dual fountain theorem as the primary tools.

Definition 3.1. By a solution of the problem (P,), we mean a function 'y € X such that

M( / Do(x, Vy) dx) / o(x,Vy) - Vzdx + / B(x) [y yzdx
RN RN RN

=1 / o)y yzdx + / g(x,y)zdx
RN RN

forall z € X.
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Let us define the functional ® : X — R by

(I)(y):M( / ONES Vy)dx)+ / %Wm dx.
RN ry P(X)

Under the conditions (®1)—(P3), we have, by Lemma 3.2 in [33], that ®@ is well defined on X, ® €
C!(X,R) and its Fréchet derivative is given by

@ =m( [ uIna) [ ety viare [ w@prya
RV RV RV
According to the analogous arguments in [30, 33], the following assertion is easily verified, so we
omit the proof.

Lemma 3.2. Suppose that (K1), (K2) and (O1)—(D4) are fulfilled. Then, ® : X — R is weakly lower
semicontinuous and convex on X. In addition, ' is a mapping of type (S ;), i.e., if y, — yin X and
limsup,_, ., (O’ (yn) = O (), ¥, —y) <0, theny, = yin X asn — oo.

Define the functional ¥ : X — R by

¥Y(y) =A / @|y|f<x>dx+ / G(x,y)dx.
rv 1(X) RN

Then, ¥ € C'(X,R) and its Fréchet derivative is

(W'(y),2) =4 / (O™ 2yzdx + / g(x, y)zdx
RN RN
for any y, z € X. Next, the functional 7, : X — R is defined by

Li(y) = O(y) - F().

Then it is clear that I, € C'(X, RY) and its Fréchet derivative is
(L) =M ( / Do(x, Vy) dX) / @(x, Vy) - Vzdx + / B(x) [YI" 7 yzdx
RN RN RN

- / _glxy)zdx -4 / ) o)y ?yz dx (3.1)
R R

for any y, z € X.

Proceeding the same arguments as in [13, Lemma 3.2], we have that the functionals ¥ and ¥’ are
compact operators on X.

Lemma 3.3. Assume that (H1) and (‘Y1) hold. Then, ¥ and Y’ are compact operators on X.

With the help of Lemmas 3.2 and 3.3, we show that the energy functional /, ensures the Cerami
condition ((C)-condition for short), i.e., any sequence {y,} C X such that {/,(y,)} is bounded and
I7,(y)lx-(1 + [yalx) — 0 as n — oo has a convergent subsequence. This plays a key role in obtaining
the existence of nontrivial weak solutions for the given problem. The basic idea of proofs of these
consequences follows the analogous arguments in [24]; see also [27].
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Lemma 3.4. Assume that (H1), (K1), (K2), (®1)—~(®5), (Y1) and (Y2) hold. Furthermore, we assume
that

(Y4) limyy-e % = oo uniformly for almost all x € RV,
Then, the functional 1, satisfies the (C)-condition for any A > O.

Proof. Let {y,} be a (C)-sequence in X, i.e.,

sup [L,(v,)l < 8 and (I;(y,), yn) = 0(1) = 0, asn — oo, (3.2)
neN
where & is a positive constant. By virtue of Lemmas 3.2 and 3.3, we have that @’ is a mapping of
type (S ) and ¥’ is a compact operator on X. Thus, because 7/ is of type (S ) and X is reflexive, it is
enough to ensure that the sequence {y,} is bounded in X. To this end, suppose, on the contrary, that
[valx > 1 and |y,|lx — o0 as n — oo. Let z, = y,/|y.lx. Then, |z,|x = 1. Passing to a subsequence, we
may assume that z, — z as n — oo in X; then, according to Lemma 2.7,

7, — zin LO®RY), p(x) < s(x) < p*(x) and z,(x) — z(x) ae.inR". (3.3)

Denote {a < |y,| < b}| = {x € R : a < |y,(x)| < b} for any real number a and b. Since B(x) — +oo as
|x| = oo, we have

1 1
( e —) / Byl Vdx ~ €, / (Dl + oo Clyal + bilyal ™) dx
P HJJrN {bvul<T)

{1 1
> = - - By Vdx — |
_2LM+/JAN(MyI x =Ko

for any positive constant C; and some positive constant K. In fact, by Young’s inequality, we know
that

1 1
( - —) / B(x)ly,l"Vdx - C, / (Iyal"® + ao(lyal + blyal?) dix
K] JrN

{lynl<T}

1 1 "(x X X
> ( - ;) / B(x)ly, [ dx - Cy / Iyl + o D) + al? + by, 1) dix
RN

{lyal<T}

1 1
( T _) [/ B0y, dx +/ B(x0)|y, 'Y dx]
Op* p) ey (bnl<T)

-G / (P + 1l + b1l ) dx
{lyal<1}

LY O®RN)

1 1
(ﬁ ¥ ‘—) [/ Q3()6)|yn|”()‘)d?€+/ %(x)|y,,|f’<")dx]
p H RN {lynl<T}

12+ b)) al?® dx — C,TT 7" (2 + b)) al?® dx - C,
{lynl<1} {1<[y,|I<T}

1 1 1
> —( - —) [/ B0y, dx +/ B(x)[y, [ dX]
2\dpt  u)| ey (ul<T}

AIMS Mathematics Volume 8, Issue 4, 9461-9482.
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- Co / yal?® dx - C,
{lynl<T}

(3.4)

where 50 = C;T9" (2 +by) and 51 isa positive constant. Since B(x) — +oo as |x| — oo, there is

Zﬂp uCo

vo > 0 such that |x| > y, implies that B(x) > . Then, we know that

21919 ,UCo

(x) (x)

BNy, = —op vl

for [x| > yo. Set B := {x € R : |x| < y}. Then, since B € L} (R"), we infer
/ Byl dx < C, and / yal?® dx < C3
{lynl<T} {lyal<TINBy,

for some positive constants 52 and 53. This, together with (3.4) and (3.5), yields

1 1
(F - —) / Byl dx - €y / (bl + o0yl + balyal ™) dx
)4 M) JRY

(nl<T)
I(r 1 ) ) )

> = - By " dx + By, " dx + By " dx
2\dp*  p)|Jey (Iynl<TINBS, (bnl<TINBy,

- Co [ / yal?™ dx + / [yal?™ dx] -G,

(lyal<T)NBS, (bnl<TINBy,

1( 1 1 / 1 1 1 ~

> S ma) [ v [ 2 (( )%(x) -C ) Il de —
2 (19117+ ﬂ) RW <Tingg, 2 \\OPT ’ ’
1, 1 1
! ! ™ gy

> 2(19p+ ﬂ)/RN BX)]ya"™ dx — Ko,

(3.5)

where K := CyC; + C}, as claimed. Combining this with (K1), (K2), (®3), (®5), (¥1) and (¥2), one

has

1
R] +1 > I/l(yn) - ,l_l <I/,l(yn)a yn>

B(x) o(x)
=M ®y(x,Vy,) d iy, IPY dx /l/ vyl ™ dx
(/RN o(x y)x) / ()Il Rm()"

1
- / G(x,y,)dx——-M ( / d)o(x,Vyn)dx) / o(x,Vy,) - Vy,dx
RN H R¥ RN

1 i Pl i |
- - / B(x) |y dx + = / 0(x) [y, ["™ dx + — / g0, Y,)y, dx
M Jr¥Y M Jr¥Y H

_ o(x) 1(x) /
”‘/RN Py 0dx= [ Gy

1
- —M(/ DOy(x, Vy,) dx)/ o(x, Vy,) - Vy, dx
H RV RV

2 1 M(/ Dy(x, Vyn)dx)/ o(x,Vy,) - Vy, dx+/ (x)l |P(x) dx
o R P)
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1
>d
- (ﬂr+

1
> dmo(

AIMS Mathematics

1 A 1
- = / B(x) [yal" dx + = / () [y dx + = / 8(X, yn)yn dx
M Jr¥ M Jr¥ H Jry

1
——)M( / d>o(x,Vyn)dx) / VY'Y dx
H R¥ RW

dmo (

+_
J7i

(1 1
+ A= -
M

> dmo(

1

ort

),
{lyal<

1

1 1
- —) / B(x) |y, 'Y dx + — / (8(X, yu)yn — HG(x,,)) dx
K] JrN M JrY

1
—) / 0(0) [yal™ dx
K] Jry

1 1 1
—) / Vyul” dx+(—+ - —) / B(x) [yal"™ dx
M) Jry dpt ) Jen

1
(&(x, yn)yn — uG(x,y,)) dx + — / (&(x, yn)yn — uG(x,y,)) dx

T} {lynl2T}

—_) / 0(0) [yal™ dx
t RN
1

1 1
) [ (= a) [ vt dx
M) Jew dpt ) Jen

1 _
/ (Iyal”™ + o(lyal + bilys|*®) dx - = / w(x) yl” dx
{lynl<T}

(l
A= -
pm

ort

{lynl=T}

1
—) / o) [yal" dx
Ky Jry

1 / ({1 1
o) [ s (o) [ s as
,U) RV 2\9p*  pu) Jew

1 - 1 1
- = / w(x) [yal” dx — /1(—_ - —)/ 0(x) |y dx — K¢
M Jry - p) ey

min{dmy, 1}

2

1 1
( - —)( [ o e [ s, dx)
ﬁr+ ,u RN RN

—1( / WO Il dx + / W) bl dx)
M A\JA, Ao

=24

min{dmy, 1}

2

2

-24

min{dmy, 1}

=24

I 1 - g
e LTI [ A e B

1 1 -1 - -
—_— = p - P n !’
Irt /J) |yn|X M (2|w|Ll)(§(4;) (Al)lynlL”(')(AO + wlynle(‘)(AZ))
I 1 r r [y
rou lQILmﬁ(%?o(RN) e {Iynl”(')(RN)’ el (')(RN)} -
1 1 -1 -

—_—— p - o b

ort ,U) Dl H (ZleLrw];(jf(Al) " a)) IanLP(A)(RN)
I 1

o ,l_l ) |Q|L17<~l;(¥3<~> (BY) e {Iynlzp(')(RN), IantLp(‘)(RN)} %

Volume 8, Issue 4, 9461-9482.



9471

min{dm, 1} - - -
2 - 5 |yn|p 2|(U| 1)’ (Al)lynlzp(-)(/\l) + wlynlim(/\z)
1 t tt
- 22 - ;)mlm . o max {15 gy Dl ey | = o
min{dmy, 1}
2 # W - - | nIX 2|w|L1}(§gf A +o Iynle()(RN)
-2 - ;) ol 1 (€5 Colic = S,
where C, is an embedding constant of X — L”O(R"). Hence, we know that
K] +1 ! 2 » r
R ol s o TO A2 R
1 o min{dmy, 1} [ 1 1 -
- __ > 0 - _
+ 2/l(t /l) IQleo l()(RN)(CZ + C))lynly + Ko > > o [l -

Let us divide this by % (1917 - i) [vn i_ and then take the limit supremum of this inequality as
n — oo. Then, this together with the relation (3.3) yields that

2(2|a)| 50 +a)) (2|w| 0 +a))

LrO-r~ (Ay) lim sup |Z I LrO-r~ (A}) I I
= ; 1 1 nly p(-)(RN . 1 LPO(RN
pmin{dmo, (g =) noe POE T min{dmg, 1)(55 — 5En

Hence, it follows that z # 0. Due to Remark 2.6, (K1), (K2), (®3) and the relation (3.2), we have that

Ia<yn>2M( / cDo<x,Vyn>dx) /. (())|n|f’<x> i
RN

_ _ Q( ) 1 g
/RN G(x,y,)dx /1/ ) [Vl

@ ( ) (x)
=5 /R q’O(x’Vy")d“/ p(x >' Dl dx

- [ Gedr=a [ ESp
. (@

B(X)|ya "V dx
RN

_ / G(x, yo)dx - A / CUNTEN
» e

in {dmy, ¥
Pt [ s S
'ﬂp+ RN

- / G(x, y)dx — A / L), g
o e

min {dm, ¥}

byal?” / Gx,y) dx
ﬁp+ X RN

2/1 - = + +
= Zlol o max{Cy Iyl C5 Iyaly } + o(1). (3.6)

= LPO-1O(RN)
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Since |y,|x — o0 as n — oo, we assert by (3.6) that

min {dmy, 7} -
/RN G(x,yn)dx > ﬁ—er|yn|§

22

O s (C5 + Cyaly = L(y,) > 0 as n— oo (3.7)

In addition, Lemma 2.1 and the assumptions (K2) and (®2) imply that

Li(yn) = M(/ D (x, Vyn)dx) / il )I a7 dx (3.8)
RN RN p( )

—/ G(x,yn)dx—A/ QLX) 0 g
o o 100

< M(/ Dp(x, Vyn)dx) / hiSi )l alP dx — / G(x, yn)dx
RV p(x) RN

sM( / Dy (x, Vyn)dx)+i_ / B(x) [y, [" dx — / G(x,y,)dx
RN P JrN RN
9

sM(l)(l +( / Dy (x, Vy,,)dx) )+i_ / B(x) [yul”™ dx — / G(x,y,)dx

RN P JrN RN

[
< Cy max{M(n,pi}(H / Do(x, Vy,)dx + / B(x) Iynlp(x)dx) - / G(x,y,)dx
— RN RN RN

9
sC4(1+b VP dx + / B) |yn|P<x>dx) _ / Gx, y)dx
RN RN RN
< 27Cyly 7 - / Gx, yo)dx
RN

for some positive constants C3, C4 and Cs, where M(1) < M(1) (1 + 7’9) for all T € R*, because, if
0 <7< 1, then M(7) = [; M(s)ds < M(1); also, if T > 1, then M(r) < M(1)r”. Then, we obtain by
the relation (3.8) that

1
2°Cs > ——| [ G(x,y)dx+ L. (3.9)
yuly?” \Jew

From (W¥4), we can choose sy > 1 such that G(x, s) > |s|ﬁ’7+ for all x € RY and |s| > so. Using (¥1),
there exists a positive constant K such that |G(x, s)| < K for all (x, s) € RY x [—s0, so]. Hence, there
exists a real number K, such that G(x, s) > K for all (x, s) € R x R; thus

G(x’yn) - 7<O >0

(3.10)
Iyaly?

forall x € R¥and alln € N. SetI'}, = {x eRN :z(x) # 0}. Suppose that meas(I';) # 0. By the
convergence (3.3), we infer that |y,(x)| = |z,(x)||[y,lx — o0 as n — oo for all x € I';. Furthermore,
owing to (4), one has

GGy _ . Gy
S = dim 2 g, 7 =
n—oo |y|

lim

n—oo |yn

(3.11)
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for all x € I'y. According to (3.7)—(3.11) and the Fatou lemma, we deduce that

2°Cs [.y G(x,y,) dx
2?Cs = lim inf 5 Jaw GO w)
n—eo fRN G(-x’ yn) dx + I/l()’n)

> lim inf/ G(x,yf) dx
R

n=o oy, Iv
G(x, yn ) K
:liminf/ %dx—hmsup/ 0y
nme JrY Iynlxp n—oo RN |yn Xp
G(x,y,) — K,
Zliminf/ %Wodx
e Jrn |yn|X
G(x,y,) - K
z/ liminf%dx
r n—oo ynX

G(x,y, + ) K
= / lim inf (X, Y) 12,77 dx — / lim sup 20 dx =
r I

9 p* Jp* ’
n— oo |yn|1 14 |yn 1XI7

n—oo

which is a contradiction. Hence, we have that meas(I';) = 0; thus, z(x) = O for almost all x € R".
Consequently, this leads to a contradiction; thus, {y,} is bounded in X. O

Let 2 be a separable and reflexive Banach space. Then, it is known (see [11, 50]) that there are
{e,} €W and {h,} € W* such that

W =spanfe, :n=1,2,---}, W =span{h’ :n=1,2,---}

and
Loy [1ifi=
<h"’e">_{o if i

Let us denote M, = spanfe,}, Vi = @izl W, and 3 = P, W,.

Lemma 3.5. ( [1,47]) Suppose that (€, | - |) is a Banach space, the functional ¥ € C'(€,R) ensures
the (C).-condition for any ¢ > 0 and F is even. If, for each large enough k € N, there are By > a; > 0
such that

(1) be:=inf{F ) : le = @,y €3k} = 0 as k— o
(2) ar:=max{F ) : lyle¢ = Br,y €V} <0,

then, ¥ has an unbounded sequence of critical values, i.e., there is a sequence {y,} C € such that
F'(y,) = 0 and F (y,) — +o0 as n — +oo.

Theorem 3.6. Assume that (H1), (K1), (K2), (®1)—(D5), (Y1), (Y2) and (Y4) hold. If Oy(x,—-&) =
Dy (x, &) holds for all (x,&) € RY x RN and g(x,—s) = —g(x, s) holds for all (x,s) € RN x R, then for
any A > 0, the problem (P,) possesses an unbounded sequence of nontrivial weak solutions {y,} in X
such that I)(y,) — oo asn — oo.
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Proof. Immediately, I, is an even functional and ensures the (C)-condition by Lemma 3.4. It suffices
to verify that there exist 8y > @, > 0 such that

(1) by :=inf{[,(y) : Ylx = ar,y € Ju} = 0 as k— o

(2) ax == max{L(y) : Ylx =By €V} <0

for k large enough. For convenience, we denote

Vik = Sup IylLI’(')(RN)’ Vo, = Sup |y|L‘I(')(RN)-
Iylx=1,y€3k Iylx=1,y€3k

Then, it is easy to ensure that v;; — 0 and v, — 0 as k — oo (see [20]). Denote v, = max{v;, vox}.
Then, we derive that v; < 1 for k large enough. For any y € 3, assume that |y|y > 1. With an analogous
argument to that in (3.6), it follows from the assumption (®4), Lemmas 2.1 and 2.5 and Remark 2.6
that, for k large enough,

Iﬂ(y):M( / (I)o(x,Vy)a’x)+ / Bl )| [PD dx — A / (x)| [ — / G(x,y)dx
RN RN p(x) RN 1(x) RN

in {dmy, ¢ -
min {dmo, 9} - ) / Xy - / Glx,y)dx
RV RY

- opt 1(x)
min {dmy,J} - 24
: lelx B |Q|LP(> 1) (RV) max {IylLP()(RN)’ Iyle(')(]RN)}
- 2|O-O|LP()(RN)Vk|y|X — _/ |y|q(x) dx
min {dmg, ¥}, - .
> ﬁ—er| Vly — _lgle f()(RN)Vk |y|X
2by - ot
— 2|0'0|L13’<4>(RN)vk|y|X - q—_VZ |y|;1( . (3.12)

Choose

1
~ 419p+vq b, P -q*
W= g~ min {dmy, 9} '

Since p~ < ¢* and v, — 0 as k — oo, we assert that @, — oo as k — oco. Hence, if y € 3; and |y|x = ay,
then we deduce that
min {dmgy,?} ,- 24 -
L) = Waf pu LQIL%(RN)V;‘ @, = 2oolproEyyvkax — 00 as k — oo,

which implies (1).

The proof of the condition (2) is carried out in a similar fashion as that of Theorem 1.3 of [1] (see
also [5]). For the convenience of readers, we give the proof. Suppose that the condition (2) does not
hold for some k. Then, there exists a sequence {y,} in 9, such that

[yalx = o0 asn — oo and I(y,) > 0. (3.13)
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Let z, = y,/ly.lx. Then, it is immediate that |z,|x = 1. Since dim9¥); < oo, we can choose z € Y, \ {0}
such that, up to a subsequence,

Iz, —zlx = 0 and z,(x) = z(x) fora.e. x € RVas n — oo.

We claim that z(x) = 0 for almost all x € RY. If z(x) # 0, then |y,(x)| — oo forall x € R¥ as n — oco. In
accordance with (W4), it follows that

G n . G sJyn +
1imM=1 (xz)ulﬁ” = 00 (3.14)

noe |y [P0 ey [

for all x € T, := {x eRN:z(x) # 0}. The analogous arguments to that in Lemma 3.4 yield that we
choose a K € R such that G(x, s) > K for all (x, s) € R¥ x R"; thus

Glxy) =K
Iyl

for all x € RY and all n € N. Using (3.14) and the Fatou lemma, one has

G(x, yu o G(x,y, .
lim inf/ (xﬂy ) dx = lim 1nf/ (% 30) dx —lim sup/
n—oo R p* n—oo RN dp* R

N Iyn Iyn n—0eo N Iyn ip
G(x,y,) — K
> Tim inf / %dx
n—oo I, Iyl’l XP
Glx,yn) — K
> / liminf%dx
r, "/ I)’nl

n . K
= / lim inf Gy )a’x / lim sup ———dx = co.
r, "7 Iynlx I n—oe Iynlxp

G yw)

—19[# X—> 0 aSn — oo,
BY [yaly

We may suppose that |y,|x > 1. Using the relation (3.8), we have

Thus,

I/l(yn) < 219(?5'.%1';’;[)+ - / G(X, yn) dx
RN

|)’n [219C / G yn) dx) — —00 asn — oo,
R

9
vyl

which is a contradiction to (3.13). This completes the proof. O

Definition 3.7. Suppose that (E, | - |) is a real reflexive and separable Banach space, ¥ € C'(E,R) and
c € R. We say that ¥ fulfills the (C);-condition (with respect to 9,) if any sequence {v,},en C E for
which v, € 9),, forany n € N,

F)—c and |(Fly,) le(1 +[va]) > 0, asn — oo,

has a subsequence converging to a critical point of ¥ .
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Proposition 3.8. ([20]) Suppose that (E, |]) is a Banach space and ¥ € C'(E,R) is an even functional.
If there is ko > 0 so that, for each k > ko, there exist 5; > a; > 0 such that

(D1) inf{F () : Vlg =Br,veE 3} =0;

(D2) by :=max{F(v): |Vlg = ar,veY} <0,

(D3) c; :=nf{FO): Vg <Br,ve 3}t —0ask — oo

(D4) F satisfies the (C):-condition for every c € [cy,, 0),

then ¥ admits a sequence of negative critical values c, < 0 satisfying ¢, — 0 asn — oo.

Lemma 3.9. Suppose that (H1), (K1), (K2), (®1)—(D5) and (Y1)-(VY4) are satisfied. Then, I, satisfies
the (C);-condition.

Proof. According to Lemmas 3.2 and 3.3, @’ is mapping of type (S.) and ¥’ is a compact operator
on X. Because X is a reflexive Banach space, the idea of the proof is essentially the same as that
in [20, Lemma 3.12]. O

Theorem 3.10. Suppose that (H1), (K1), (K2), (®1)—(D5) and (Y1)-(VY4) are satisfied. If Py(x, —¢) =
Dy (x, &) holds for all (x,&) € RN x RN and g(x,—s) = —g(x, s) holds for all (x,s) € R¥ X R, then the
problem (P,) admits a sequence of nontrivial solutions {y,} in X such that I,(y,) — 0 as n — oo for all
A>0.

Proof. Due to Lemma 3.9, we note that the functional I, is even and satisfies the (C);-condition for
every ¢ € [dy,,0). Now, we ensure the properties (D;)—(D3) in Proposition 3.8. To do this, let v, < 1
for k large enough, where v; is given in Theorem 3.6.

(D1): From (¥2), the definition of v, and an analogous argument to that for (3.6) and (3.12), it
follows that

min {dm, 9}

P _ t t*
L(y) = 9p Ivly _IQ|L O &) max {lyILh(-)(RN)’ IyIUJ(-)(RN)}
— ol o — 2 maxtiyl? o B o)
olrogyurogy = 2 Vo @yy Wlao@n)
min {dmg, 9} - ol
—_— _—— v
Sy ylx |Q|L 8% @k Ivlx

by .
- 2|UO|LP’<~>(RN)V1<|}’|X - q—_VZ |y|§1(

min {dmgy, 3} -
—Olylf( - (—IQ

bl) -
TV M?( = 2loolro@vyvilylx
Ip* q

Lp() 20 (RN)

for a sufficiently large k and |y|x > 1. Choose

1

41 2b \ Vi |7
ﬁk—[( lol w0 +—1)—k} , (3.15)

= LPO-O (RN) q- Co

where .
min {dmy, 7}
Cpi= ——.

Ip*t

AIMS Mathematics Volume 8, Issue 4, 9461-9482.
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Lety € 3, with [y|x = Br > 1 for k large enough. Then, we choose a ky € N such that

- (24 by
L) 2 Cobyly - (_'Q'm . q—) Ve DI = 2ol o vl
Co 2b, o D
> 7[3;{ — ZIO-OILp/(A)(RN) |:(_IQ|L17() t()(RN) + q_ CO Vk
>0

for all k € N with k > ko, since limy_,, 8 = oo. Therefore,

inf{Z;(y) : y € 3k ylx = B} = 0.

(D2): Since 9 is finite-dimensional, all norms are equivalent. Then, we find positive constants ¢ 4
and ¢, such that

Srilylx < lprogryy and |ylpoeyy < Saxlylx
for any y € 9. Let y € 9, with [y|x < 1. From (Y1) and (¥3), there are €, €, > 0 such that

G(x,5) 2 €n(0)ls| — €,

for almost all (x, s) € RY x R. From (®2), we get

/ (D()(x, Vy) dx < 63
RN

for some positive constant €. Then, we have

h(Y)=M( / d>o<x,Vy>dx)+ / AGUNVEPN / 00, ) / Gx,y) dx
RN RN p( ) RN ( ) RV

< ( sup M(f))/ Dp(x, Vy)dx+/ ?Iylp(x)dx
RN RN

0<¢<6; (x)

_¢, / OO dx + 65 / 7 dx
RN RN

< Celyly — € min{[yl%,

LKO@,RN)? |y|’2x(l)(n’RN)} + ¢, max{|y|

LIORN)’ IyILq()(RN)}
< Coyly — € min{¢f,. {3y + € max{s,. 5}y

for some positive constant Cs. Let f(s) = Cgs? — € min{gf’_k, g"l‘jk}s’(+ + G, max{g;”’k, ggjk}sq_. Since
k* < p~ < g, we infer that f(s) < 0 for all s € (0, s¢) for a sufficiently small s, € (0, 1). Hence, we
can find a; > 0 such that I;(y) < 0 for all y € 9 with [y|x = @, < s for k large enough. If necessary,
we can change k to a large value so that 8, > @, > 0 and

by :=max{,(y) : y € Vi, Iylx = ax} <O.

(D3): Because 9, N 3¢ # ¢ and 0 < @y < Bk, we have that ¢, < by < 0 for all k > k,. For any y € 3
with [yly = 1 and 0 < 7 < 34, one has

I,l(Ty):M( / CI)O(x,VTy)dx)+ / ()|Ty|f’<x>d -2 / olx )|r "@dx — / G(x,ty)dx
RN p(x) gy 1(X) RN
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> ——|Q|

- A
ax{T , | }
LP() r()(RN) | yILPU(RN)’I ylLl()(RN)

b, +
q
- 2|O-O|LP ()(RN)lTyILP( )(RN) - q maX{lTyILq()(RN)7 |Ty|Lq(-)(RN)}

22

.
()(RN),B;( Vi = 2loolproevBivi — —,Bk Vk

for a sufficiently large k. Hence, from the definition of 8, we infer

24 oo bi gt o
a4
0>c>- |QI p() /()(RN)'Bk Vi — 2|O—0|L17’(-)(RN)ﬁka - ;ﬁk Vi (316)
22 42 2b, P Lt
= ——|Q| [(—|Q| +—|C5' v T
Lp() r()(RN) Lp() r()(RN) q
1

2b [7—_2q+ [7+_])7*2q+

- /(. p~-2q%
210l [( lo IL;:() t()(RN) q- )CO ] Vi

q+
bl 2b, o a2
|QI _p0) + — CO v, pT-2q .
g |\t " oo®yy g

Because p~ < g, t"+p  <2¢",t7q" +q p” <2¢q" and v, — 0 as k - oo, we conclude that
limy o ¢ = 0.

Therefore, all properties of Proposition 3.8 are fulfilled, and we assert that the problem (P,) admits
a sequence of nontrivial solutions {y,} in X such that 7,(y,) — 0 as n — oo for all 1 > 0. m|

Remark 3.11. From the viewpoint of [5, 17, 20, 32], the assumptions (Y4) and (f1) are essential in
obtaining Theorem 3.10. Under these two assumptions, the existence of two sequences 0 < a; < [y
sufficiently large is established in the papers [5, 17, 20, 32]. Regrettably, as a result of utilizing an
analogous argument to that in [17, 20], we cannot show the property (D3) in Theorem 3.10. More
precisely, if we replace By in (3.15) with

1
5 26\ vV |
Lp() r()(RN) q | Co

and t* + p~ > q*, then, in the relation (3.16),

N

. 42 L2 Fer O

Zvli: —lol o CO Vk"_q — oo ask — oo;
= LrO-O (RN) q

thus, we cannot obtain the property (D3) in Br. However, the authors of [5, 27, 32] overcame the
difficulty resulting from this new setting for Bi. In contrast, the existence of two sequences 0 < a; <
Br — 0as k — oo is obtained in [36, 46, 47] when (f1) is satisfied. On the other hand, we get
Theorem 3.10 when (Y4) is not assumed and (f1) is changed into (Y3). In this direction, the proof of
Theorem 3.10 is different from that in the recent works [5, 17, 20, 32, 36,46, 47].
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4. Conclusions

In the present paper, on a new class of nonlinear term g, we present the existence results of a
sequence of infinitely many solutions by utilizing the fountain theorem and the dual fountain theorem as
the main tools. In particular, when we ensure assumptions in the dual fountain theorem, the conditions
on the nonlinear term g near zero and at infinity are crucial, however, we obtain the existence of
infinitely many small solutions without assuming them. This is a novelty of the present paper.
Additionally, a new research direction in strong relationship with several related applications is the
study of critical Kirchhoff-type equations:

_M(/ Dy(x, V) dx) divip(x, V) + B "7 y = A0y %y + g(x,y) in RY,
RN

where p(x) < #(x) for all x € RY and {x € RY : #(x) = p*(x)} # 0.
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