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1. Introduction

In recent years, the variational problems with nonstandard growth conditions have been extensively
studied by many researchers. The interest in variational problems with variable exponents is based in
their popularity in diverse fields of mathematical physics, such as electrorheological fluid dynamics,
elastic mechanics and image processing. We refer the readers to [2, 8, 9, 25, 28, 40, 43].

Set
C+(RN) =

{
l ∈ C(RN) : inf

x∈RN
l(x) > 1

}
.

For any m ∈ C+(RN), we define

m+ = sup
x∈RN

m(x) and m− = inf
x∈RN

m(x).

In the present paper, we establish several multiplicity results of nontrivial weak solutions to the p(·)-
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Laplacian-like equations of Kirchhoff-Schrödinger type:

−M
(ˆ
RN

Φ0(x,∇y) dx
)

div(ϕ(x,∇y)) +V(x) |y|p(x)−2 y = λ%(x)|y|t(x)−2y + g(x, y) in RN , (Pλ)

where p ∈ C+(RN) is Lipschitz continuous with 1 < p− ≤ p+ < N, p, q, t ∈ C+(RN) and 1 < t− ≤
t+ < p− ≤ p+ < q− ≤ q+ < p∗(x) for all x ∈ RN , ϕ(x, ξ) = ∇ξΦ0(x, ξ) with Φ0 : RN × RN → R

being continuously differentiable with respect to the second variable; M ∈ C(R+) is a real function, the
function ϕ(x, ξ) is of type |ξ|p(x)−2 ξ with p ∈ C+(RN), g : RN × R → R is a Carathéodory function and
V : RN → (0,∞) is a potential function with

(V) V ∈ L1
loc(R

N), ess infx∈RN V(x) > 0, and lim|x|→∞V(x) = +∞.

Also the Kirchhoff function M : [0,∞)→ R+ fulfills the conditions as follows:

(K1) M ∈ C(R+) fulfills inft∈R+ M(t) ≥ m0 > 0, where m0 is a constant.

(K2) There exists ϑ ∈ [1, N
N−p+

) such that ϑM(t) = ϑ
´ t

0 M(τ)dτ ≥ M(t)t for any t ≥ 0.

Regarding the nonlocal Kirchhoff term, it was first provided by Kirchhoff [29] to study an extension
of the classical D’Alembert’s wave equation by taking into account the changes in the length of the
strings during the vibrations. Elliptic problems of Kirchhoff type have a strong background in diverse
applications in physics and have been intensively investigated by many researchers in recent years; see
for example, [3, 4, 6, 7, 12, 15, 16, 19, 22, 23, 26, 31, 35, 36, 39, 42, 48, 49] and the references therein.

Suppose that ϕ, Φ0 and g satisfy the assumptions as follows:

(Φ1) The equality
Φ0(x, 0) = 0

holds for almost all x ∈ RN .

(Φ2) There is a constant b > 0 such that

|ϕ(x, ξ)| ≤ b|ξ|p(x)−1

holds for almost all x ∈ RN and for all ξ ∈ RN .

(Φ3) There is a positive constant d such that the relations

d |ξ|p(x) ≤ ϕ(x, ξ) · ξ and d|ξ|p(x) ≤ p+Φ0(x, ξ)

hold for all x ∈ RN and ξ ∈ RN .

(Φ4) Φ0(x, ·) is strictly convex in RN for all x ∈ RN .

(Φ5) The relation
r(x)Φ0(x, ξ) − ϕ(x, ξ) · ξ ≥ 0

holds for all ξ ∈ RN , where r ∈ C+(RN) is Lipschitz continuous with p(·) ≤ r(·) < p∗(·).

(H1) 0 ≤ % ∈ L
p(·)

p(·)−t(·)
(
RN

)
∩ L∞

(
RN

)
with meas

{
x ∈ RN : %(x) , 0

}
> 0.

AIMS Mathematics Volume 8, Issue 4, 9461–9482.



9463

(Ψ1) g : RN × R → R satisfies the Carathéodory condition and there exist a positive constant b1 and a
nonnegative function σ0 ∈ Lq′(·)(RN) ∩ L∞(RN) such that

|g(x, s)| ≤ σ0(x) + b1 |s|q(x)−1

for all (x, s) ∈ RN × R.

(Ψ2) There are µ > ϑr+, T > 0 and a function ω with 0 ≤ ω ∈ L
p(·)

p(·)−p− (Λ1) on Λ1 := {x ∈ RN : p(x) >
p−} and ω(x) ≡ positive constant ω̃ on Λ2 := {x ∈ RN : p(x) = p−} such that meas{x ∈ RN :
ω(x) > 0} , 0 and

µG(x, s) ≤ sg(x, s) + ω(x) |s|p
−

for all x ∈ RN and |s| ≥ T , where G(x, s) =
´ s

0 g(x, t) dt.

(Ψ3) There exist C > 0, 1 < κ− ≤ κ+ < p− ≤ p+, τ(x) > 1 with p(x) ≤ τ′(x)κ(x) ≤ p∗(x) for all x ∈ RN

and a positive function η ∈ Lτ(·)(RN) ∩ L∞(RN) such that

lim inf
|s|→0

g(x, s)
η(x) |s|κ(x)−2 s

≥ C

uniformly for almost all x ∈ RN .

The main goal of this paper is deriving several existence results of multiple solutions to the p(·)-
Laplacian-like equations of Kirchhoff-Schrödinger type with concave-convex nonlinearities. The first
one is to discuss that the problem (Pλ) has a sequence of infinitely many large energy solutions. The
other one is to establish the existence of a sequence of infinitely many small energy solutions to the
problem (Pλ). The primary tools to obtain such multiplicity results are the fountain theorem and the
dual fountain theorem, respectively. Such existence results of multiple solutions to nonlinear elliptic
problems are particularly motivated by the contributions in recent studies [1,5,17,18,20,24,28,31,32,
34, 36–38, 44, 46], and the references therein. In particular, Alves and Liu [1] obtained the existence
and multiplicity results to the superlinear p(x)-Laplacian problems:

−div(|∇y|p(x)−2∇y) +V(x)|y|p(x)−2y = g(x, y) in RN .

Here, the potential function V ∈ C(RN) satisfies the appropriate conditions and the Carathéodory
function g : RN × R→ R satisfies the following assumptions:

( f 1) G(x, `) = o(|`|p(x)) as ` → 0 uniformly for all x ∈ RN .

( f 2) There is a constant θ ≥ 1 such that

θG(x, `) ≥ G(x, s`)

for (x, `) ∈ RN × R and s ∈ [0, 1], where G(x, `) = g(x, `)` − p+G(x, `).

The condition ( f 2) is initially provided by the works of Jeanjean [21]. In the last few decades,
there were substantial studies dealing with the p-Laplacian problem by assuming ( f 2); see [37, 38];
see also [26, 45] for the case of variable exponents p(·). Recently, Lin and Tang [34] established
various theorems on the existence of solutions of p-Laplacian equations with mild conditions for the
superlinear term f , which is deeply different from those investigated in [21, 34, 37, 38]. Also, the
authors of [20] obtained the existence results of infinitely many weak solutions to quasilinear elliptic
equations with variable exponents under the following condition:
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( f 3) There exists a constant C > 0 such that

`g(x, `) − p+G(x, `) ≤ ςg(x, ς) − p+G(x, ς) + C

for any x ∈ Ω and 0 < ` < ς or ς < ` < 0, where Ω ⊂ RN is a bounded domain with a smooth
boundary,

which was first provided by Miyagaki and Souto [41]. Let us consider the function

g(x, `) = σ(x)
(
|`|q(x)−2 ` ln (1 + |`|) +

|`|q(x)−1 `

1 + |`|

)
with its primitive function

G(x, `) =
σ(x)
q(x)

|`|q(x) ln (1 + |`|)

for all ` ∈ R and q ∈ C+(RN), where p+ < q(x) for all x ∈ RN and σ ∈ C(RN ,R) with 0 < infx∈RN σ(x) ≤
supx∈RN σ(x) < ∞. Then, this example satisfies the assumptions ( f 1)–( f 3), but not (Ψ3).

Remark 1.1. If we consider the function

g(x, s) = σ(x)
(
η(x) |s|κ(x)−2 s + |s|p

−−2 s +
2
p−

sin s
)

with its primitive function

G(x, s) = σ(x)
(
η(x)
κ(x)
|s|κ(x) +

1
p−
|s|p

−

−
2
p−

cos s +
2
p−

)
,

where σ ∈ C(RN ,R) with 0 < infx∈RN σ(x) ≤ supx∈RN σ(x) < ∞, and κ and η are given in (Ψ3), then it
is clear that this example satisfies the conditions (Ψ1)–(Ψ3), but not ( f 1)–( f 3).

In this direction, regarding a new class of nonlinear term g which is different from the previous
related works, we give the existence results of a sequence of infinitely many energy solutions by
employing variational methods. However, our proof of the existence of multiple small energy solutions
is slightly different from those of the previous related works [5,17,20,32,36,46,47]. Roughly speaking,
in view of [5, 17, 20, 32], the condition ( f 1) plays an important role in ensuring all assumptions in the
dual fountain theorem; however, we verify them when ( f 1) is changed into (Ψ3).

The outline of this paper is as follows. We present some necessary preliminary knowledge of
function spaces which we will use throughout the paper. Next, we provide the variational framework
related to the problem (Pλ) and then obtain various existence results of infinitely many nontrivial
solutions to the p(·)-Laplacian-like equations with concave-convex-type nonlinearities under suitable
conditions on g.

2. Preliminaries

In this section, we briefly demonstrate some definitions and essential properties of Lebesgue-
Sobolev spaces with a variable exponent in RN , which are main analysis tools for our work. For a
deeper treatment on these spaces, we refer the reader to [8, 9, 14].
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For any l ∈ C+(RN), we introduce the variable exponent Lebesgue space

Ll(·)(RN) :=
{

y : y is a measurable real-valued function,
ˆ
RN
|y(x)|l(x) dx < ∞

}
,

endowed with the Luxemburg norm

||y||Ll(·)(RN ) = inf
{
λ > 0 :

ˆ
RN

∣∣∣∣y(x)
λ

∣∣∣∣l(x)
dx ≤ 1

}
.

The dual space of Ll(·)(RN) is Ll′(·)(RN), where 1/l(x) + 1/l′(x) = 1.

The variable exponent Sobolev space W1,l(·)(RN) is defined by

W1,l(·)(RN) =
{
y ∈ Ll(·)(RN) : |∇y| ∈ Ll(·)(RN)

}
,

with the norm
||y||W1,l(·)(RN ) = ||∇y||Ll(·)(RN ) + ||y||Ll(·)(RN ). (2.1)

We list some well-known results.

Lemma 2.1. [14] The space Ll(·)(RN) is a uniformly convex and separable Banach space. For any
y ∈ Ll(·)(RN) and z ∈ Ll′(·)(RN), we have∣∣∣∣ˆ

RN
yz dx

∣∣∣∣ ≤ (
1
l−

+
1

(l′)−

)
||y||Ll(·)(RN )||z||Ll′(·)(RN ) ≤ 2||y||Ll(·)(RN )||z||Ll′(·)(RN ).

Lemma 2.2. ( [14]) If 1/l(x) + 1/m(x) + 1/n(x) = 1, then, for any y ∈ Ll(·)(RN), z ∈ Lm(·)(RN) and
w ∈ Ln(·)(RN), ∣∣∣∣∣ˆ

RN
yzw dx

∣∣∣∣∣ ≤ (
1
l−

+
1

m−
+

1
n−

)
||y||Ll(·)(RN )||z||Lm(·)(RN )||w||Ln(·)(RN )

≤ 3||y||Ll(·)(RN )||z||Lm(·)(RN )||w||Ln(·)(RN ).

Lemma 2.3. ( [14]) Denote

ρ(y) =

ˆ
RN
|y|l(x) dx for all y ∈ Ll(·)(RN).

Then,

(1) ρ(y) > 1 (= 1; < 1) if and only if ||y||Lp(·)(RN ) > 1 (= 1; < 1), respectively;

(2) if ||y||Ll(·)(RN ) > 1, then ||y||l
−

Ll(·)(RN ) ≤ ρ(y) ≤ ||y||l
+

Ll(·)(RN );

(3) if ||y||Ll(·)(RN ) < 1, then ||y||l
+

Ll(·)(RN ) ≤ ρ(y) ≤ ||y||l
−

Ll(·)(RN ).

Lemma 2.4. ( [10]) Let l ∈ C+(RN) and n ∈ L∞(RN) be such that 1 ≤ l(x)n(x) ≤ ∞ for almost all
x ∈ RN . If y ∈ Ll(·)n(·)(RN) with y , 0, then the following is true:
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(1) if ||y||Ll(·)n(·)(RN ) > 1, then ||y||n
−

Ll(·)n(·)(RN ) ≤ || |y|
n(x)
||Ll(·)(RN ) ≤ ||y||n

+

Ll(·)n(·)(RN );

(2) if ||y||Ll(·)n(·)(RN ) < 1, then ||y||n
+

Ll(·)n(·)(RN ) ≤ || |y|
n(x)
||Ll(·)(RN ) ≤ ||y||n

−

Ll(·)n(·)(RN ).

Lemma 2.5. ( [14]) Assume that h : RN → R is Lipschitz continuous with 1 < h− ≤ h+ < N. Let
n ∈ L∞(RN) and h(x) ≤ n(x) ≤ h∗(x) for almost all x ∈ RN . Then, we have a continuous embedding
W1,h(·)(RN) ↪→ Ln(·)(RN).

When p ∈ C+(RN) and the potential function V satisfies (V), let us define the linear subspace

X =

{
y ∈ W1,p(·)(RN) :

ˆ
RN

(
|∇y|p(x) +V(x) |y|p(x)

)
dx < +∞

}
with the norm

||y||X = inf
{
λ > 0 :

ˆ
RN

(∣∣∣∣∣∇y
λ

∣∣∣∣∣p(x)

+V(x)
∣∣∣∣∣ yλ

∣∣∣∣∣p(x))
dx ≤ 1

}
,

which is equivalent to the norm (2.1).

Remark 2.6. ( [13]) Denote

ρ(y) =

ˆ
RN

(
|∇y|p(x) +V(x)|y|p(x)

)
dx for all y ∈ X.

If the assumption (V) is satisfied, then

(1) ρ(y) > 1 (= 1; < 1) if and only if ||y||X > 1 (= 1; < 1), respectively;

(2) if ||y||X > 1, then ||y||p
−

X ≤ ρ(y) ≤ ||y||p
+

X ;

(3) if ||y||X < 1, then ||y||p
+

X ≤ ρ(y) ≤ ||y||p
−

X .

Lemma 2.7. ( [1]) If the assumption (V) is satisfied, then

(1) we have a compact embedding X ↪→ Lp(·)(RN);

(2) for any measurable function q : RN → R with p(x) < q(x) for all x ∈ RN , there exists a compact
embedding X ↪→ Lq(·)(RN) if inf

x∈RN
(p∗(x) − q(x)) > 0.

Throughout this paper, let p ∈ C+(RN) be Lipschitz continuous with 1 < p− ≤ p+ < N and the
potential V satisfy the condition (V) . Furthermore, 〈·, ·〉 denotes the pairing of X and its dual X∗.

3. Existence of infinitely many solutions

In this section, we present the existence of infinitely many nontrivial solutions to the problem (Pλ)
by utilizing the fountain theorem and the dual fountain theorem as the primary tools.

Definition 3.1. By a solution of the problem (Pλ), we mean a function y ∈ X such that

M
(ˆ
RN

Φ0(x,∇y) dx
) ˆ
RN
ϕ(x,∇y) · ∇z dx +

ˆ
RN
V(x) |y|p(x)−2 yz dx

= λ

ˆ
RN
%(x)|y|r(x)−2yz dx +

ˆ
RN

g(x, y)z dx

for all z ∈ X.

AIMS Mathematics Volume 8, Issue 4, 9461–9482.



9467

Let us define the functional Φ : X → R by

Φ(y) =M

(ˆ
RN

Φ0(x,∇y) dx
)

+

ˆ
RN

V(x)
p(x)

|y|p(x) dx.

Under the conditions (Φ1)–(Φ3), we have, by Lemma 3.2 in [33], that Φ is well defined on X, Φ ∈

C1(X,R) and its Fréchet derivative is given by

〈Φ′(y), z〉 = M
(ˆ
RN

Φ0(x,∇y) dx
)ˆ
RN
ϕ(x,∇y) · ∇z dx +

ˆ
RN
V(x) |y|p(x)−2 yz dx.

According to the analogous arguments in [30, 33], the following assertion is easily verified, so we
omit the proof.

Lemma 3.2. Suppose that (K1), (K2) and (Φ1)–(Φ4) are fulfilled. Then, Φ : X → R is weakly lower
semicontinuous and convex on X. In addition, Φ′ is a mapping of type (S +), i.e., if yn ⇀ y in X and
lim supn→∞ 〈Φ

′(yn) − Φ′(y), yn − y〉 ≤ 0, then yn → y in X as n→ ∞.

Define the functional Ψ : X → R by

Ψ(y) = λ

ˆ
RN

%(x)
t(x)
|y|t(x)dx +

ˆ
RN

G(x, y) dx.

Then, Ψ ∈ C1(X,R) and its Fréchet derivative is

〈Ψ′(y), z〉 := λ

ˆ
RN
%(x)|y|t(x)−2yz dx +

ˆ
RN

g(x, y)z dx

for any y, z ∈ X. Next, the functional Iλ : X → R is defined by

Iλ(y) = Φ(y) − Ψ(y).

Then it is clear that Iλ ∈ C1(X,RN) and its Fréchet derivative is〈
I′λ(y), z

〉
= M

(ˆ
RN

Φ0(x,∇y) dx
)ˆ
RN
ϕ(x,∇y) · ∇z dx +

ˆ
RN
V(x) |y|p(x)−2 yz dx

−

ˆ
RN

g(x, y)z dx − λ
ˆ
RN
%(x)|y|t(x)−2yz dx (3.1)

for any y, z ∈ X.

Proceeding the same arguments as in [13, Lemma 3.2], we have that the functionals Ψ and Ψ′ are
compact operators on X.

Lemma 3.3. Assume that (H1) and (Ψ1) hold. Then, Ψ and Ψ′ are compact operators on X.

With the help of Lemmas 3.2 and 3.3, we show that the energy functional Iλ ensures the Cerami
condition ((C)-condition for short), i.e., any sequence {yn} ⊂ X such that {Iλ(yn)} is bounded and
||I′λ(yn)||X∗(1 + ||yn||X) → 0 as n → ∞ has a convergent subsequence. This plays a key role in obtaining
the existence of nontrivial weak solutions for the given problem. The basic idea of proofs of these
consequences follows the analogous arguments in [24]; see also [27].
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Lemma 3.4. Assume that (H1), (K1), (K2), (Φ1)–(Φ5), (Ψ1) and (Ψ2) hold. Furthermore, we assume
that

(Ψ4) lim|s|→∞
G(x,s)
|s|ϑp+ = ∞ uniformly for almost all x ∈ RN .

Then, the functional Iλ satisfies the (C)-condition for any λ > 0.

Proof. Let {yn} be a (C)-sequence in X, i.e.,

sup
n∈N
|Iλ(yn)| ≤ K1 and

〈
I′λ(yn), yn

〉
= o(1)→ 0, as n→ ∞, (3.2)

where K1 is a positive constant. By virtue of Lemmas 3.2 and 3.3, we have that Φ′ is a mapping of
type (S +) and Ψ′ is a compact operator on X. Thus, because I′λ is of type (S +) and X is reflexive, it is
enough to ensure that the sequence {yn} is bounded in X. To this end, suppose, on the contrary, that
||yn||X > 1 and ||yn||X → ∞ as n → ∞. Let zn = yn/||yn||X. Then, ||zn||X = 1. Passing to a subsequence, we
may assume that zn ⇀ z as n→ ∞ in X; then, according to Lemma 2.7,

zn → z in Ls(·)(RN), p(x) ≤ s(x) < p∗(x) and zn(x)→ z(x) a.e. in RN . (3.3)

Denote {a ≤ |yn| ≤ b}| = {x ∈ RN : a ≤ |yn(x)| ≤ b} for any real number a and b. Since V(x) → +∞ as
|x| → ∞, we have(

1
ϑp+

−
1
µ

)ˆ
RN
V(x)|yn|

p(x)dx −C1

ˆ
{|yn |≤T }

(
|yn|

p(x) + σ0(x)|yn| + b1|yn|
q(x)

)
dx

≥
1
2

(
1
ϑp+

−
1
µ

) ˆ
RN
V(x)|yn|

p(x)dx − K0

for any positive constant C1 and some positive constant K0. In fact, by Young’s inequality, we know
that (

1
ϑp+

−
1
µ

) ˆ
RN
V(x)|yn|

p(x)dx −C1

ˆ
{|yn |≤T }

(
|yn|

p(x) + σ0(x)|yn| + b1|yn|
q(x)

)
dx

≥

(
1
ϑp+

−
1
µ

)ˆ
RN
V(x)|yn|

p(x)dx −C1

ˆ
{|yn |≤T }

(
|yn|

p(x) + σ
q′(x)
0 (x) + |yn|

q(x) + b1|yn|
q(x)

)
dx

≥
1
2

(
1
ϑp+

−
1
µ

) [ˆ
RN
V(x)|yn|

p(x) dx +

ˆ
{|yn |≤T }

V(x)|yn|
p(x) dx

]
−C1

ˆ
{|yn |≤1}

(
|yn|

p(x) + |yn|
q(x) + b1|yn|

q(x)
)

dx

−C1

ˆ
{1<|yn |≤T }

(
|yn|

p(x) + |yn|
q(x) + b1|yn|

q(x)
)

dx −C1(1 + ||σ0||
(q′)+

Lq′(·)(RN )
)

≥
1
2

(
1
ϑp+

−
1
µ

) [ˆ
RN
V(x)|yn|

p(x) dx +

ˆ
{|yn |≤T }

V(x)|yn|
p(x) dx

]
−C1 (2 + b1)

ˆ
{|yn |≤1}

|yn|
p(x) dx −C1T q+−p− (2 + b1)

ˆ
{1<|yn |≤T }

|yn|
p(x) dx − C̃1

≥
1
2

(
1
ϑp+

−
1
µ

) [ˆ
RN
V(x)|yn|

p(x) dx +

ˆ
{|yn |≤T }

V(x)|yn|
p(x) dx

]
AIMS Mathematics Volume 8, Issue 4, 9461–9482.
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− C̃0

ˆ
{|yn |≤T }

|yn|
p(x) dx − C̃1, (3.4)

where C̃0 := C1T q+−p− (2 + b1) and C̃1 is a positive constant. Since V(x) → +∞ as |x| → ∞, there is
γ0 > 0 such that |x| ≥ γ0 implies that V(x) ≥ 2ϑp+µC̃0

µ−ϑp+ . Then, we know that

V(x)|yn|
p(x) ≥

2ϑp+µC̃0

µ − ϑp+
|yn|

p(x) (3.5)

for |x| ≥ γ0. Set Bγ := {x ∈ RN : |x| < γ}. Then, since V ∈ L1
loc(R

N), we infer
ˆ
{|yn |≤T }∩Bγ0

V(x)|yn|
p(x) dx ≤ C̃2 and

ˆ
{|yn |≤T }∩Bγ0

|yn|
p(x) dx ≤ C̃3

for some positive constants C̃2 and C̃3. This, together with (3.4) and (3.5), yields(
1
ϑp+

−
1
µ

)ˆ
RN
V(x)|yn|

p(x) dx −C1

ˆ
{|yn |≤T }

(
|yn|

p(x) + σ0(x)|yn| + b1|yn|
q(x)

)
dx

≥
1
2

(
1
ϑp+

−
1
µ

) ˆ
RN
V(x)|yn|

p(x) dx +

ˆ
{|yn |≤T }∩Bc

γ0

V(x)|yn|
p(x) dx +

ˆ
{|yn |≤T }∩Bγ0

V(x)|yn|
p(x) dx


− C̃0

ˆ
{|yn |≤T }∩Bc

γ0

|yn|
p(x) dx +

ˆ
{|yn |≤T }∩Bγ0

|yn|
p(x) dx

 − C̃1

≥
1
2

(
1
ϑp+

−
1
µ

) ˆ
RN
V(x)|yn|

p(x) dx +

ˆ
{|yn |≤T }∩Bc

γ0

1
2

((
1
ϑp+

−
1
µ

)
V(x) − C̃0

)
|yn|

p(x) dx − K0

≥
1
2

( 1
ϑp+

−
1
µ

) ˆ
RN
V(x)|yn|

p(x) dx − K0,

where K0 := C̃0C̃3 + C̃1, as claimed. Combining this with (K1), (K2), (Φ3), (Φ5), (Ψ1) and (Ψ2), one
has

K1 + 1 ≥ Iλ(yn) −
1
µ

〈
I′λ(yn), yn

〉
=M

(ˆ
RN

Φ0(x,∇yn) dx
)

+

ˆ
RN

V(x)
p(x)

|yn|
p(x) dx − λ

ˆ
RN

%(x)
t(x)
|yn|

t(x) dx

−

ˆ
RN

G(x, yn) dx −
1
µ

M
(ˆ
RN

Φ0(x,∇yn) dx
) ˆ
RN
ϕ(x,∇yn) · ∇yn dx

−
1
µ

ˆ
RN
V(x) |yn|

p(x) dx +
λ

µ

ˆ
RN
%(x) |yn|

t(x) dx +
1
µ

ˆ
RN

g(x, yn)yn dx

≥
1
ϑr+

M
(ˆ
RN

Φ0(x,∇yn) dx
) ˆ
RN
ϕ(x,∇yn) · ∇yn dx +

ˆ
RN

V(x)
p(x)

|yn|
p(x) dx

− λ

ˆ
RN

%(x)
t(x)
|yn|

t(x) dx −
ˆ
RN

G(x, yn) dx

−
1
µ

M
(ˆ
RN

Φ0(x,∇yn) dx
)ˆ
RN
ϕ(x,∇yn) · ∇yn dx
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−
1
µ

ˆ
RN
V(x) |yn|

p(x) dx +
λ

µ

ˆ
RN
%(x) |yn|

t(x) dx +
1
µ

ˆ
RN

g(x, yn)yn dx

≥ d
(

1
ϑr+
−

1
µ

)
M

(ˆ
RN

Φ0(x,∇yn) dx
) ˆ
RN
|∇yn|

p(x) dx

+

(
1
ϑp+

−
1
µ

) ˆ
RN
V(x) |yn|

p(x) dx +
1
µ

ˆ
RN

(g(x, yn)yn − µG(x, yn)) dx

− λ

(
1
t−
−

1
µ

)ˆ
RN
%(x) |yn|

t(x) dx

≥ dm0

(
1
ϑr+
−

1
µ

) ˆ
RN
|∇yn|

p(x) dx +

(
1
ϑp+

−
1
µ

)ˆ
RN
V(x) |yn|

p(x) dx

+
1
µ

ˆ
{|yn |≤T }

(g(x, yn)yn − µG(x, yn)) dx +
1
µ

ˆ
{|yn |≥T }

(g(x, yn)yn − µG(x, yn)) dx

+ λ

(
1
µ
−

1
t−

)ˆ
RN
%(x) |yn|

t(x) dx

≥ dm0

(
1
ϑr+
−

1
µ

) ˆ
RN
|∇yn|

p(x) dx +

(
1
ϑp+

−
1
µ

)ˆ
RN
V(x) |yn|

p(x) dx

−C1

ˆ
{|yn |≤T }

(
|yn|

p(x) + σ0(x)|yn| + b1|yn|
q(x)

)
dx −

1
µ

ˆ
{|yn |≥T }

ω(x) |yn|
p− dx

− λ

(
1
t−
−

1
µ

)ˆ
RN
%(x) |yn|

t(x) dx

≥ dm0

(
1
ϑr+
−

1
µ

) ˆ
RN
|∇yn|

p(x) dx +
1
2

(
1
ϑp+

−
1
µ

)ˆ
RN
V(x) |yn|

p(x) dx

−
1
µ

ˆ
RN
ω(x) |yn|

p− dx − λ
(

1
t−
−

1
µ

)ˆ
RN
%(x) |yn|

t(x) dx − K0

≥
min{dm0, 1}

2

(
1
ϑr+
−

1
µ

) (ˆ
RN
|∇yn|

p(x) dx +

ˆ
RN
V(x) |yn|

p(x) dx
)

−
1
µ

(ˆ
Λ1

ω(x) |yn|
p− dx +

ˆ
Λ2

ω(x) |yn|
p− dx

)
− 2λ

(
1
t−
−

1
µ

)
||%||

L
p(·)

p(·)−t(·) (RN)
max

{
||yn||

t−

Lp(·)(RN), ||yn||
t+

Lp(·)(RN)

}
− K0

≥
min{dm0, 1}

2

(
1
ϑr+
−

1
µ

)
||yn||

p−

X −
1
µ

(
2||ω||

L
p(·)

p(·)−p− (Λ1)
||yn||

p−

Lp(·)(Λ1) + ω̃||yn||
p−

Lp(·)(Λ2)

)
− 2λ

(
1
t−
−

1
µ

)
||%||

L
p(·)

p(·)−t(·) (RN)
max

{
||yn||

t−

Lp(·)(RN), ||yn||
t+

Lp(·)(RN)

}
− K0

≥
min{dm0, 1}

2

(
1
ϑr+
−

1
µ

)
||yn||

p−

X −
1
µ

(
2||ω||

L
p(·)

p(·)−p− (Λ1)
+ ω̃

)
||yn||

p−

Lp(·)(RN )

− 2λ
(

1
t−
−

1
µ

)
||%||

L
p(·)

p(·)−t(·) (RN)
max

{
||yn||

t−

Lp(·)(RN), ||yn||
t+

Lp(·)(RN)

}
− K0
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≥
min{dm0, 1}

2

(
1
ϑr+
−

1
µ

)
||yn||

p−

X −
1
µ

(
2||ω||

L
p(·)

p(·)−p− (Λ1)
||yn||

p−

Lp(·)(Λ1) + ω̃||yn||
p−

Lp(·)(Λ2)

)
− 2λ

(
1
t−
−

1
µ

)
||%||

L
p(·)

p(·)−t(·) (RN)
max

{
||yn||

t−

Lp(·)(RN), ||yn||
t+

Lp(·)(RN)

}
− K0

≥
min{dm0, 1}

2

(
1
ϑr+
−

1
µ

)
||yn||

p−

X −
1
µ

(
2||ω||

L
p(·)

p(·)−p− (Λ1)
+ ω̃

)
||yn||

p−

Lp(·)(RN )

− 2λ
(

1
t−
−

1
µ

)
||%||

L
p(·)

p(·)−t(·) (RN)
(Ct+

2 + Ct−
2 )||yn||

t+
X − K0,

where C2 is an embedding constant of X ↪→ Lp(·)(RN). Hence, we know that

K1 + 1 +
1
µ

(
2||ω||

L
p(·)

p(·)−p− (Λ1)
+ ω̃

)
||yn||

p−

Lp(·)(RN )

+ 2λ
(

1
t−
−

1
µ

)
||%||

L
p(·)

p(·)−t(·) (RN)
(Ct+

2 + Ct−
2 )||yn||

t+
X + K0 ≥

min{dm0, 1}
2

(
1
ϑr+
−

1
µ

)
||yn||

p−

X .

Let us divide this by min{dm0,1}
2

(
1
ϑr+ −

1
µ

)
||yn||

p−

X and then take the limit supremum of this inequality as
n→ ∞. Then, this together with the relation (3.3) yields that

1 ≤
2
(
2||ω||

L
p(·)

p(·)−p− (Λ1)
+ ω̃

)
µmin{dm0, 1}( 1

ϑr+ −
1
µ
)

lim sup
n→∞

||zn||
p−

Lp(·)(RN ) =

2
(
2||ω||

L
p(·)

p(·)−p− (Λ1)
+ ω̃

)
µmin{dm0, 1}( 1

ϑr+ −
1
µ
)
||z||p

−

Lp(·)(RN ).

Hence, it follows that z , 0. Due to Remark 2.6, (K1), (K2), (Φ3) and the relation (3.2), we have that

Iλ(yn) ≥ M
(ˆ
RN

Φ0(x,∇yn) dx
)

+

ˆ
RN

V(x)
p(x)

|yn|
p(x) dx

−

ˆ
RN

G(x, yn) dx − λ
ˆ
RN

%(x)
t(x)
|yn|

t(x) dx

≥
m0

ϑ

ˆ
RN

Φ0(x,∇yn)dx +

ˆ
RN

V(x)
p(x)
|yn|

p(x)dx

−

ˆ
RN

G(x, yn)dx − λ
ˆ
RN

%(x)
t(x)
|yn|

t(x)dx

≥
dm0

ϑp+

ˆ
RN
|∇yn|

p(x)dx +
1
p+

ˆ
RN
V(x)|yn|

p(x)dx

−

ˆ
RN

G(x, yn)dx − λ
ˆ
RN

%(x)
t(x)
|yn|

t(x)dx

≥
min {dm0, ϑ}

ϑp+

ˆ
RN
|∇yn|

p(x) +V(x)|yn|
p(x)dx

−

ˆ
RN

G(x, yn)dx − λ
ˆ
RN

%(x)
t(x)
|yn|

t(x)dx

≥
min {dm0, ϑ}

ϑp+
||yn||

p−

X −

ˆ
RN

G(x, yn) dx

−
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
max

{
Ct−

2 ||yn||
t−
X ,C

t+
2 ||yn||

t+
X

}
+ o(1). (3.6)
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Since ||yn||X → ∞ as n→ ∞, we assert by (3.6) that
ˆ
RN

G(x, yn) dx ≥
min {dm0, ϑ}

ϑp+
||yn||

p−

X

−
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
(Ct+

2 + Ct−
2 )||yn||

t+
X − Iλ(yn)→ ∞ as n→ ∞. (3.7)

In addition, Lemma 2.1 and the assumptions (K2) and (Φ2) imply that

Iλ(yn) =M

(ˆ
RN

Φ0(x,∇yn)dx
)

+

ˆ
RN

V(x)
p(x)

|yn|
p(x) dx (3.8)

−

ˆ
RN

G(x, yn)dx − λ
ˆ
RN

%(x)
t(x)
|yn|

t(x) dx

≤ M

(ˆ
RN

Φ0(x,∇yn) dx
)

+

ˆ
RN

V(x)
p(x)

|yn|
p(x) dx −

ˆ
RN

G(x, yn)dx

≤ M

(ˆ
RN

Φ0(x,∇yn) dx
)

+
1
p−

ˆ
RN
V(x) |yn|

p(x) dx −
ˆ
RN

G(x, yn)dx

≤ M(1)
1 +

(ˆ
RN

Φ0(x,∇yn)dx
)ϑ +

1
p−

ˆ
RN
V(x) |yn|

p(x) dx −
ˆ
RN

G(x, yn)dx

≤ C3 max{M(1),
1
p−
}

(
1 +

ˆ
RN

Φ0(x,∇yn)dx +

ˆ
RN
V(x) |yn|

p(x) dx
)ϑ
−

ˆ
RN

G(x, yn)dx

≤ C4

(
1 + b

ˆ
RN
|∇yn|

p(x) dx +

ˆ
RN
V(x) |yn|

p(x) dx
)ϑ
−

ˆ
RN

G(x, yn)dx

≤ 2ϑC5||yn||
ϑp+

X −

ˆ
RN

G(x, yn)dx

for some positive constants C3, C4 and C5, where M(τ) ≤ M(1)
(
1 + τϑ

)
for all τ ∈ R+, because, if

0 ≤ τ < 1, thenM(τ) =
´ τ

0 M(s) ds ≤ M(1); also, if τ > 1, thenM(τ) ≤ M(1)τϑ. Then, we obtain by
the relation (3.8) that

2ϑC5 ≥
1

||yn||
ϑp+

X

(ˆ
RN

G(x, yn) dx + Iλ(yn)
)
. (3.9)

From (Ψ4), we can choose s0 > 1 such that G(x, s) > |s|ϑp+

for all x ∈ RN and |s| > s0. Using (Ψ1),
there exists a positive constant K such that |G(x, s)| ≤ K for all (x, s) ∈ RN × [−s0, s0]. Hence, there
exists a real number K0 such that G(x, s) ≥ K0 for all (x, s) ∈ RN × R; thus

G(x, yn) − K0

||yn||
ϑp+

X

≥ 0 (3.10)

for all x ∈ RN and all n ∈ N. Set Γ1 =
{
x ∈ RN : z(x) , 0

}
. Suppose that meas(Γ1) , 0. By the

convergence (3.3), we infer that |yn(x)| = |zn(x)| ||yn||X → ∞ as n → ∞ for all x ∈ Γ1. Furthermore,
owing to (Ψ4), one has

lim
n→∞

G(x, yn)

||yn||
ϑp+

X

= lim
n→∞

G(x, yn)
|yn|

ϑp+ |zn|
ϑp+

= ∞ (3.11)
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for all x ∈ Γ1. According to (3.7)–(3.11) and the Fatou lemma, we deduce that

2ϑC5 = lim inf
n→∞

2ϑC5
´
RN G(x, yn) dx´

RN G(x, yn) dx + Iλ(yn)

≥ lim inf
n→∞

ˆ
RN

G(x, yn)

||yn||
ϑp+

X

dx

= lim inf
n→∞

ˆ
RN

G(x, yn)

||yn||
ϑp+

X

dx − lim sup
n→∞

ˆ
RN

K0

||yn||
ϑp+

X

dx

≥ lim inf
n→∞

ˆ
Γ1

G(x, yn) − K0

||yn||
ϑp+

X

dx

≥

ˆ
Γ1

lim inf
n→∞

G(x, yn) − K0

||yn||
ϑp+

X

dx

=

ˆ
Γ1

lim inf
n→∞

G(x, yn)
|yn|

ϑp+ |zn|
ϑp+

dx −
ˆ

Γ1

lim sup
n→∞

K0

||yn||
ϑp+

X

dx = ∞,

which is a contradiction. Hence, we have that meas(Γ1) = 0; thus, z(x) = 0 for almost all x ∈ RN .
Consequently, this leads to a contradiction; thus, {yn} is bounded in X. �

Let W be a separable and reflexive Banach space. Then, it is known (see [11, 50]) that there are
{en} ⊆ W and {h∗n} ⊆ W

∗ such that

W = span{en : n = 1, 2, · · · }, W∗ = span{h∗n : n = 1, 2, · · · }

and

〈
h∗i , e j

〉
=

 1 if i = j

0 if i , j.

Let us denoteWn = span{en}, Yk =
⊕k

n=1Wn and Zk =
⊕∞

n=kWn.

Lemma 3.5. ( [1, 47]) Suppose that (E, || · ||) is a Banach space, the functional F ∈ C1(E,R) ensures
the (C)c-condition for any c > 0 and F is even. If, for each large enough k ∈ N, there are βk > αk > 0
such that

(1) bk := inf{F (y) : ||y||E = αk, y ∈ Zk} → ∞ as k → ∞

(2) ak := max{F (y) : ||y||E = βk, y ∈ Yk} ≤ 0,

then, F has an unbounded sequence of critical values, i.e., there is a sequence {yn} ⊂ E such that
F ′(yn) = 0 and F (yn)→ +∞ as n→ +∞.

Theorem 3.6. Assume that (H1), (K1), (K2), (Φ1)–(Φ5), (Ψ1), (Ψ2) and (Ψ4) hold. If Φ0(x,−ξ) =

Φ0(x, ξ) holds for all (x, ξ) ∈ RN × RN and g(x,−s) = −g(x, s) holds for all (x, s) ∈ RN × R, then for
any λ > 0, the problem (Pλ) possesses an unbounded sequence of nontrivial weak solutions {yn} in X
such that Iλ(yn)→ ∞ as n→ ∞.
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Proof. Immediately, Iλ is an even functional and ensures the (C)-condition by Lemma 3.4. It suffices
to verify that there exist βk > αk > 0 such that

(1) bk := inf{Iλ(y) : ||y||X = αk, y ∈ Zk} → ∞ as k → ∞

(2) ak := max{Iλ(y) : ||y||X = βk, y ∈ Yk} ≤ 0

for k large enough. For convenience, we denote

ν1,k = sup
||y||X=1,y∈Zk

||y||Lp(·)(RN ), ν2,k = sup
||y||X=1,y∈Zk

||y||Lq(·)(RN ).

Then, it is easy to ensure that ν1,k → 0 and ν2,k → 0 as k → ∞ (see [20]). Denote νk = max{ν1,k, ν2,k}.
Then, we derive that νk < 1 for k large enough. For any y ∈ Zk, assume that ||y||X > 1. With an analogous
argument to that in (3.6), it follows from the assumption (Φ4), Lemmas 2.1 and 2.5 and Remark 2.6
that, for k large enough,

Iλ(y) =M

(ˆ
RN

Φ0(x,∇y) dx
)

+

ˆ
RN

V(x)
p(x)

|y|p(x) dx − λ
ˆ
RN

%(x)
t(x)
|y|t(x) −

ˆ
RN

G(x, y) dx

≥
min {dm0, ϑ}

ϑp+
||y||p

−

X − λ

ˆ
RN

%(x)
t(x)
|y|t(x) dx −

ˆ
RN

G(x, y) dx

≥
min {dm0, ϑ}

ϑp+
||y||p

−

X −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
max

{
||y||t

−

Lp(·)(RN ), ||y||
t+

Lp(·)(RN )

}
− 2||σ0||Lp′(·)(RN )νk||y||X −

2b1

q−

ˆ
RN
|y|q(x) dx

≥
min {dm0, ϑ}

ϑp+
||y||p

−

X −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
νt−

k ||y||
t+
X

− 2||σ0||Lp′(·)(RN )νk||y||X −
2b1

q−
ν

q−

k ||y||
q+

X . (3.12)

Choose

αk =

 4ϑp+ν
q−

k b1

q−min {dm0, ϑ}


1

p−−q+

.

Since p− < q+ and νk → 0 as k → ∞, we assert that αk → ∞ as k → ∞. Hence, if y ∈ Zk and ||y||X = αk,
then we deduce that

Iλ(y) ≥
min {dm0, ϑ}

2ϑp+
α

p−

k −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
νt−

k α
t+
k − 2||σ0||Lp′(·)(RN )νkαk → ∞ as k → ∞,

which implies (1).
The proof of the condition (2) is carried out in a similar fashion as that of Theorem 1.3 of [1] (see

also [5]). For the convenience of readers, we give the proof. Suppose that the condition (2) does not
hold for some k. Then, there exists a sequence {yn} in Yk such that

||yn||X → ∞ as n→ ∞ and Iλ(yn) ≥ 0. (3.13)
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Let zn = yn/||yn||X. Then, it is immediate that ||zn||X = 1. Since dimYk < ∞, we can choose z ∈ Yk \ {0}
such that, up to a subsequence,

||zn − z||X → 0 and zn(x)→ z(x) for a.e. x ∈ RNas n→ ∞.

We claim that z(x) = 0 for almost all x ∈ RN . If z(x) , 0, then |yn(x)| → ∞ for all x ∈ RN as n→ ∞. In
accordance with (Ψ4), it follows that

lim
n→∞

G(x, yn)

||yn||
ϑp+

X

= lim
n→∞

G(x, yn)
|yn|

ϑp+ |zn|
ϑp+

= ∞ (3.14)

for all x ∈ Γ2 :=
{
x ∈ RN : z(x) , 0

}
. The analogous arguments to that in Lemma 3.4 yield that we

choose a K ∈ R such that G(x, s) ≥ K for all (x, s) ∈ RN × RN; thus

G(x, yn) − K

||yn||
ϑp+

X

≥ 0

for all x ∈ RN and all n ∈ N. Using (3.14) and the Fatou lemma, one has

lim inf
n→∞

ˆ
RN

G(x, yn)

||yn||
ϑp+

X

dx = lim inf
n→∞

ˆ
RN

G(x, yn)

||yn||
ϑp+

X

dx − lim sup
n→∞

ˆ
RN

K

||yn||
ϑp+

X

dx

≥ lim inf
n→∞

ˆ
Γ2

G(x, yn) − K

||yn||
ϑp+

X

dx

≥

ˆ
Γ2

lim inf
n→∞

G(x, yn) − K

||yn||
ϑp+

X

dx

=

ˆ
Γ2

lim inf
n→∞

G(x, yn)

||yn||
ϑp+

X

dx −
ˆ

Γ2

lim sup
n→∞

K

||yn||
ϑp+

X

dx = ∞.

Thus, ˆ
RN

G(x, yn)

||yn||
ϑp+

X

dx→ ∞ as n→ ∞.

We may suppose that ||yn||X > 1. Using the relation (3.8), we have

Iλ(yn) ≤ 2ϑC5||yn||
ϑp+

X −

ˆ
RN

G(x, yn) dx

= ||yn||
ϑp+

X

2ϑC5 −

ˆ
RN

G(x, yn)

||yn||
ϑp+

X

dx

→ −∞ as n→ ∞,

which is a contradiction to (3.13). This completes the proof. �

Definition 3.7. Suppose that (E, || · ||) is a real reflexive and separable Banach space, F ∈ C1(E,R) and
c ∈ R. We say that F fulfills the (C)∗c-condition (with respect to Yn) if any sequence {vn}n∈N ⊂ E for
which vn ∈ Yn, for any n ∈ N,

F (vn)→ c and ||(F |Yn)
′(vn)||E∗(1 + ||vn||)→ 0, as n→ ∞,

has a subsequence converging to a critical point of F .
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Proposition 3.8. ( [20]) Suppose that (E, ||·||) is a Banach space and F ∈ C1(E,R) is an even functional.
If there is k0 > 0 so that, for each k ≥ k0, there exist βk > αk > 0 such that

(D1) inf{F (v) : ||v||E = βk, v ∈ Zk} ≥ 0;

(D2) bk := max{F (v) : ||v||E = αk, v ∈ Yk} < 0;

(D3) ck := inf{F (v) : ||v||E ≤ βk, v ∈ Zk} → 0 as k → ∞;

(D4) F satisfies the (C)∗c-condition for every c ∈ [ck0 , 0),

then F admits a sequence of negative critical values cn < 0 satisfying cn → 0 as n→ ∞.

Lemma 3.9. Suppose that (H1), (K1), (K2), (Φ1)–(Φ5) and (Ψ1)–(Ψ4) are satisfied. Then, Iλ satisfies
the (C)∗c-condition.

Proof. According to Lemmas 3.2 and 3.3, Φ′ is mapping of type (S +) and Ψ′ is a compact operator
on X. Because X is a reflexive Banach space, the idea of the proof is essentially the same as that
in [20, Lemma 3.12]. �

Theorem 3.10. Suppose that (H1), (K1), (K2), (Φ1)–(Φ5) and (Ψ1)–(Ψ4) are satisfied. If Φ0(x,−ξ) =

Φ0(x, ξ) holds for all (x, ξ) ∈ RN × RN and g(x,−s) = −g(x, s) holds for all (x, s) ∈ RN × R, then the
problem (Pλ) admits a sequence of nontrivial solutions {yn} in X such that Iλ(yn)→ 0 as n→ ∞ for all
λ > 0.

Proof. Due to Lemma 3.9, we note that the functional Iλ is even and satisfies the (C)∗c-condition for
every c ∈ [dk0 , 0). Now, we ensure the properties (D1)–(D3) in Proposition 3.8. To do this, let νk < 1
for k large enough, where νk is given in Theorem 3.6.

(D1): From (Ψ2), the definition of νk and an analogous argument to that for (3.6) and (3.12), it
follows that

Iλ(y) ≥
min {dm0, ϑ}

ϑp+
||y||p

−

X −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
max

{
||y||t

−

Lp(·)(RN ), ||y||
t+

Lp(·)(RN )

}
− 2||σ0||Lp′(·)(RN )||y||Lp′(·)(RN ) −

b1

q−
max{||y||q

−

Lq(·)(RN ), ||y||
q+

Lq(·)(RN )}

≥
min {dm0, ϑ}

ϑp+
||y||p

−

X −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
νt−

k ||y||
t+
X

− 2||σ0||Lp′(·)(RN )νk||y||X −
b1

q−
ν

q−

k ||y||
q+

X

≥
min {dm0, ϑ}

ϑp+
||y||p

−

X −

(
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

b1

q−

)
νt−

k ||y||
q+

X − 2||σ0||Lp′(·)(RN )νk||y||X

for a sufficiently large k and ||y||X ≥ 1. Choose

βk =

(4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
νt−

k

C0

 1
p−−2q+

, (3.15)

where
C0 :=

min {dm0, ϑ}

ϑp+
.
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Let y ∈ Zk with ||y||X = βk > 1 for k large enough. Then, we choose a k0 ∈ N such that

Iλ(y) ≥ C0||y||
p−

X −

(
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

b1

q−

)
νt−

k ||y||
2q+

X − 2||σ0||Lp′(·)(RN )νk||y||X

≥
C0

2
β

p−

k − 2||σ0||Lp′(·)(RN )

[(
4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
C−1

0

] 1
p−−2q+

ν
t−+p−−2q+

p−−2q+

k

≥ 0

for all k ∈ N with k ≥ k0, since limk→∞ βk = ∞. Therefore,

inf{Iλ(y) : y ∈ Zk, ||y||X = βk} ≥ 0.

(D2): Since Yk is finite-dimensional, all norms are equivalent. Then, we find positive constants ς1,k

and ς2,k such that
ς1,k||y||X ≤ ||y||Lκ(·)(η,RN ) and ||y||Lq(·)(RN ) ≤ ς2,k||y||X

for any y ∈ Yk. Let y ∈ Yk with ||y||X ≤ 1. From (Ψ1) and (Ψ3), there are C1,C2 > 0 such that

G(x, s) ≥ C1η(x)|s|κ(x) − C2|s|q(x)

for almost all (x, s) ∈ RN × R. From (Φ2), we getˆ
RN

Φ0(x,∇y) dx ≤ C3

for some positive constant C3. Then, we have

Iλ(y) =M

(ˆ
RN

Φ0(x,∇y) dx
)

+

ˆ
RN

V(x)
p(x)
|y|p(x)dx − λ

ˆ
RN

%(x)
t(x)
|y|t(x)dx −

ˆ
RN

G(x, y) dx

≤

(
sup

0≤ξ≤C3

M(ξ)
) ˆ
RN

Φ0(x,∇y) dx +

ˆ
RN

V(x)
p(x)
|y|p(x)dx

− C1

ˆ
RN
η(x)|y|κ(x)dx + C2

ˆ
RN
|y|q(x) dx

≤ C6||y||
p−

X − C1 min{||y||κ
+

Lκ(·)(η,RN ), ||y||
κ−

Lκ(·)(η,RN )} + C2 max{||y||q
−

Lq(·)(RN ), ||y||
q+

Lq(·)(RN )}

≤ C6||y||
p−

X − C1 min{ςκ
−

1,k, ς
κ+

1,k}||y||
κ+

X + C2 max{ςq−
2,k, ς

q+

2,k}||y||
q−

X

for some positive constant C6. Let f (s) = C6sp− − C1 min{ςκ
−

1,k, ς
κ+

1,k}s
κ+

+ C2 max{ςq−
2,k, ς

q+

2,k}s
q− . Since

κ+ < p− < q−, we infer that f (s) < 0 for all s ∈ (0, s0) for a sufficiently small s0 ∈ (0, 1). Hence, we
can find αk > 0 such that Iλ(y) < 0 for all y ∈ Yk with ||y||X = αk < s0 for k large enough. If necessary,
we can change k0 to a large value so that βk > αk > 0 and

bk := max{Iλ(y) : y ∈ Yk, ||y||X = αk} < 0.

(D3): Because Yk ∩Zk , φ and 0 < αk < βk, we have that ck ≤ bk < 0 for all k ≥ k0. For any y ∈ Zk

with ||y||X = 1 and 0 < τ < βk, one has

Iλ(τy) =M

(ˆ
RN

Φ0(x,∇τy) dx
)

+

ˆ
RN

V(x)
p(x)
|τy|p(x)dx − λ

ˆ
RN

%(x)
t(x)
|τy|t(x)dx −

ˆ
RN

G(x, τy) dx
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≥ −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
max

{
||τy||t

−

Lp(·)(RN ), ||τy||t
+

Lp(·)(RN )

}
− 2||σ0||Lp′(·)(RN )||τy||Lp(·)(RN ) −

b1

q−
max{||τy||q

−

Lq(·)(RN ), ||τy||q
+

Lq(·)(RN )}

≥ −
2λ
t−
||%||

L
q(·)

q(·)−t(·) (RN )
βt+

k ν
t−
k − 2||σ0||Lp′(·)(RN )βkνk −

b1

q−
β

q+

k ν
q−

k

for a sufficiently large k. Hence, from the definition of βk, we infer

0 > ck ≥ −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
βt+

k ν
t−
k − 2||σ0||Lp′(·)(RN )βkνk −

b1

q−
β

q+

k ν
q−

k (3.16)

= −
2λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )

[(
4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
C−1

0

] t+
p−−2q+

ν
t−(t++p−−2q+)

p−−2q+

k

− 2||σ0||Lp′(·)(RN )

[(
4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
C−1

0

] 1
p−−2q+

ν
t−+p−−2q+

p−−2q+

k

−
b1

q−

[(
4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
C−1

0

] q+

p−−2q+

ν
t−q++q−(p−−2q+)

p−−2q+

k .

Because p− < q+, t+ + p− < 2q+, t−q+ + q−p− < 2q−q+ and νk → 0 as k → ∞, we conclude that
limk→∞ ck = 0.

Therefore, all properties of Proposition 3.8 are fulfilled, and we assert that the problem (Pλ) admits
a sequence of nontrivial solutions {yn} in X such that Iλ(yn)→ 0 as n→ ∞ for all λ > 0. �

Remark 3.11. From the viewpoint of [5, 17, 20, 32], the assumptions (Ψ4) and ( f 1) are essential in
obtaining Theorem 3.10. Under these two assumptions, the existence of two sequences 0 < αk < βk

sufficiently large is established in the papers [5, 17, 20, 32]. Regrettably, as a result of utilizing an
analogous argument to that in [17, 20], we cannot show the property (D3) in Theorem 3.10. More
precisely, if we replace βk in (3.15) with

β̃k =

(4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
νt−

k

C0

 1
p−−q+

and t+ + p− > q+, then, in the relation (3.16),

β̃t+
k ν

t−
k =

[(
4λ
t−
||%||

L
p(·)

p(·)−t(·) (RN )
+

2b1

q−

)
C−1

0

] t+
p−−q+

ν
t−(t++p−−q+)

p−−q+

k → ∞ as k → ∞;

thus, we cannot obtain the property (D3) in β̃k. However, the authors of [5, 27, 32] overcame the
difficulty resulting from this new setting for βk. In contrast, the existence of two sequences 0 < αk <

βk → 0 as k → ∞ is obtained in [36, 46, 47] when ( f 1) is satisfied. On the other hand, we get
Theorem 3.10 when (Ψ4) is not assumed and ( f 1) is changed into (Ψ3). In this direction, the proof of
Theorem 3.10 is different from that in the recent works [5, 17, 20, 32, 36, 46, 47].
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4. Conclusions

In the present paper, on a new class of nonlinear term g, we present the existence results of a
sequence of infinitely many solutions by utilizing the fountain theorem and the dual fountain theorem as
the main tools. In particular, when we ensure assumptions in the dual fountain theorem, the conditions
on the nonlinear term g near zero and at infinity are crucial, however, we obtain the existence of
infinitely many small solutions without assuming them. This is a novelty of the present paper.
Additionally, a new research direction in strong relationship with several related applications is the
study of critical Kirchhoff-type equations:

−M
(ˆ
RN

Φ0(x,∇y) dx
)

div(ϕ(x,∇y)) +V(x) |y|p(x)−2 y = λ%(x)|y|t(x)−2y + g(x, y) in RN ,

where p(x) < t(x) for all x ∈ RN and {x ∈ RN : t(x) = p∗(x)} , ∅.
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