Research article

Fixed point results in $ b $-metric spaces with applications to integral equations

  • Received: 10 December 2023 Revised: 28 January 2023 Accepted: 02 February 2023 Published: 17 February 2023
  • MSC : 46S40, 47H10, 54H25

  • The purpose of this article is to obtain common fixed point results in $ b $-metric spaces for generalized rational contractions involving control functions of two variables. We provide an example to show the originality of our main result. As outcomes of our results, we derive certain fixed and common fixed point results for rational contractions presuming control functions of one variable and constants. As an application, we investigate the solution of an integral equation.

    Citation: Badriah Alamri, Jamshaid Ahmad. Fixed point results in $ b $-metric spaces with applications to integral equations[J]. AIMS Mathematics, 2023, 8(4): 9443-9460. doi: 10.3934/math.2023476

    Related Papers:

  • The purpose of this article is to obtain common fixed point results in $ b $-metric spaces for generalized rational contractions involving control functions of two variables. We provide an example to show the originality of our main result. As outcomes of our results, we derive certain fixed and common fixed point results for rational contractions presuming control functions of one variable and constants. As an application, we investigate the solution of an integral equation.



    加载中


    [1] M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del circolo matematico di Palermo, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [2] S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181.
    [3] R. Kannan, Some results on fixed points-Ⅱ, The American Mathematical Monthly, 76 (1969), 405–408.
    [4] S. Chatterjea, Fixed point theorems, C. R. Acad. Bulgara Sci., 25 (1972), 727–730.
    [5] B. Fisher, Mappings satisfying a rational inequality, Bull. Math. de la Soc. Sci. Math. de la R. S. de Roumanie, 24 (1980), 247–251.
    [6] I. Bakhtin, The contraction mapping principle in almost metric spaces, Functional Analysis, 30 (1989), 26–37.
    [7] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [8] R. Koleva, B. Zlatanov, On fixed points for Chatterjea's maps in $b$-metric spaces, Turkish Journal of Analysis and Number Theory, 4 (2016), 31–34. http://dx.doi.org/10.12691/tjant-4-2-1 doi: 10.12691/tjant-4-2-1
    [9] M. Abbas, I. Chema, A. Razani, Existence of common fixed point for $b$-metric rational type contraction, Filomat, 30 (2016), 1413–1429. http://dx.doi.org/10.2298/FIL1606413A doi: 10.2298/FIL1606413A
    [10] H. Hammad, M. la Sen, A solution of Fredholm integral equation by using the cyclic $\eta _{s}^{q}$ -rational contractive mappings technique in $b$-metric-like spaces, Symmetry, 11 (2019), 1184. http://dx.doi.org/10.3390/sym11091184 doi: 10.3390/sym11091184
    [11] H. Hammad, M. la Sen, Generalized contractive mappings and related results in $b$-metric like spaces with an application, Symmetry, 11 (2019), 667. http://dx.doi.org/10.3390/sym11050667 doi: 10.3390/sym11050667
    [12] E. Ameer, H. Aydi, M. Arshad, M. la Sen, Hybrid Ćirić type graphic ($Y$-$\Lambda)$-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry, 12 (2020), 467. http://dx.doi.org/10.3390/sym12030467 doi: 10.3390/sym12030467
    [13] M. Seddik, H. Taieb, Some fixed point theorems of rational type contraction in $b$-metric spaces, Moroccan Journal of Pure and Applied Analysis, 7 (2021), 350–363. http://dx.doi.org/10.2478/mjpaa-2021-0023 doi: 10.2478/mjpaa-2021-0023
    [14] H. Huang, G. Deng, S. Radenović, Fixed point theorems for $ C$-class functions in $b$-metric spaces and applications, J. Nonlinear Sci. Appl., 10 (2017), 5853–5868. http://dx.doi.org/10.22436/jnsa.010.11.23 doi: 10.22436/jnsa.010.11.23
    [15] H. Huang, Y. Singh, M. Khan, S. Radenović, Rational type contractions in extended $b$-metric spaces, Symmetry, 13 (2021), 614. http://dx.doi.org/10.3390/sym13040614 doi: 10.3390/sym13040614
    [16] A. Shoaib, A. Asif, M. Arshad, E. Ameer, Generalized dynamic process for generalized multivalued $F$-contraction of Hardy Rogers type in $ b$-metric spaces, Turkish Journal of Analysis and Number Theory, 6 (2018), 43–48. http://dx.doi.org/10.12691/tjant-6-2-2 doi: 10.12691/tjant-6-2-2
    [17] H. Aydi, M. Bota, E. Karapınar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. http://dx.doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88
    [18] H. Aydi, M. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\varphi $-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), 337–346.
    [19] H. Aydi, A. Felhi, S. Sahmim, Common fixed points via implicit contractions on $b$-metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 1524–1537.
    [20] H. Afshari, H. Aydi, E. Karapınar, On generalized $\alpha $- $\psi $-Geraghty contractions on $b$-metric spaces, Georgian Math. J., 27 (2020), 9–21. http://dx.doi.org/10.1515/gmj-2017-0063 doi: 10.1515/gmj-2017-0063
    [21] Z. Ma, J. Ahmad, A. Al-Mazrooei, D. Lateef, Fixed point results for rational orbitally ($\Theta, \delta _{b}$)-contractions with an application, J. Funct. Space., 2021 (2021), 9946125. http://dx.doi.org/10.1155/2021/9946125 doi: 10.1155/2021/9946125
    [22] K. Haji, K. Tola, M. Mamud, Fixed point results for generalized rational type $\alpha $-admissible contractive mappings in the setting of partially ordered $b$-metric spaces, BMC Res. Notes, 15 (2022), 242. http://dx.doi.org/10.1186/s13104-022-06122-z doi: 10.1186/s13104-022-06122-z
    [23] T. Stephen, Y. Rohen, M. Singh, K. Devi, Some rational $F$-contractions in $b$-metric spaces, Nonlinear Functional Analysis and Applications, 27 (2022), 309–322. http://dx.doi.org/10.22771/nfaa.2022.27.02.07 doi: 10.22771/nfaa.2022.27.02.07
    [24] H. Huang, G. Deng, S. Radenović, Fixed point theorems in $ b$-metric spaces with applications to differential equations, J. Fixed Point Theory Appl., 20 (2018), 52. http://dx.doi.org/10.1007/s11784-018-0491-z doi: 10.1007/s11784-018-0491-z
    [25] S. Aleksic, Z. Mitrovic, S. Radenovic, On some recent fixed point results for single and multivalued mappings in $b$-metric spaces, Fasc. Math., 61 (2018), 5–16.
    [26] H. Hammad, M. la Sen, A technique of tripled coincidence points for solving a system of nonlinear integral equations in POCML spaces, J. Inequal. Appl., 2020 (2020), 211. http://dx.doi.org/10.1186/s13660-020-02477-8 doi: 10.1186/s13660-020-02477-8
    [27] H. Hammad, M. la Sen, H. Aydi, Generalized dynamic process for an extended multi-valued $F$-contraction in metric-like spaces with applications, Alex. Eng. J., 59 (2020), 3817–3825. http://dx.doi.org/10.1016/j.aej.2020.06.037 doi: 10.1016/j.aej.2020.06.037
    [28] H. Hammad, M. la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via $F_{\omega _{\varrho }}$ -suzuki contractions in modified $\omega _{\varrho }$-metric-like spaces, J. Funct. Space., 2021 (2021), 6128586. http://dx.doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586
    [29] P. Debnath, M. la Sen, Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Ćirić-type contractions in $ b$-metric spaces, Mathematics, 7 (2019), 849. http://dx.doi.org/10.3390/math7090849 doi: 10.3390/math7090849
    [30] N. Alamgir, Q. Kiran, H. Aydi, Y. Gaba, Fuzzy fixed point results of generalized almost $F$-contractions in controlled metric spaces, Adv. Differ. Equ., 2021 (2021), 476. http://dx.doi.org/10.1186/s13662-021-03598-0 doi: 10.1186/s13662-021-03598-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1669) PDF downloads(211) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog