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1. Introduction

Fixed point theory is one of the most celebrated and conventional theories in mathematics and
has comprehensive applications in different fields. In this theory, the notion of metric space plays
an important role, which was naturally accomplished by M. Frechet [1] in 1906. And the first and
pioneer result in this theory is Banach contraction principle [2] in which the underlying space is the
complete metric space. In this principle, the contractive mapping is necessarily continuous while it is
not applicable in the case of discontinuity. The major drawback of this principle is how we apply this
contractive mapping in case of discontinuity. This problem was overcome in the past by Kannan [3]
where it proved a fixed point result without continuity. In 1972, Chaterjea [4] established a result which
is independent from Banach contraction principle and Kannan fixed point theorem. Later on, Fisher [5]
introduced rational inequality in fixed point theory and obtained a fixed point result in complete metric
spaces. Motivated by the influence of the genuine concept of metric space and the Banach contraction
principle on fixed point theory, various authors have undertaken several extensions of this concept and
achieved this result in the past few years.

On the other hand, the conceptual framework of b-metric space have been done by Bakhtin [6]
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which was formally defined by Czerwik [7] in 1993 who discussed the convergence of measurable
functions as a meaningful generalization of metric space and also established the Banach contraction
principle in b-metric space. Koleva et al. [8] established fixed point results for Chaterjea type inequality
in the background of b-metric spaces. Subsequently, Abbas et al. [9] obtained common fixed results
for Fisher type inequality [5] in the setting of partial ordered b-metric spaces. Hammad et al. [10, 11]
introduced the notions of cyclic ηq

s-rational contractions and βs,ψ
q,φ-contractions in b-metric-like spaces

and investigated the solutions of integral equations. Ameer et al. [12] defined Ćirić type rational graphic
(Y, Λ)-contraction in partial b-metric spaces endowed with a directed graph and obtained common
fixed points of two self mappings. Furthermore, they presented some applications on electric circuit
equations and fractional differential equations. Recently, Seddik et al. [13] established a common fixed
point result for rational contraction in the setting of b-metric space.

In this research work, we define generalized rational contractive mappings by combining Banach’s
contraction [2], Chaterjea’s contraction [4] and Fisher’s contraction [5] and involve control functions
of two variables and establish some common fixed point results in b-metric spaces. As outcomes of
our results, we derive certain fixed and common fixed point results for rational contractions presuming
control functions of one variable and constants. As an application, we investigate the solution of an
integral equation.

2. Preliminaries

The well-known Banach contraction principle [2] is given in this way.

Theorem 1. [2] Let (F , ς) be a complete metric space and let= : F → F . If there exists a nonnegative
constant ρ ∈ [0, 1) such that

ς
(
=υ,=~

)
≤ ρς (υ, ~) ,

for all υ, ~ ∈ F , then = has a unique fixed point.

In [3], Kannan proved a result for the mapping, which is not necessarily continuous in this way.

Theorem 2. [3] Let (F , ς) be a complete metric space and let= : F → F . If there exists a nonnegative
constant ρ ∈ [0, 1

2 ) such that

ς
(
=υ,=~

)
≤ ρ

(
ς
(
υ,=υ

)
+ ς

(
~,=~

))
,

for all υ, ~ ∈ F , then = has a unique fixed point.

In 1972, Chaterjea [4] commuted the terms and established the following result.

Theorem 3. [4] Let (F , ς) be a complete metric space and let= : F → F . If there exists a nonnegative
constant ρ ∈ [0, 1

2 ) such that

ς
(
=υ,=~

)
≤ ρ

(
ς
(
υ,=~

)
+ ς

(
~,=υ

))
,

for all υ, ~ ∈ F , then = has a unique fixed point.

In [5], Fisher proved the following result in this way.
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Theorem 4. [5] Let (F , ς) be a complete metric space and let = : F → F . If there exist nonnegative
constants ρ, κ ∈ [0, 1) such that ρ + κ < 1 and

ς
(
=υ,=~

)
≤ ρς (υ, ~) + κ

ς
(
υ,=υ

)
ς
(
~,=~

)
1 + ς (υ, ~)

,

for all υ, ~ ∈ F , then = has a unique fixed point.

Czerwik [7] gave the notion of b-metric space as follows:

Definition 1. [7] Let F , ∅ and s ≥ 1 be a constant. A function ς : F × F → [0,∞) is called a
b-metric if the following assertions hold:

(b1) ς(υ, ~) ≥ 0 and ς(υ, ~) = 0⇔ υ = ~;
(b2) ς(υ, ~) = ς(~, υ);
(b3) ς(υ, ϕ) ≤ s[ς(υ, ~) + ς(~, ϕ)];

for all υ, ~, ϕ ∈ F .
The pair (F , ς) is then said to be a b-metric space.
It is clear from the notion of b-metric that every metric space is b-metric for s = 1, but the converse

is not true.

Example 1. [14] Let 0 < p < 1 and define F = Lp[a, b] by

Lp[a, b] =

{
υ :

∫ b

a
|υ(t)|p dt < ∞

}
,

and ς : F × F → R+ is mapping defined by

ς(υ, ~) =

(∫ b

a
|υ(t) − ~(t)|p dt

) 1
p

,

for all υ = υ(t) and ~ = ~(t) ∈ F . Then (F , ς) is a b-metric space with s = 2
1
p−1.

Definition 2. [7] Let (F , ς) be a b-metric space
(i) a sequence {υ } in F is said to converges to υ ∈ F , if

lim
→∞

ς(υ , υ) = 0,

(ii) a sequence {υ } is said to be Cauchy sequence, if

lim
,m→∞

ς(υ , υm) = 0,

(iii) if every Cauchy sequence in F is convergent to a point of F , then (F , ς) is said to be complete.

Throughout this article, we consider ς as a continuous functional.
Czerwik [7] proved the following result in a b-metric space.
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Theorem 5. [7] Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let = : F → F . If
there exists nonnegative constant ρ ∈ [0, 1) such that

ς
(
=υ,=~

)
≤ ρς (υ, ~) ,

for all υ, ~ ∈ F , then = has a unique fixed point.

Theorem 6. [15] Let (F , ς) be a complete b-metric space with coefficient s ≥ 1. If = : F → F
satisfies the inequality

ς
(
=υ,=~

)
≤ ρ1ς (υ, ~) + ρ2ς

(
υ,=υ

)
+ ρ3ς

(
~,=~

)
+ ρ4

(
ς
(
υ,=~

)
+

(
~,=υ

))
,

where ρi ≥ 0 for all i = 1, 2, 3, 4 and ρ1 + ρ2 + ρ3 + 2ρ4 < 1 for s ∈ [1, 2] and s
2 < ρ1 + ρ2 + ρ3 + 2ρ4 < 1

for s ∈ (2,+∞), then = has a unique fixed point.

Recently, Seddik et al. [13] established a common fixed point result for rational contraction.

Theorem 7. [13] Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 :
F → F . If there exist nonnegative constant ρ, κ ∈ [0, 1) such that ρ + κ < 1 and

ς
(
=1υ,=2~

)
≤ ρς (υ, ~) + κ

ς
(
υ,=1υ

)
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)
ς
(
~,=2~

)
ς
(
υ,=2~

)
+ ς

(
~,=1υ

) ,

for all υ, ~ ∈ F , with ς
(
υ,=2~

)
+ ς

(
~,=1υ

)
, 0, then =1 and =2 have a unique common fixed point.

For more details in this direction, we refer the readers to (see [14–30]).

3. Main results

We state and prove the following proposition, which is required in the proof of our main result:

Proposition 1. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
Let υ0 ∈ F . Define the sequence {υı} by

υ2ı+1 = =1υ2ı and υ2ı+2 = =2υ2ı+1

for all ı = 0, 1, 2, ...

Assume that there exists a control function ρ : F×F→[0, 1) satisfying

ρ
(
=2=1υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=1=2~

)
≤ ρ (υ, ~)

for all υ, ~ ∈ F . Then
ρ (υ2ı, ~) ≤ ρ (υ0, ~) and ρ (υ, υ2ı+1) ≤ ρ (υ, υ1)

for all υ, ~ ∈ F and ı = 0, 1, 2, ...

Proof. Let υ, ~ ∈ F and ı = 0, 1, 2, ... Then we have

ρ (υ2ı, ~) = ρ
(
=2=1υ2ı−2, ~

)
≤ ρ (υ2ı−2, ~)

= ρ
(
=2=1υ2ı−4, ~

)
≤ ρ (υ2ı−4, ~)
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≤ · · · ≤ ρ (υ0, ~) .

Similarly, we have

ρ (υ, υ2ı+1) = ρ
(
υ,=1=2υ2ı−1

)
≤ ρ (υ, υ2ı−1)

= ρ
(
υ,=1=2υ2ı−3

)
≤ ρ (υ, υ2ı−3)

≤ · · · ≤ ρ (υ, υ1) .

�

Definition 3. Let (F , ς) be a b-metric space with coefficient s ≥ 1. The mappings =1,=2 : F → F
are said to be generalized rational contractive mappings if there exist the control functions ρ, %, κ :
F × F→[0, 1) such that

ς
(
=1υ,=2~

)
≤ ρ (υ, ~) ς (υ, ~) + % (υ, ~)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+κ (υ, ~)

ς
(
υ,=1υ

)
ς
(
~,=2~

)
1 + ς

(
υ,=2~

)
+ ς

(
~,=1υ

)
+ ς (υ, ~)

, (3.1)

for all υ, ~ ∈ F .

Theorem 8. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F
be generalized rational contractive mappings satisfying the following conditions: (a) ρ

(
=2=1υ, ~

)
≤

ρ (υ, ~) and ρ
(
υ,=1=2~

)
≤ ρ (υ, ~)

%
(
=2=1υ, ~

)
≤ % (υ, ~) and %

(
υ,=1=2~

)
≤ % (υ, ~)

κ
(
=2=1υ, ~

)
≤ κ (υ, ~) and κ

(
υ,=1=2~

)
≤ κ (υ, ~);

(b) ρ (υ, ~) + 2s% (υ, ~) + sκ (υ, ~) < 1,
then =1 and =2 have a unique common fixed point.

Proof. Let υ0 be an arbitrary point in F and the sequence {υı} be defined by

υ2ı+1 = =1υ2ı and υ2ı+2 = =2υ2ı+1

for all ı = 0, 1, 2, ... Now by (3.1), we have

ς (υ2ı+1, υ2ı+2) = ς
(
=1υ2ı,=2υ2ı+1

)
≤ ρ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

+% (υ2ı, υ2ı+1)
[
ς
(
υ2ı,=2υ2ı+1

)
+ ς

(
υ2ı+1,=1υ2ı

)]
+κ (υ2ı, υ2ı+1)

ς
(
υ2ı,=1υ2ı

)
ς
(
υ2ı+1,=2υ2ı+1

)
1 + ς

(
υ2ı,=2υ2ı+1

)
+ ς

(
υ2ı+1,=1υ2ı

)
+ ς (υ2ı, υ2ı+1)

≤ ρ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

+% (υ2ı, υ2ı+1) [ς (υ2ıυ, υ2ı+2) + ς (υ2ı+1, υ2ı+1)]

+κ (υ2ı, υ2ı+1)
ς (υ2ı, υ2ı+1) ς (υ2ı+1, υ2ı+2)

1 + ς (υ2ı, υ2ı+2) + ς (υ2ı, υ2ı+1)
≤ ρ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

+% (υ2ı, υ2ı+1) [ς (υ2ı, υ2ı+2)]
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+sκ (υ2ı, υ2ı+1)
ς (υ2ı, υ2ı+1) ς (υ2ı+1, υ2ı+2)

s + ς (υ2ı+1, υ2ı+2)
≤ ρ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1) + s% (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

+s% (υ2ı, υ2ı+1) ς (υ2ı+1, υ2ı+2)

+sκ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1) .

Now by Proposition 1, we have

ς (υ2ı+1, υ2ı+2) ≤ ρ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

+s% (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

+s% (υ2ı, υ2ı+1) ς (υ2ı+1, υ2ı+2)

+sκ (υ2ı, υ2ı+1) ς (υ2ı, υ2ı+1)

≤ ρ (υ0, υ2ı+1) ς (υ2ı, υ2ı+1)

+s% (υ0, υ2ı+1) ς (υ2ı, υ2ı+1)

+s% (υ0, υ2ı+1) ς (υ2ı+1, υ2ı+2)

+sκ (υ0, υ2ı+1) ς (υ2ı, υ2ı+1)

≤ ρ (υ0, υ1) ς (υ2ı, υ2ı+1)

+s% (υ0, υ1) ς (υ2ı, υ2ı+1) + s% (υ0, υ1) ς (υ2ı+1, υ2ı+2)

+sκ (υ0, υ1) ς (υ2ı, υ2ı+1)

which implies that

ς (υ2ı+1, υ2ı+2) ≤
ρ (υ0, υ1) + s% (υ0, υ1) + sκ (υ0, υ1)

1 − s% (υ0, υ1)
ς (υ2ı, υ2ı+1) . (3.2)

Similarly, we have

ς (υ2ı+2, υ2ı+3) = ς
(
=2υ2ı+1,=1υ2ı+2

)
= ς

(
=1υ2ı+2,=2υ2ı+1

)
≤ ρ (υ2ı+2, υ2ı+1) ς (υ2ı+2, υ2ı+1)

+% (υ2ı+2, υ2ı+1)
[
ς
(
υ2ı+2,=2υ2ı+1

)
+ ς

(
υ2ı+1,=1υ2ı+2

)]
+κ (υ2ı+2, υ2ı+1)

ς
(
υ2ı+2,=1υ2ı+2

)
ς
(
υ2ı+1,=2υ2ı+1

)
1 + ς

(
υ2ı+2,=2υ2ı+1

)
+ ς

(
υ2ı+1,=1υ2ı+2

)
+ ς (υ2ı+2, υ2ı+1)

≤ ρ (υ2ı+2, υ2ı+1) ς (υ2ı+2, υ2ı+1)

+% (υ2ı+2, υ2ı+1) [ς (υ2ı+2, υ2ı+2) + ς (υ2ı+1, υ2ı+3)]

+κ (υ2ı+2, υ2ı+1)
ς (υ2ı+2, υ2ı+3) ς (υ2ı+1, υ2ı+2)

1 + ς (υ2ı+1, υ2ı+3) + ς (υ2ı+2, υ2ı+1)
≤ ρ (υ2ı+2, υ2ı+1) ς (υ2ı+2, υ2ı+1)

+s% (υ2ı+2, υ2ı+1) ς (υ2ı+1, υ2ı+2) + s% (υ2ı+2, υ2ı+1) ς (υ2ı+2, υ2ı+3)

+sκ (υ2ı+2, υ2ı+1)
ς (υ2ı+2, υ2ı+3) ς (υ2ı+1, υ2ı+2)

s + ς (υ2ı+2, υ2ı+3)
≤ ρ (υ2ı+2, υ2ı+1) ς (υ2ı+2, υ2ı+1)
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+s% (υ2ı+2, υ2ı+1) ς (υ2ı+1, υ2ı+2) + s% (υ2ı+2, υ2ı+1) ς (υ2ı+2, υ2ı+3)

+sκ (υ2ı+2, υ2ı+1) ς (υ2ı+1, υ2ı+2) .

Now by Proposition 1, we have

ς (υ2ı+2, υ2ı+3) ≤ ρ (υ0, υ2ı+1) ς (υ2ı+1, υ2ı+2)

+s% (υ0, υ2ı+1) ς (υ2ı+1, υ2ı+2) + s% (υ0, υ2ı+1) ς (υ2ı+2, υ2ı+3)

+sκ (υ0, υ2ı+1) ς (υ2ı+1, υ2ı+2)

≤ ρ (υ0, υ1) ς (υ2ı+2, υ2ı+1)

+s% (υ0, υ1) ς (υ2ı+1, υ2ı+2) + s% (υ0, υ1) ς (υ2ı+2, υ2ı+3)

+sκ (υ0, υ1) ς (υ2ı+1, υ2ı+2)

which implies that

ς (υ2ı+2, υ2ı+3) ≤
ρ (υ0, υ1) + s% (υ0, υ1) + sκ (υ0, υ1)

1 − s% (υ0, υ1)
ς (υ2ı+1, υ2ı+2) . (3.3)

Let λ =
ρ(υ0,υ1)+s%(υ0,υ1)+sκ(υ0,υ1)

1−s%(υ0,υ1) < 1. Then from (3.2) and (3.3), we have

ς (υı, υı+1) ≤ λς (υı−1, υı)

for all ı ∈ N. By induction, we build a sequence {υı} in F so that

ς (υı, υı+1) ≤ λς (υı−1, υı) ≤ λ2ς (υı−2, υı−1) ≤ ... ≤ λıς (υ0, υ1) (3.4)

∀ ı ∈ N. Now, for m > ı, we have

ς (υı, υm) ≤ s [ς (υı, υı+1) + ς (υı+1, υm)]
= sς (υı, υı+1) + sς (υı+1, υm)

≤ sς (υı, υı+1) + s2 [ς (υı+1, υı+2) + ς (υı+2, υm)]
= sς (υı, υı+1) + s2ς (υı+1, υı+2) + s2ς (υı+2, υm)

≤ ... ≤ sς (υı, υı+1) + s2ς (υı+1, υı+2) + ... + sm−ıς (υm−1, υm) .

By (3.4), we have

ς (υı, υm) ≤ sλıς (υ0, υ1) + s2λı+1ς (υ0, υ1) + s3λı+2ς (υ0, υ1)

+... + sm−ıλm−1ς (υ0, υ1)

≤
[
sλı + s2λı+1 + ... + sm−ıλm−1

]
ς (υ0, υ1)

≤ sλı
[
1 + (sλ)1 + (sλ)2 + ... + (sλ)m−ı−1

]
ς (υ0, υ1)

≤
sλı

1 − sλ
ς (υ0, υ1) .

Letting ı→ ∞, we have
ς (υı, υm)→ 0.
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Hence the sequence {υı} is Cauchy. Since F is complete, there is υ∗ so that υı → υ∗ ∈ F as ı → ∞,
that is,

lim
ı→∞

υı = υ∗.

Then
lim
ı→∞

υ2ı+1 = υ∗ and lim
ı→∞

υ2ı+2 = υ∗.

Now, we show that υ∗ is a fixed point of =1. From (3.1), we have

ς
(
υ∗,=1υ

∗) ≤ s
(
ς
(
υ∗,=2υ2ı+1

)
+ ς

(
=2υ2ı+1,=1υ

∗))
= s

(
ς
(
υ∗,=2υ2ı+1

)
+ ς

(
=1υ

∗,=2υ2ı+1
))

≤ s


ς (υ∗, υ2ı+2) + ρ (υ∗, υ2ı+1) ς (υ∗, υ2ı+1)

+% (υ∗, υ2ı+1)
[
ς
(
υ∗,=2υ2ı+1

)
+ ς

(
υ2ı+1,=1υ

∗
)]

+κ (υ∗, υ2ı+1) ς(υ∗,=1υ
∗)ς(υ2ı+1,=2υ2ı+1)

1+ς(υ∗,=2υ2ı+1)+ς(υ2ı+1,=1υ∗)+ς(υ∗,υ2ı+1)


≤ s


ς (υ∗, υ2ı+2) + ρ (υ∗, υ1) ς (υ∗, υ2ı+2)

+% (υ∗, υ1)
[
ς (υ∗, υ2ı+2) + ς

(
υ2ı+1,=1υ

∗
)]

+κ (υ∗, υ1) ς(υ∗,=1υ
∗)ς(υ2ı+1,υ2ı+2)

1+ς(υ∗,υ2ı+2)+ς(υ2ı+1,=1υ∗)+ς(υ∗,υ2ı+1)

 .
Letting ı→ ∞ in the above inequality, we get

ς
(
υ∗,=1υ

∗) ≤ s% (υ∗, υ1) ς
(
υ∗,=1υ

∗)
≤ (ρ (υ∗, υ1) + 2s% (υ∗, υ1) + sκ (υ∗, υ1)) ς

(
υ∗,=1υ

∗)
< ς

(
υ∗,=1υ

∗) ,
which is a contradiction. Thus, υ∗ = =1υ

∗. Now, we show that υ∗ is a fixed point of =2. From (3.1), we
have

ς
(
υ∗,=2υ

∗) ≤ s
(
ς (υ∗, υ2ı+1) + ς

(
υ2ı+1,=2υ

∗))
= s

(
ς (υ∗, υ2ı+1) + ς

(
=1υ2ı,=2υ

∗))
≤ s


ς (υ∗, υ2ı+1) + ρ (υ2ı, υ

∗) ς (υ2ı, υ
∗)

+% (υ2ı, υ
∗)

[
ς
(
υ2ı,=2υ

∗
)

+ ς
(
υ∗,=1υ2ı

)]
+κ (υ2ı, υ

∗) ς(υ2ı,=1υ2ı)ς(υ∗,=2υ
∗)

1+ς(υ2ı,=2υ∗)+ς(υ∗,=1υ2ı)+ς(υ2ı,υ∗)


≤ s


ς (υ∗, υ2ı+1) + ρ (υ0, υ

∗) ς (υ2ı, υ
∗)

+% (υ0, υ
∗)

[
ς
(
υ2ı,=2υ

∗
)

+ ς (υ∗, υ2ı+1)
]

+κ (υ0, υ
∗) ς(υ2ı,υ2ı+1)ς(υ∗,=2υ

∗)
1+ς(υ2ı,=2υ∗)+ς(υ∗,υ2ı+1)+ς(υ2ı,υ∗)

 .
Letting ı→ ∞ in the above inequality, we get

ς
(
υ∗,=2υ

∗) ≤ s% (υ0, υ
∗) ς

(
υ∗,=2υ

∗)
≤ (ρ (υ0, υ

∗) + 2s% (υ0, υ
∗) + sκ (υ0, υ

∗)) ς
(
υ∗,=2υ

∗)
< ς

(
υ∗,=2υ

∗) ,
which is a contradiction. Thus υ∗ = =2υ

∗. �
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Now, we prove that υ∗ is a unique. We assume that there exists another common fixed of υ/ of =1

and =2, i.e.,
υ/ = =1υ

/ = =2υ
/

but υ∗ , υ/. Now, from (3.1), we have

ς
(
υ∗, υ/

)
= ς

(
=1υ

∗,=2υ
/
)

≤ ρ
(
υ∗, υ/

)
ς
(
υ∗, υ/

)
+%

(
υ∗, υ/

) [
ς
(
υ∗,=2υ

/
)

+ ς
(
υ/,=1υ

∗
)]

+κ
(
υ∗, υ/

) ς
(
υ∗,=υ∗

)
ς
(
υ/,=2υ

/
)

1 + ς
(
υ∗,=2υ/

)
+ ς

(
υ/,=1υ∗

)
+ ς

(
υ∗, υ/

)
= ρ

(
υ∗, υ/

)
ς
(
υ∗, υ/

)
+ 2% (υ∗, ~) ς

(
υ∗, υ/

)
≤ ρ

(
υ∗, υ/

)
ς
(
υ∗, υ/

)
+ 2s% (υ∗, ~) ς

(
υ∗, υ/

)
=

(
ρ
(
υ∗, υ/

)
+ 2s% (υ∗, ~)

)
ς
(
υ∗, υ/

)
.

As ρ
(
υ∗, υ/

)
+ 2s% (υ∗, ~) < 1, we have

ς
(
υ∗, υ/

)
= 0.

Thus, υ∗ = υ/.

Corollary 1. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exist control functions ρ, % : F × F→[0, 1) such that

(a) ρ
(
=2=1υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=1=2~

)
≤ ρ (υ, ~)

%
(
=2=1υ, ~

)
≤ % (υ, ~) and %

(
υ,=1=2~

)
≤ % (υ, ~) ,

(b) ρ (υ, ~) + 2s% (υ, ~) < 1,
(c) ς

(
=1υ,=2~

)
≤ ρ (υ, ~) ς (υ, ~) + % (υ, ~)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
,

then =1 and =2 have a unique common fixed point.

Proof. Take κ (υ, ~) = 0 in Theorem 8. �

Theorem 9. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F . If
there exist control functions ρ, κ : F × F→[0, 1) such that

(a) ρ
(
=2=1υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=1=2~

)
≤ ρ (υ, ~)

κ
(
=2=1υ, ~

)
≤ κ (υ, ~) and κ

(
υ,=1=2~

)
≤ κ (υ, ~),

(b) ρ (υ, ~) + sκ (υ, ~) < 1,
(c) ς

(
=1υ,=2~

)
≤ ρ (υ, ~) ς (υ, ~) + κ (υ, ~) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)
,

then =1 and =2 have a unique common fixed point.

Proof. Take % (υ, ~) = 0 in Theorem 8. �

Corollary 2. Let (F , ς) be a complete b-metric space with coefcient s ≥ 1 and let =1,=2 : F → F . If
there exist control function ρ : F × F→[0, 1) such that

(a) ρ
(
=2=1υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=1=2~

)
≤ ρ (υ, ~)

(b) ρ (υ, ~) < 1,
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(c) ς
(
=1υ,=2~

)
≤ ρ (υ, ~) ς (υ, ~) ,

then =1 and =2 have a unique common fixed point.

Proof. Take % (υ, ~) = κ (υ, ~) = 0 in Theorem 8. �

Corollary 3. Let (F , ς) be a complete b-metric space with coefcient s ≥ 1 and let = : F → F . If there
exist control function ρ : F × F→[0, 1) such that

(a) ρ
(
=υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=~

)
≤ ρ (υ, ~)

(b) ρ (υ, ~) < 1,
(c) ς

(
=υ,=~

)
≤ ρ (υ, ~) ς (υ, ~) ,

then = has a unique fixed point.

Proof. Set =1 = = and =2 = I (Identity mapping) and % (υ, ~) = κ (υ, ~) = 0 in Theorem 8. �

Corollary 4. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let = : F → F . If
there exist control functions ρ, %, κ : F × F→[0, 1) such that

(a) ρ
(
=υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=~

)
≤ ρ (υ, ~),

%
(
=υ, ~

)
≤ % (υ, ~) and %

(
υ,=~

)
≤ % (υ, ~)

κ
(
=υ, ~

)
≤ κ (υ, ~) and κ

(
υ,=~

)
≤ κ (υ, ~),

(b) ρ (υ, ~) + 2s% (υ, ~) + sκ (υ, ~) < 1,
(c) ς

(
=υ,=~

)
≤ ρ (υ, ~) ς (υ, ~) + % (υ, ~)

[
ς
(
υ,=~

)
+ ς

(
~,=υ

)]
+ κ (υ, ~) ς(υ,=υ)ς(~,=~)

1+ς(υ,=~)+ς(~,=υ)+ς(υ,~)

for all υ, ~ ∈ F , then = has a unique fixed point.

Proof. Set =1 = = and =2 = I (Identity mapping) in Theorem 8. �

Example 2. Let F = [0, 1) and ς : F × F → C by

ς(υ, ~) = |υ − ~|2

for all υ, ~ ∈ F with s = 2. Then (F , ς) is a complete b-metric space. Define the self mappings
=1,=2 : F → F by

=1υ =
υ

3
and

=2υ =
υ

4
Consider

ρ,%, κ : F × F→[0, 1)

by

ρ(υ, ~) =
υ

17
+
~

20
and

%(υ, ~) =
υ

16
+
~

21
and

κ(υ, ~) =
υ~

39
.

Now, we satisfy the condition (a) as follows.
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ρ
(
=2=1υ, ~

)
= υ

204 + ~
20 ≤

υ
17 + ~

20 = ρ (υ, ~) and ρ
(
υ,=1=2~

)
= υ

17 + ~
240 ≤

υ
17 + ~

20 = ρ (υ, ~)
%
(
=2=1υ, ~

)
= υ

192 + ~
21 ≤

υ
16 + ~

21 = % (υ, ~) and %
(
υ,=1=2~

)
= υ

16 + ~
252 ≤

υ
16 + ~

21 = % (υ, ~)
κ
(
=2=1υ, ~

)
= υ~

468 ≤
υ~
39 = κ (υ, ~) and κ

(
υ,=1=2~

)
= υ~

468 ≤
υ~
39 = κ (υ, ~).

Also condition (b) holds, that is, ρ (υ, ~) + 2s% (υ, ~) + sκ (υ, ~) < 1.
Consider

ς
(
=1υ,=2~

)
=

∣∣∣∣∣υ3 − ~4
∣∣∣∣∣2

≤

(
υ

17
+
~

20

)
|υ − ~|2 +

(
υ

16
+
~

21

) (∣∣∣∣∣υ − ~4
∣∣∣∣∣2 +

∣∣∣∣∣~ − υ3
∣∣∣∣∣2)

+

(
υ~

39

) ∣∣∣υ − υ
3

∣∣∣2 ∣∣∣~ − ~4 ∣∣∣2
1 +

∣∣∣υ − ~4 ∣∣∣2 +
∣∣∣~ − υ

3

∣∣∣2 + |υ − ~|2

= ρ (υ, ~) ς (υ, ~) + % (υ, ~)
[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+κ (υ, ~)

ς
(
υ,=1υ

)
ς
(
~,=2~

)
1 + ς

(
υ,=2~

)
+ ς

(
~,=1υ

)
+ ς (υ, ~)

.

Thus, all the assumptions of Theorem 8 are satisfied and 0 is a unique common fixed point of the
mappings =1 and =2.

Corollary 5. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let = : F → F . If
there exist mappings ρ, κ, µ : F×F→[0, 1) such that for all υ, ~ ∈ F ,

(a) ρ
(
=υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=~

)
≤ ρ (υ, ~)

κ
(
=υ, ~

)
≤ κ (υ, ~) and κ

(
υ,=~

)
≤ κ (υ, ~)

µ
(
=υ, ~

)
≤ µ (υ, ~) and µ

(
υ,=~

)
≤ µ (υ, ~),

(b) ρ (υ, ~) + 2sκ (υ, ~) + sµ (υ, ~) < 1,
(c)

ς
(
=nυ,=n~

)
≤ ρ (υ, ~) ς (υ, ~) + % (υ, ~)

[
ς
(
υ,=n~

)
+ ς

(
~,=nυ

)]
+κ (υ, ~)

ς
(
υ,=nυ

)
ς
(
~,=n~

)
1 + ς

(
υ,=n~

)
+ ς

(
~,=nυ

)
+ ς (υ, ~)

(3.5)

for all υ, ~ ∈ F , then there exists a unique point υ∗ ∈ F such that =υ∗ = υ∗.

Proof. From Corollary 4, we have υ ∈ F such that =nυ = υ. Now, from

ς
(
=υ, υ

)
= ς

(
==nυ,=nυ

)
= ς

(
=n=υ,=nυ

)
≤ ρ

(
=υ, υ

)
ς
(
=υ, υ

)
+ %

(
=υ, υ

) [
ς
(
=υ,=nυ

)
+ ς

(
υ,=n=υ

)]
+κ

(
=υ, υ

) ς
(
=υ,=n=υ

)
ς
(
υ,=nυ

)
1 + ς

(
=υ,=nυ

)
+ ς

(
υ,=n=υ

)
+ ς

(
=υ, υ

)
= ρ

(
=υ, υ

)
ς
(
=υ, υ

)
+ %

(
=υ, υ

) [
ς
(
=υ, υ

)
+ ς

(
υ,=υ

)]
+κ

(
=υ, υ

) ς
(
=υ,=υ

)
ς (υ, υ)

1 + ς
(
=υ, υ

)
+ ς

(
υ,=υ

)
+ ς

(
=υ, υ

)
=

(
ρ
(
=υ, υ

)
+ 2%

(
=υ, υ

))
ς
(
=υ, υ

)
which is possible only whenever ς

(
=υ, υ

)
= 0. Thus, =υ = υ. �
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4. Deduced results

Corollary 6. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exist control functions ρ, %, κ : F→[0, 1) such that

(a) ρ
(
=1υ

)
≤ ρ (υ) and ρ

(
=2υ

)
≤ ρ (υ)

%
(
=1υ

)
≤ % (υ) and %

(
=2υ

)
≤ % (υ)

κ
(
=1υ

)
≤ κ (υ) and κ

(
=2υ

)
≤ κ (υ) ,

(b) ρ (υ) + 2s% (υ) + sκ (υ) < 1,
(c) ς

(
=1υ,=2~

)
≤ ρ (υ) ς (υ, ~) + % (υ)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+ κ (υ) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)
,

then =1 and =2 have a unique common fixed point.

Proof. Define ρ, %, κ : F×F→[0, 1) by

ρ (υ, ~) = ρ (υ) , % (υ, ~) = % (υ) and κ (υ, ~) = κ (υ)

for all υ, ~ ∈ F . Then for all υ, ~ ∈ F , we have
(a) ρ

(
=2=1υ, ~

)
= ρ

(
=2=1υ

)
≤ ρ

(
=1υ

)
≤ ρ (υ) = ρ (υ, ~) and ρ

(
υ,=1=2~

)
= ρ (υ) = ρ (υ, ~)

%
(
=2=1υ, ~

)
= %

(
=2=1υ

)
≤ %

(
=1υ

)
≤ % (υ) = % (υ, ~) and %

(
υ,=1=2~

)
= % (υ) = % (υ, ~)

κ
(
=2=1υ, ~

)
= κ

(
=2=1υ

)
≤ κ

(
=1υ

)
≤ κ (υ) = κ (υ, ~) and κ

(
υ,=1=2~

)
= κ (υ) = κ (υ, ~)

(b) ρ (υ, ~) + 2s% (υ, ~) + sκ (υ, ~) = ρ (υ) + 2s% (υ) + sκ (υ) < 1,
(c) ς

(
=1υ,=2~

)
≤ ρ (υ) ς (υ, ~) + % (υ)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+ κ (υ) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)

ς
(
=1υ,=2~

)
≤ ρ (υ, ~) ς (υ, ~) + % (υ, ~)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+ κ (υ, ~) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)
.

By Theorem 8, =1 and =2 have a unique common fixed point. �

Remark 1. It is notable that (a) and (b) of Theorem 8 above can be weakened by the condition
ρ
(
=2=1υ

)
≤ ρ (υ) , %

(
=2=1υ

)
≤ % (υ) and κ

(
=2=1υ

)
≤ κ (υ) for all υ ∈ F .

Corollary 7. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exist control functions ρ, %, κ : F→[0, 1) such that

(a) ρ
(
=2=1υ

)
≤ ρ (υ)

%
(
=2=1υ

)
≤ % (υ)

κ
(
=2=1υ

)
≤ κ (υ),

(b) ρ (υ) + 2s% (υ) + sκ (υ) < 1,
(c) ς

(
=1υ,=2~

)
≤ ρ (υ) ς (υ, ~) + % (υ)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+ κ (υ) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)
,

then =1 and =2 have a unique common fixed point.

Proof. Define ρ, %, κ : F×F→[0, 1) by

ρ (υ, ~) = ρ (υ) , % (υ, ~) = % (υ) and κ (υ, ~) = κ (υ)

for all υ, ~ ∈ F . Then for all υ, ~ ∈ F , we have
(a) ρ

(
=2=1υ, ~

)
= ρ

(
=2=1υ

)
≤ ρ (υ) = ρ (υ, ~) and ρ

(
υ,=1=2~

)
= ρ (υ) = ρ (υ, ~)

%
(
=2=1υ, ~

)
= %

(
=2=1υ

)
≤ % (υ) = % (υ, ~) and %

(
υ,=1=2~

)
= % (υ) = % (υ, ~)

κ
(
=2=1υ, ~

)
= κ

(
=2=1υ

)
≤ κ (υ) = κ (υ, ~) and κ

(
υ,=1=2~

)
= κ (υ) = κ (υ, ~)

(b) ρ (υ, ~) + 2s% (υ, ~) + sκ (υ, ~) = ρ (υ) + 2s% (υ) + sκ (υ) < 1,
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(c) ς
(
=1υ,=2~

)
≤ ρ (υ) ς (υ, ~) + % (υ)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+ κ (υ) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)
,

ς
(
=1υ,=2~

)
≤ ρ (υ, ~) ς (υ, ~) + % (υ, ~)

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+ κ (υ, ~) ς(υ,=1υ)ς(~,=2~)

1+ς(υ,=2~)+ς(~,=1υ)+ς(υ,~)
.

By Theorem 8, =1 and =2 have a unique common fixed point. �

Corollary 8. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exist nonnegative real numbers ρ, % and κ with ρ + 2s% + sκ < 1 such that

ς
(
=1υ,=2~

)
≤ ρς (υ, ~) + %

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
+κ

ς
(
υ,=1υ

)
ς
(
~,=2~

)
1 + ς

(
υ,=2~

)
+ ς

(
~,=1υ

)
+ ς (υ, ~)

,

for all υ, ~ ∈ F , then =1 and =2 have a unique common fixed point.

Proof. Take ρ (·) = ρ, % (·) = % and κ (·) = κ in Corollary 7. �

Corollary 9. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let = : F → F . If
there exist nonnegative real numbers ρ, % and κ with ρ + 2s% + sκ < 1 such that

ς
(
=υ,=~

)
≤ ρς (υ, ~) + %

[
ς
(
υ,=~

)
+ ς

(
~,=υ

)]
+κ

ς
(
υ,=υ

)
ς
(
~,=~

)
1 + ς

(
υ,=~

)
+ ς

(
~,=υ

)
+ ς (υ, ~)

,

for all υ, ~ ∈ F , then = has a unique fixed point.

Proof. Take =1 = =2 = = in above Corollary. �

Corollary 10. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exist nonnegative real numbers ρ and % with ρ + 2s% < 1 such that

ς
(
=1υ,=2~

)
≤ ρς (υ, ~) + %

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
,

for all υ, ~ ∈ F , then =1 and =2 have a unique common fixed point.

Proof. Take κ = 0 in Corollary 8. �

Corollary 11. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exist nonnegative real numbers ρ and κ with ρ + sκ < 1 such that

ς
(
=1υ,=2~

)
≤ ρς (υ, ~) + κ

ς
(
υ,=1υ

)
ς
(
~,=2~

)
1 + ς

(
υ,=2~

)
+ ς

(
~,=1υ

)
+ ς (υ, ~)

,

for all υ, ~ ∈ F , then =1 and =2 have a unique common fixed point.

Proof. Take % = 0 in Corollary 8. �

Corollary 12. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exists nonnegative real number ρ ∈ [0, 1) such that

ς
(
=1υ,=2~

)
≤ ρς (υ, ~)

for all υ, ~ ∈ F , then =1 and =2 have a unique common fixed point.

AIMS Mathematics Volume 8, Issue 4, 9443–9460.



9456

Proof. Take % = κ = 0 in Corollary 8. �

Corollary 13. [7] Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let = : F → F .
If there exists nonnegative real number ρ ∈ [0, 1) such that

ς
(
=υ,=~

)
≤ ρς (υ, ~)

for all υ, ~ ∈ F , then = has a unique fixed point.

Proof. Take =1 = =2 = = in above Corollary. �

Corollary 14. Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let =1,=2 : F → F .
If there exists nonnegative real number % with 2s% < 1 such that

ς
(
=1υ,=2~

)
≤ %

[
ς
(
υ,=2~

)
+ ς

(
~,=1υ

)]
,

for all υ, ~ ∈ F , then =1 and =2 have a unique common fixed point.

Proof. Take ρ = κ = 0 in Corollary 8. �

Corollary 15. [8] Let (F , ς) be a complete b-metric space with coefficient s ≥ 1 and let = : F → F .
If there exists nonnegative real number % with 2s% < 1 such that

ς
(
=υ,=~

)
≤ %

[
ς
(
υ,=~

)
+ ς

(
~,=υ

)]
,

for all υ, ~ ∈ F , then = has a unique fixed point.

Proof. Take =1 = =2 = = in above Corollary. �

Remark 2. If we take s = 1, then b-metric space reduced to metric space and Banach contraction
principle [2] and Chaterjea fixed point theorem [4] are direct consequences of Corollaries 13 and 15
respectively.

5. Application

In the present section, we discuss the existence of solution for the Fredholm integral equation

υ(t) =

∫ 1

0
K(t, s, υ(s))ds (5.1)

where K : [0, 1]×[0, 1]×R→ R+ is continuous function. Let F = C[0, 1] be the set of real continuous
functions defined on [0, 1] and

d(υ(t), ~(t)) = max
t∈[0,1]

(‖υ (t) − ~ (t)‖)m

for all υ, ~ ∈ F , where m ≥ 1. It is evident that (F , d) is a complete b-metric space with a parameter
s = 2m−1.
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Theorem 10. Consider Eq (5.1) and suppose that
(i) K : [0, 1] × [0, 1] × R→ R+ is continuous function,
(ii) there exists a continuous function λ : [0, 1] × [0, 1]→ R+ such that

∫ 1

0
λ (t, s) ds ≤ 1,

(iii) there exists a control function ρ : F×F→[0, 1) such that ρ
(
=υ, ~

)
≤ ρ (υ, ~) and ρ

(
υ,=~

)
≤

ρ (υ, ~),
(iv) for all (t, s) ∈ [0, 1]2 and υ, ~ ∈ F ,

|K(t, s, υ(s)) − K(t, s, ~(s))| ≤ ρ (υ, ~)
1
m λ (t, s) |υ(s) − ~(s)| .

Then the integral Eq (5.1) has a unique solution υ ∈ F .

Proof. Define the mapping = : F → F by

=υ(t) =

∫ 1

0
K(t, s, υ(s))ds.

Now for υ, ~ ∈ F and t ∈ [0, 1], we have

d(=υ(t),=~(t)) =
(∣∣∣=υ(t) − =~(t)

∣∣∣)m

=

(∣∣∣∣∣∣
∫ 1

0
K(t, s, υ(s))ds −

∫ 1

0
K(t, s, ~(s))ds

∣∣∣∣∣∣
)m

=

(∣∣∣∣∣∣
∫ 1

0
(K(t, s, υ(s)) − K(t, s, ~(s))) ds

∣∣∣∣∣∣
)m

≤

(∫ 1

0
|K(t, s, υ(s)) − K(t, s, ~(s))| ds

)m

≤

(∫ 1

0
ρ (υ, ~)

1
m λ (t, s) (|υ(s) − ~(s)|m)

1
m ds

)m

=

(∫ 1

0
ρ (υ, ~)

1
m λ (t, s) d(υ(t), ~(t))

1
m ds

)m

= ρ (υ, ~) d(υ(t), ~(t))
(∫ 1

0
λ (t, s) ds

)m

≤ ρ (υ, ~) d(υ(t), ~(t)).

Thus,
ς
(
=υ,=~

)
≤ ρ (υ, ~) d(υ, ~).

Hence, all the assumptions of Corollary 3 are satisfied and = has a unique fixed point in F . Which is
a solution of the integral equation in (5.1). �

6. Conclusions

In this article, we have obtained common fixed point results for rational contractions involving
control functions of two variables in the the background of b-metric space. As outcomes of our main
results, we have derived certain fixed points and common fixed points of self mappings for rational
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contractions presuming control functions of one variable and constants. As an application, we have
investigated the solution of integral equation.

For future study, the obtained results in this article can be extended to multivalued mappings and
fuzzy set valued mappings. As applications of these results for multivalued mappings in the setting of
b-metric space, some differential and integral inclusions can be investigated. Moreover, these results
can be proved in the background of graphical extended b-metric space.
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