In this paper, we show a counterexample to the new iterative scheme introduced by Rezapour et al. in "A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems" [
Citation: Satit Saejung. A counterexample to the new iterative scheme of Rezapour et al.: Some discussions and corrections[J]. AIMS Mathematics, 2023, 8(4): 9436-9442. doi: 10.3934/math.2023475
In this paper, we show a counterexample to the new iterative scheme introduced by Rezapour et al. in "A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems" [
[1] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[2] | S. Rezapour, M. Iqbal, A. Batool, S. Etemad, T. Botmart, A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems, AIMS Mathematics, 8 (2023), 5980–5997. https://doi.org/10.3934/math.2023301 doi: 10.3934/math.2023301 |
[3] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005 |
[4] | P. Debnath, N. Konwar, S. Radenović, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Singapore: Springer Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0 |
[5] | J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.1090/S0002-9947-1936-1501880-4 |
[6] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0 |
[7] | J. B. Diaz, F. T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc., 73 (1967), 516–519. https://doi.org/10.1090/S0002-9904-1967-11725-7 doi: 10.1090/S0002-9904-1967-11725-7 |
[8] | G. E. Kim, Weak and strong convergence theorems of quasi-nonexpansive mappings in a Hilbert spaces, J. Optim. Theory Appl., 152 (2012), 727–738. https://doi.org/10.1007/s10957-011-9924-1 doi: 10.1007/s10957-011-9924-1 |
[9] | J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |