In this paper we present the following two results: 1.- A characterization of the renorming invariant family of asymptotically nonexpansive mappings defined on a convex, closed and bounded set of a Banach space; 2.- A comparison of the renorming invariant family of asymptotically nonexpansive mappings with the renorming invariant family of nonexpansive mappings. Additionally, a series of examples are shown for general and particular cases.
Citation: Juan Rafael Acosta-Portilla, Lizbeth Yolanda Garrido-Ramírez. On minimal asymptotically nonexpansive mappings[J]. AIMS Mathematics, 2023, 8(4): 9416-9435. doi: 10.3934/math.2023474
In this paper we present the following two results: 1.- A characterization of the renorming invariant family of asymptotically nonexpansive mappings defined on a convex, closed and bounded set of a Banach space; 2.- A comparison of the renorming invariant family of asymptotically nonexpansive mappings with the renorming invariant family of nonexpansive mappings. Additionally, a series of examples are shown for general and particular cases.
[1] | R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Harlow, Essex: Longman Scientific & Technical, 1993. |
[2] | M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, New York: Springer, 2001. |
[3] | G. Godefroy, Renormings of Banach spaces, In: Handbook of the Geometry of Banach Spaces, Amsterdam: North Holland, 2001,781–835. https://doi.org/10.1016/S1874-5849(01)80020-6 |
[4] | A. J. Guirao, V. Montesinos, V. Zizler, Renormings in Banach Spaces, Birkhäuser Cham, 2022. https://doi.org/10.1007/978-3-031-08655-7 |
[5] | J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630 |
[6] | S. Banach, Theory of Linear Operations, Amsterdam: North-Holland, 1987. |
[7] | A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Am. Math. Soc., 13 (1962), 329–334. https://doi.org/10.2307/2034494 doi: 10.2307/2034494 |
[8] | R. C. James, Uniformly non-square Banach spaces, Ann. Math., 80 (1964), 542–550. https://doi.org/10.2307/1970663 doi: 10.2307/1970663 |
[9] | C. A. Kottman, Packing and reflexivity in Banach spaces, T. Am. Math. Soc., 150 (1970), 565–576. https://doi.org/10.2307/1995538 doi: 10.2307/1995538 |
[10] | K. P. R. Sastry, S. V. R. Naidu, Convexity conditions in normed linear spaces, J. für die Reine und Angew. Math., 297 (1978), 36–53. https://doi.org/10.1515/crll.1978.297.35 doi: 10.1515/crll.1978.297.35 |
[11] | K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[12] | W. A. Kirk, B. Sims, Handbook of Metric Fixed Point Theory, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-017-1748-9 |
[13] | P. K. Lin, There is an equivalent norm on $\ell_1$ that has the fixed point property, Nonlinear Anal., 68 (2008), 2303–2308. https://doi.org/10.1016/j.na.2007.01.050 doi: 10.1016/j.na.2007.01.050 |
[14] | T. Domínguez-Benavides, A renorming of some nonseparable Banach spaces with the fixed point property, J. Math. Anal. Appl., 350 (2009), 525–530. https://doi.org/10.1016/j.jmaa.2008.02.049 doi: 10.1016/j.jmaa.2008.02.049 |
[15] | A. Betiuk-Pilarska, T. Domínguez-Benavides, The fixed point property for some generalized nonexpansive mappings and renormings, J. Math. Anal. Appl., 429 (2015), 800–813. https://doi.org/10.1016/j.jmaa.2015.04.043 doi: 10.1016/j.jmaa.2015.04.043 |
[16] | E. Moreno-Gálvez, E. Llorens-Fuster, The fixed point property for some generalized nonexpansive mappings in a nonreflexive Banach space, Fixed Point Theory, 14 (2013), 141–150. |
[17] | T. Domínguez Benavides, S. Phothi, Porosity of the fixed point property under renorming, Fixed Point Theory Appl., 1 (2008), 29–41. |
[18] | T. Domínguez Benavides, S. Phothi, The fixed point property under renorming in some classes of Banach spaces, Nonlinear Anal., 72 (2010), 1409–1416. https://doi.org/10.1016/j.na.2009.08.024 doi: 10.1016/j.na.2009.08.024 |
[19] | T. Domínguez Benavides, S. Phothi, Genericity of the fixed point property for reflexive spaces under renormings, In: Nonlinear Analysis and Optimization I: Nonlinear Analysis, Contemporary Mathematics, 2010,143–155. http://doi.org/10.1090/conm/513/10080 |
[20] | T. Domínguez Benavides, S. Phothi, Genericity of the fixed point property under renorming in some classes of Banach spaces, Fixed Point Theory Appl., 1 (2010), 55–69. |
[21] | J. R. Acosta-Portilla, Intersection of nonexpansive mappings with respect to a finite number of renormings, Fixed Point Theory, 22 (2021), 343–358. |
[22] | J. R. Acosta-Portilla, L. Y. Garrido-Ramírez, A characterization of constructible norms for bounded Lipschitzian mappings, Fixed Point Theory, 2022. |
[23] | J. R. Acosta-Portilla, C. A. Hernández-Linares, V. Pérez-García, About some families of nonexpansive mappings with respect to renorming, J. Funct. Spaces, 2016 (2016), 9310515. https://doi.org/10.1155/2016/9310515 doi: 10.1155/2016/9310515 |
[24] | J. R. Acosta-Portilla, C. A. De la Cruz-Reyes, C. A. Hernández-Linares, V. Pérez-García, Lipschitzian mappings under renormings, J. Nonlinear Convex. Anal., 20 (2019), 2239–2257. |
[25] | K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35 (1972), 171–174. https://doi.org/10.2307/2038462 doi: 10.2307/2038462 |
[26] | C. E. Silva, Invitation to Ergodic Theory, American Mathematical Society, 2018. |