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1. Introduction

The metric renorming theory for Banach spaces is dedicated to construct equivalent norms that do
or do not satisfy a given metric property. As references to deepen the subject of study, [1–4] can be
consulted. The properties that are preserved under isomorphisms necessarily are renorming invariant,
whereas properties that depend heavily on the norm are called geometric properties, thus the latter
ones are at an intermediate point between being invariant under isomorphisms and isometries. Some
examples are the rotundity and smoothness of ball [5, 6], the packing of the ball [7–10], and the fixed
point property [11,12], which we will describe in detail. Given a Banach space (X, ‖·‖) and C a convex,
closed and bounded subset of X, we say that T : C → C is nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖, (1.1)

for each x, y ∈ C. We say that C has the fixed point property (FPP) if every nonexpansive operator
defined from C to itself, has at least one fixed point, and we say that (X, ‖ · ‖) has the FPP if every
convex, closed and bounded subset of X has the FPP. A number of geometric properties have been
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linked to the FPP [11, 12], and it was for reflexivity that it took about 50 years to shed some light on
their relationship with the FPP. In the year 2008 P.K. Lin [13] construct through a renorming, the first
example of a nonreflexive Banach space with the FPP, and in the year 2009
Domı́nguez-Benavides [14] proved that every reflexive Banach space can be renormed in such a way
it has the FPP. The FPP under renormings have been studied for other types of operators, see for
example [15, 16]. But, why are FPP-type properties lost or gained when renorming? In essence, when
we renorm a space the Lipschitz constants of operators change, hence the families of
nonexpansive-like operators change. It is under this approach that there are a number of works which
study the behavior of families of nonexpansive-type operators when renorming. On the one hand,
there are works studying the genericity of FPP [17–20]. On the other hand. there are works studying
the topological structure of the space of Lipschitzian mappings [21, 22]. Finally, there are works that
compare and classify the invariant families of operators [23, 24]. This article is in the latter direction.

We will conclude this introduction by giving a brief summary of the contents of this article. In
Section 2, the notation is introduced and known results are referred to. In Section 3, we characterize
the family of asymptotically nonexpansive operators which are asymptotically nonexpansive with
respect to a family of norms. In Section 4, we characterize the family of renorming invariant
asymptotically nonexpansive mappings when the domain of definition is a one-dimensional convex
set. Finally, in Section 5, we construct a series of examples and compare the families and minimal
families of asymptotically nonexpansive operators with the respective families of nonexpansive
operators.

2. Preliminaries

We will start by giving some definitions and notation that will be used throughout this article. Let
(X, ‖ · ‖0) be a Banach space over the scalar field F = R ∨ C and C a nonempty subset of X with at
least two elements. We denote by N(X) the family of equivalent norms of X. We say that an operator
T : C → X is ‖ · ‖0-Lipschitz if it has finite Lipschitz constant:

K(T, ‖ · ‖0) = sup
{
‖T x − Ty‖0
‖x − y‖0

∣∣∣∣∣ x, y ∈ C, x , y
}
. (2.1)

Note that if T is ‖ · ‖-Lipschitz for some ‖ · ‖ ∈ N(X) then it is ‖ · ‖′-Lipschitz for all ‖ · ‖′ ∈ N(X).
Therefore we will simply say that an operator is Lipschitz without referring to the norm w.r.t which it is
Lipschitz. If D is a nonempty subset of X we denote by Lip(C,D) the family of Lipschitzian operators
T : C → D. In particular when D = C we will write Lip(C) instead of Lip(C,C). It is well known
that for every ‖ · ‖ ∈ N(X) the functional K( · , ‖ · ‖) is a seminorm in Lip(C, X), which also induces a
pseudometric in Lip(C, X) defined by

dK(T, S , ‖ · ‖) = K(T − S , ‖ · ‖), (2.2)

for each S ,T ∈ Lip(C, X). Since we are working with equivalent norms, then all seminorms K( · , ‖ · ‖)
with ‖ · ‖ ∈ N(X) are equivalent in the sense that they imply the same convergence and induces the
same topology τK . Thus for τK-convergence purposes we use the notations

dK(S n, S )→ 0 as n→ ∞, (2.3)
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or

S n →K S , (2.4)

when a sequence (S n) in Lip(C, X) converges to S ∈ Lip(C, X) with respect to the topology τK . In other
words, for each ‖ · ‖ ∈ N(X) and ε > 0 exists N ∈ N such that for every n ≥ N we have that

‖S nx − S ny − (S x − S y)‖ = ‖(S n − S )x − (S n − S )y‖
≤ ε‖x − y‖,

(2.5)

for each x, y ∈ C. Note that (2.5) is the same as dK(S n, S , ‖ · ‖) ≤ ε for each n ≥ N. Similarly if F, (S n)
and S are respectively a nonempty subset, a sequence and an element in Lip(C, X) and ‖ · ‖ ∈ N(X),
then we define

dK(S ,F, ‖ · ‖) = inf{dK(S , F, ‖ · ‖) | F ∈ F}
= inf{K(S − F, ‖ · ‖) | F ∈ F},

(2.6)

and the two introduced notations

dK(S n,F)→ 0 as n→ ∞, (2.7)

or

S n → F, (2.8)

means that for each ‖ · ‖ ∈ N(X) we have that dK(S n,F, ‖ · ‖) → 0. Which in turn is equivalent to that
for each ‖ · ‖ ∈ N(X) and ε > 0 there exists N ∈ N such that for each n ≥ N exists Fn ∈ F such that
dK(S n, Fn, ‖ · ‖) < ε. Additionally, it is well known that due to the convexity of the seminorms we have
that the convergence in seminorm implies punctual convergence. Thus for all ‖ · ‖ ∈ N(X) we have that
S n →K S implies

K(S n, ‖ · ‖)→ K(S , ‖ · ‖). (2.9)

Then if sup{K(T, ‖ · ‖) |T ∈ F} = M < ∞ and S n →K F, we have that

lim sup
n

K(S n, ‖ · ‖) ≤ M. (2.10)

It is important to note that the seminorms K( · , ‖ · ‖) do not distinguish between operators that differ
by a constant, in other words, if S ,T ∈ Lip(C, X) satisfy S −T = fx where x ∈ X and fx(c) = x for each
c ∈ C, then K(S − T, ‖ · ‖) = 0, and it is not hard to check that the only operators that have Lipschitz
constant equals to 0 are the constant functions.

An operator T ∈ Lip(C, X) is said to be ‖ · ‖-nonexpansive if K(T, ‖ · ‖) ≤ 1. For each ‖ · ‖ ∈ N(X) we
denote by NE(C, ‖ ·‖) the family of all ‖ ·‖-nonexpansive mappings from C to itself. The next definition
is due to Goebel and Kirk [25] in 1972 and is a natural extension of the concept of nonexpansive
mapping.
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Definition 2.1. Let C be a nonempty subset of a Banach space (X, ‖ · ‖). A mapping T : C → C is said
to be ‖ · ‖-asymptotically nonexpansive if

lim sup
n

K(T n, ‖ · ‖) ≤ 1. (2.11)

For each ‖ · ‖ ∈ N(X) we denote by ANE(C, ‖ · ‖) the family of all ‖ · ‖-asymptotically nonexpansive
mappings from C to C.

With the notation introduced we notice that for each ‖ · ‖ ∈ N(X) it is true that the set of ‖ ·
‖-nonexpansive mappings from C to itself is equal to the K( · , ‖ · ‖)-ball with center 0 and radii 1
intersected by Lip(C), that is

NE(C, ‖ · ‖) = B(0,K( · , ‖ · ‖), 1) ∩ Lip(C), (2.12)

where B(0,K( · , ‖ · ‖), 1) = {S ∈ Lip(C, X) |K(S , ‖ · ‖) ≤ 1} is the closed unit ball in
(Lip(C, X),K( · , ‖ · ‖)). It is therefore equivalent to deal with families of nonexpansive mappings than
with certain balls associated with seminorms. Even more from this approach can be treated families
of operators whose definition involves a certain type of seminorm-like function, as in the case of
asymptotically nonexpansive operators in which the space of study is

ULip(C) = {T ∈ Lip(C) | sup K(T n, ‖ · ‖) < ∞}, (2.13)

and the family of seminorm-like functions of interest are

UK(T, ‖ · ‖) = lim sup
n

K(T n, ‖ · ‖), (2.14)

for every ‖ · ‖ ∈ N(X). Hence, the asymptotically nonexpansive sets ANE(C, ‖ · ‖) are equals to the
intersection of the unit UK-ball of (Lip(C, X),UK( · , ‖ · ‖)) with ULip(C)

ANE(C, ‖ · ‖) = B(0,UK( · , ‖ · ‖), 1) ∩ ULip(C). (2.15)

3. Asymptotically nonexpansive non one-dimensional case

In this section we study the family of renorming invariant asymptotically nonexpansive mappings
and relate them with some special class of operators that asymptotically tends to behave as non rotating-
like functions.

Theorem 3.1. Let X be a Banach space, C a convex, closed and bounded subset of X with at least
two elements, I a nonempty subset of N(X), for each ‖ · ‖ ∈ N(X) a nonnegative r‖·‖ ≥ 0, and (Tn) a
sequence in Lip(C). Then the following statements are equivalent:

(1) Tn →K
{
S ∈ Lip(C) |K(S , ‖ · ‖) ≤ r‖·‖

}
for each ‖ · ‖ ∈ I.

(2) lim sup
n

K(Tn, ‖ · ‖) ≤ r‖·‖ for each ‖ · ‖ ∈ I.

Moreover, they follow from
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(3) Tn →K

⋂
‖·‖∈I

{
S ∈ Lip(C) |K(S , ‖ · ‖ ≤ r‖·‖

}
.

Proof. First, the sets {
S ∈ Lip(C) |K(S , ‖ · ‖) ≤ r‖·‖

}
(3.1)

are nonempty and have nonempty intersection with respect to I. Since the constant functions fx with
x ∈ C are always elements of them.The one that (3) implies (1) follows directly from the definition
of intersection. We will prove that (1) implies (2). By (2.5), (2.7) and (2.9), for each ε > 0 and
‖ · ‖ ∈ I there exists N ∈ N such that for each n ≥ N exists S n ∈

{
S ∈ Lip(C) |K(S , ‖ · ‖) ≤ r‖·‖

}
with

K(Tn − S n, ‖ · ‖) < ε, Hence

|K(Tn, ‖ · ‖) − K(S n, ‖ · ‖)| ≤ K(Tn − S n, ‖ · ‖) < ε. (3.2)

Thus K(Tn, ‖ · ‖) < r‖·‖ + ε for each n ≥ N, which implies (2). Now we prove that (2) implies (1).
Let ε > 0, ‖ · ‖ ∈ I and x0 ∈ C. Then by the definition of upper limit there exists N ∈ N such that for
each n ≥ N it is fulfilled that K(Tn, ‖ · ‖) < r‖·‖ + ε. We define

λ = 1 − r‖·‖
(
r‖·‖ + ε

)−1 < 1, (3.3)

and for each n ≥ N

S n = λ fx0 + (1 − λ)Tn, (3.4)

where fx0 is the constant function x0 defined on C. By the convexity of C we have that S n ∈ Lip(C) for
each n ≥ N. Then

K(S n, ‖ · ‖) = K(λ fx0 + (1 − λ)Tn, ‖ · ‖)
≤ λK( fx0 , ‖ · ‖) + (1 − λ)K(Tn, ‖ · ‖)
≤ (1 − λ)

(
r‖·‖ + ε

)
= r‖·‖.

(3.5)

Hence S n ∈
{
S ∈ Lip(C) |K(S , ‖ · ‖) ≤ r‖·‖

}
. Moreover

K(S n − Tn, ‖ · ‖) = K(λ fx0 + (1 − λ)Tn − Tn, ‖ · ‖)
≤ λK( fx0 , ‖ · ‖) + λK(Tn, ‖ · ‖)
= λK(Tn, ‖ · ‖)
≤ λ

(
r‖·‖ + ε

)
.

(3.6)

By (3.3) it is clear that λ→ 0 when ε→ 0. Then

Tn →K
{
S ∈ Lip(C) |K(S , ‖ · ‖) ≤ r‖·‖

}
, (3.7)

for each ‖ · ‖ ∈ I. �
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Corollary 3.2. Let X be a Banach space, C a convex, closed and bounded subset of X with at least two
elements, I a nonempty subset ofN(X) and T ∈ Lip(C). Then the following statements are equivalent:

(1) T ∈ ANE(C, ‖ · ‖) for each ‖ · ‖ ∈ I.
(2) T ∈

⋂
‖·‖∈I

ANE(C, ‖ · ‖).

(3) T n →K NE(C, ‖ · ‖) for each ‖ · ‖ ∈ I.
(4) lim sup

n
K(T n, ‖ · ‖) ≤ 1 for each ‖ · ‖ ∈ I.

Moreover, they follow from

(5) T n →K

⋂
‖·‖∈I

NE(C, ‖ · ‖).

Proof. By definition (1) and (2) are equivalent. While proposition (3) and (4) are equivalent by
Theorem 3.1. Taking

NE(C, ‖ · ‖) = {S ∈ Lip(C) |K(S , ‖ · ‖) ≤ 1}, (3.8)

for each ‖ · ‖ ∈ I, and sequence (Tn) as the iterated sequence (T n) of T . (4) is equivalent to (1) by
Definition 2.1. Finally, (5) implies (1) by Theorem 3.1. �

Definition 3.3. We say that a convex C is one-dimensional if exist x, y ∈ C with x , y such that for
each z ∈ C there is a scalar αz ∈ F = R ∨ C such that z = αzx + (1 − αz)y.

In [23] Acosta-Portilla, Hernández-Lináres and Pérez-Garcı́a proved that the family of renorming-
invariant Lipschitzian mappings

S ′(C) =
⋂

‖·‖∈N(X)

NE(C, ‖ · ‖) (3.9)

is made up of elements of the form T = fx + αI for some x ∈ X and |α| ≤ 1 when C is a non one-
dimensional convex. Whereas S ′(C) is isometric isomorphic to the family NE(A, | · |) with A some
convex in F when C is one-dimensional.

Definition 3.4. A sequence (Tn) ∈ Lip(C) is r-asymptotically uniformly collinear if for each ε > 0
exists N ∈ N such that for each n ≥ N exists |αn| ≤ r with

‖Tnx − Tny − αn(x − y)‖ ≤ ε‖x − y‖, (3.10)

for each x, y ∈ C.

Definition 3.5. A sequence (Tn) ∈ Lip(C) is r-asymptotically collinear if for each ε > 0 exists N ∈ N
such that for each n ≥ N and x, y ∈ C there exists α = α(n, x, y) with |α| ≤ r, such that

‖Tnx − Tny − α(x − y)‖ ≤ ε‖x − y‖. (3.11)
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When the sequence coincides with the iterate sequence (T n) of an operator T , We will simply say
that T is r-asymptotically (uniformly) collinear.

Note that if a sequence is asymptotically uniformly collinear, then it is asymptotically collinear
and if it is asymptotically (uniformly) collinear with respect to some norm, then it is asymptotically
(uniformly) collinear with respect to all equivalent norm. Therefore the asymptomatically (uniformly)
collinear is a pure algebraic and topological property and does not depend on the choice of the norm.
Which was to be expected since as we show below, it characterizes some operators that are always
asymptotically nonexpansive. The following lemma relates the r-asymptotically collinear property to
the asymptotic behaviour of the Lipschitz constants of the sequence.

Lemma 3.6. Let X be a normed space, C a nonempty subset of X with at least two elements, and (Tn)
a sequence in Lip(C) that is r-asymptotically collinear with respect to some norm ‖ · ‖0 ∈ N(X). Then
for each ‖ · ‖ ∈ N(X) the sequence is r-asymptotically collinear and

lim sup
n

K(Tn, ‖ · ‖) ≤ r. (3.12)

Proof. Let ε > 0, ‖ · ‖ ∈ N(X) and l, u > 0 be two constants such that for every x ∈ X

l‖x‖ ≤ ‖x‖0 ≤ u‖x‖. (3.13)

Then exists N ∈ N such that if n ≥ N and x, y ∈ C, there exists α = α(n, x, y) with |α| ≤ r, such that

‖Tnx − Tny − α(x − y)‖0 ≤ ε‖x − y‖0. (3.14)

Thus

l‖Tnx − Tny − α(x − y)‖ ≤ ‖Tnx − Tny − α(x − y)‖0
≤ ε‖x − y‖0
≤ εu‖x − y‖.

(3.15)

Hence ‖Tnx − Tny − α(x − y)‖ ≤ ε
u
l
‖x − y‖ for each ‖ · ‖ ∈ N(X), that is, (Tn) is r-asymptotically

collinear for each ‖ · ‖ ∈ N(X). Moreover for each n ≥ N and x, y ∈ C we have that

‖Tnx − Tny‖ − |α|‖x − y‖ ≤ ε
u
l
‖x − y‖. (3.16)

Therefore for x , y

‖Tnx − Tny‖
‖x − y‖

≤ |α| + ε
u
l
. (3.17)

Then

K(Tn, ‖ · ‖) ≤ sup
{
|α| + ε

u
l

∣∣∣∣∣ x, y ∈ C, x , y
}

= sup { |α| | x, y ∈ C, x , y} + ε
u
l

≤ r + ε′,

(3.18)
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where ε′ = ε
u
l
. Thus lim sup

n
K(Tn, ‖ · ‖) ≤ r for each ‖ · ‖ ∈ N(X). �

Theorem 3.7. Let X be a Banach space, C a nonempty non one-dimensional convex, closed and
bounded subset of X and T ∈ Lip(C) and the following statements:

(1) T n →K S ′(C).
(2) T is 1-asymptotically uniformly collinear.
(3) T is 1-asymptotically collinear.
(4) T ∈ ANE(C, ‖ · ‖) for each ‖ · ‖ ∈ N(X).

Then (1)⇒ (2)⇒ (3)⇒ (4).

Proof. It is clear that (2) implies (3). First we will prove that (1) implies (2). Remember that

S ′(C) =
⋂

‖·‖∈N(X)

NE(C, ‖ · ‖). (3.19)

Let ε > 0 and ‖ · ‖ ∈ N(X). Then exists N ∈ N such that for each n ≥ N exists S n ∈ S ′(C) with
dK(T n, S , ‖ · ‖) < ε. That is,

‖T nx − T ny − (S nx − S ny)‖ ≤ ε‖x − y‖, (3.20)

for each x, y ∈ C. By Theorems 2 and 3 and Corollary 8 in [23] for each n ≥ N exist xn ∈ X and
|αn| ≤ 1 such that

S n = fx + αnI. (3.21)

Then for each x, y ∈ C

ε‖x − y‖ ≥ ‖T nx − T ny − (S nx − S ny)‖
= ‖T nx − T ny − ( fxn + αnIx − fxn − αnIy)‖
= ‖T nx − T ny − αn(x − y)‖.

(3.22)

Hence T is 1-asymptotically uniformly collinear. Finally we will prove that (3) implies (4). By
Lemma 3.6 we have that for each ‖ · ‖ ∈ N(X) it is fulfilled

lim sup
n

K(T n, ‖ · ‖) ≤ 1. (3.23)

Hence T ∈ ANE(C, ‖ · ‖) for every ‖ · ‖ ∈ N(X). �

The intuition indicates that the difference between an asymptotically uniformly collinear operator
and an asymptotically collinear operator, from the point of view of real functions, is similar to that
between a function with a constant derivative and a differentiable function. However, for the non one
dimensional case, we conjecture that AUC and AC operators are the same, since Lemma 4 in [23]
proves that given three non collinear points x, y and z, and scalars αx,y, αx,z and αy,z with
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T x − Ty = αx,y(x − y),
Ty − Tz = αx,z(x − z),
Ty − Tz = αy,z(y − z).

(3.24)

It necessarily holds that αx,y = αx,z = αy,z. Thus in the case of an asymptotically collinear operator
T , most likely it must be fulfilled that

T x − Ty ≈ αx,y(x − y),
Ty − Tz ≈ αx,z(x − z),
Ty − Tz ≈ αy,z(y − z),

(3.25)

implies αx,y ≈ αx,z ≈ αy,z. Therefore the AUC and AC properties would match. On the other hand, we
also conjecture that in Theorems 3.1 and 3.7, and Corollary 3.2 the respective statements are equivalent.
Result that is equivalent to proving the existence of a renorming that makes a countable family of
operators T n not non expansive. However, so far we do not know of a technique that allows us to
construct that renorming.

We might think that the set of norm-invariant asymptotically nonexpansive operators

AS ′(C) =
⋂

‖·‖∈N(X)

ANE(C, ‖ · ‖)

⊃
⋂

‖·‖∈N(X)

NE(C, ‖ · ‖)

= S ′(C),

(3.26)

coincides with that of norm-invariant nonexpansive operators S ′(C). Even so, the containment S ′(C) (
AS ′(C) is always strict, as we shown in the next section.

4. Asymptotically nonexpansive one-dimensional case

As can be seen, in the results of the previous section it was considered that the domain of definition
of the operators was a non one-dimensional convex C. So the natural question is: what happens in the
one-dimensional case?. The proof of the following statements is found in Remark 6 and Theorem 7
of article [23]. Firstly, in the one-dimensional case there is only one renorming for the space, since
all the others are a scalar multiple of it, thus the Lipschitz constant only depends of the operator. In
addition, in the one-dimensional case in essence we are working with a convex subset of the field of
scalars, so the study is equivalent to that of functions defined between convexes in R or C, which added
to the uniqueness of the norm and Lipschitz constant implies that the families studied are an invariant
associated with the convex C. In order to formalize the above. Let C be a one-dimensional convex of
(X, ‖ · ‖) and x, y ∈ C such that for each z ∈ C there is a scalar αz with z = αzx + (1 − αz)y. We define
φ : C → F by
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φz = αz‖x − y‖. (4.1)

It can be proved that φ is an affine isometry between (C, ‖ · ‖) and (φ(C), | · |) ⊂ (F, | · |). Thus we
have the following Lipschitz-preserving identification of (Lip(C),K( · , ‖ · ‖)) with (Lip(φ(C)),K( · , | · |))
defined by T φ = φTφ−1 for each T ∈ Lip(C).

C T //

φ

��

C

φ

��

φ(C) Tφ
// φ(C)

(4.2)

We will say that a function φ between metric spaces (C1, d1) and (C2, d2) is an M-isometry for some
M > 0 if for each x, y ∈ C1 it is fulfilled

d2(φx, φy) = Md1(x, y), (4.3)

the above Construction (4.2) is also valid for φ an M-isometry.

Lemma 4.1. Let (C1, d1) and (C2, d2) be two metric spaces, φ : C1 → C2 a bijective M-isometry and
a Lipschitzian function T : C1 → C1 with Lipschitz constant K(T, d1). Then the function T φ defined
by the Diagram 4.2 has Lipschitz constant K(T φ, d2) = K(T, d1). That is, the function φ induces a
Lipschitz preserving identifications between (Lip(C1),K( · , d1)) and (Lip(C2),K( · , d2)). Moreover the
identification is compatible with compositions. Thus if S ∈ Lip(C1), then

(TS )φ = T φS φ (4.4)

and

K(T φS φ, d2) = K((TS )φ, d2) = K(TS , d1). (4.5)

In particular for each n ∈ N we have that

K((T φ)n, d2) = K((T n)φ, d2) = K(T n, d1). (4.6)

If T is the constant function fa for some a ∈ C1, then T φ is the constant function φa in C2

T φ = ( fa)φ = fφa, (4.7)

and the identification induced by φ is a bijection between Lip(C1) and Lip(C2) with inverse the
identification induced by φ−1.

Proof. Since φTφ−1φSφ−1 = φTSφ−1, then

(TS )φ = T φS φ. (4.8)

Moreover φ is a bijective M-isometry. Thus we have that
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K(T, d1) = sup
{

d1(T x,Ty)
d1(x, y)

∣∣∣∣∣ x, y ∈ C1, x , y
}

= sup
{

M−1d2(φT x, φTy)
M−1d2(φx, φy)

∣∣∣∣∣∣ x, y ∈ C1, x , y
}

= sup
{

d2(φTφ−1(φx), φTφ−1(φy)
d2(φx, φy)

∣∣∣∣∣∣ φx, φy ∈ C2, φx , φy
}

= sup
{

d2(T φa,T φb)
d2(a, b)

∣∣∣∣∣∣ a, b ∈ C2, a , b
}

= K(T φ, d2).

(4.9)

Hence by (4.8) and (4.9)

K(T φS φ, d2) = K((TS )φ, d2) = K(TS , d1). (4.10)

In particular, for every n ∈ N if is fulfilled that

(T n)φ = (T φ)n, (4.11)

and

K((T φ)n, d2) = K((T n)φ, d2) = K(T n, d1). (4.12)

If T = fa, then

T φx =φ( fa(φ−1x))
=φ(a).

(4.13)

Hence ( fa)φ = fφa. Finally, we have the following diagram for each T ∈ Lip(C1)

C1
T //

φ

��

C1

φ

��

C2
Tφ

//

φ−1

��

C2

φ−1

��

C1
T // C1

(4.14)

Thus (T φ)φ
−1

= T , that is, the identification induced by φ has inverse the identification induced by
φ−1. In a similar way it can be proved that for each S ∈ Lip(C2) it is fulfilled (S φ−1

)φ = S . Then φ
induces a bijection between Lip(C1) and Lip(C2). �

The following lemmas are special cases of Lemma 4.1 when C is a one dimensional convex subset
of a normed space and will be used to prove Theorems 4.4 and 4.6 in which it is characterized the
family of asymptotically nonexpansive operators defined on a one dimensional convex set.
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Lemma 4.2. Let C be a one dimensional convex subset of a normed space (X, ‖ · ‖) with distinguished
points x, y ∈ C. Then if α ∈ F is such that z = αx + (1−α)y for some z ∈ C, it necessarily holds α = αz.

Proof. Let z ∈ C and α with z = αx + (1 − α)y. Then

αx + (1 − α)y = αzx + (1 − αz)y. (4.15)

Hence

0 = ‖(αz − α)x − (αz − α)y‖
= |αz − α|‖x − y‖.

(4.16)

Since x , y it follows that αz = α. �

Lemma 4.3. Let C be a one dimensional convex subset of a normed space (X, ‖ · ‖1) with distinguished
points x, y ∈ C. Then the function φ : C → φ(C) ⊂ F defined by

φz = αz‖x − y‖ (4.17)

is a bijective affine 1-isometry and the induced identification (·)φ of Lip(C1) with Lip(C2) is affine.

Proof. By Lemma 4.2 the function φ is well defined and is a bijection. Let a, b ∈ C. Then we have that

‖a − b‖ = ‖αax + (1 − αa)y − [αbx + (1 − αb)y]‖
= |αa − αb|‖x − y‖

= |αa‖x − y‖ − αb‖x − y‖|

= |φa − φb|.

(4.18)

Hence φ is a 1-isometry between (C, ‖·‖) and (φ(C), | · |) with φ(C) ⊂ F. Moreover, for any 0 ≤ λ ≤ 1

αa + (1 − λ)b = λ(αax + (1 − αa)y) + (1 − λ)(αb + (1 − αb)y)
= λαax + λy − λαay + αbx − λαbx + y − αby − λy + λαby

= λαax + αbx − λαbx + y − λαay − αby + λαby

= (λαa + (1 − λ)αb)x + [1 − (λαa + (1 − λ)αb)]y.

(4.19)

Then by Lemma 4.2 and (4.19) we have that

φ(αa + (1 − λ)b) = φ(λ(αax + (1 − αa)y) + (1 − λ)(αb + (1 − αb)y))
= φ[(λαa + (1 − λ)αb)x + [1 − (λαa + (1 − λ)αb)]y]
= [λαa + (1 − λ)αb]‖x − y‖

= λαa‖x − y‖ + (1 − λ)αb‖x − y‖

= λφa + (1 − λ)φb.

(4.20)
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Thus φ is an affine operator. Finally, let T, S ∈ Lip(C) and 0 ≤ λ ≤ 1. Therefore we have that

(λT + (1 − λ)S )φ = φ(λT + (1 − λ)S )φ−1

= φ(λTφ−1 + (1 − λ)Sφ−1)
= λφTφ−1 + (1 − λ)φSφ−1

= λT φ + (1 − λ)S φ.

(4.21)

That is, the identification (·)φ is affine. �

Now we have the elements to characterize the families of asymptotically nonexpansive operators
defined over a one dimensional convex set.

Theorem 4.4. Let X be a Banach space and C a nonempty one dimensional convex, closed and
bounded subset of (X, ‖ · ‖). Then exist D ⊂ F and an affine isometry φ : C → D such that the
correspondence T 7→ T φ from ANE(C, ‖ · ‖) to ANE(D, | · |) is an affine Lipschitz constant and
composition preserving bijective mapping.

Proof. Let φ : C → φ(C) ⊂ F defined by φz = αz‖x − y‖. By Lemmas 4.1 and 4.3 only left to prove
that (·)φ maps ANE(C, ‖ · ‖) over ANE(φ(C), | · |), and this is true since the identifications (·)φ and (·)φ

−1

are inverse to each other, preserve Lipschitz constants, and are compatible with compositions. �

Lemma 4.5. Let C be a one dimensional convex subset of a normed space X with distinguished points
x, y ∈ C. Then for each ‖ · ‖1, ‖ · ‖2 ∈ N(X) there exists r > 0 such that ‖a − b‖2 = r‖a − b‖1 for each
a, b ∈ C.

Proof. Let ‖ · ‖1, ‖ · ‖2 ∈ N(X) and

r =
‖x − y‖2
‖x − y‖1

. (4.22)

Then for each a, b ∈ C we have that

a − b = αax + (1 − αa)y − [αbx + (1 − αb)y]
= αax − αbx − αay + αby + y − y

= (αa − αb)(x − y).
(4.23)

For this reason

‖a − b‖2 = |αa − αb|‖x − y‖2
= r|αa − αb|‖x − y‖1
= r‖a − b‖1.

(4.24)

�
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Theorem 4.6. Let X be a Banach space and C a nonempty one dimensional convex, closed and
bounded subset of X. Then for each ‖ · ‖1, ‖ · ‖2 ∈ N(X) it is fulfilled that

ANE(C, ‖ · ‖1) = ANE(C, ‖ · ‖2). (4.25)

Proof. Let ‖ · ‖1, ‖ · ‖2 ∈ N(X) and T ∈ Lip(C). Then by Lemma 4.5 there exists r > 0 such that
‖a − b‖2 = r‖a − b‖1. Thus for each x, y ∈ C with x , y we have that

‖T x − Ty‖2
‖x − y‖2

=
r‖T x − Ty‖1

r‖x − y‖1

=
‖T x − Ty‖1
‖x − ‖1

.

(4.26)

In consequence for each T ∈ Lip(C) it is fulfilled that K(T, ‖ · ‖2) = K(T, ‖ · ‖1). In particular, for
each T ∈ ANE(C, ‖ · ‖2) and n ∈ N we have that K(T n, ‖ · ‖2) = K(T n, ‖ · ‖1). Hence ANE(C, ‖ · ‖2) ⊂
ANE(C, ‖ · ‖1). Similarly the other containment can be proved. Then

ANE(C, ‖ · ‖1) = ANE(C, ‖ · ‖2), (4.27)

for each ‖ · ‖1, ‖ · ‖ ∈ N(X). �

5. Comparing ANE sets

In this section, we will study the minimal family of asymptotically nonexpansive mappings
compared to the minimal family of nonexpansive mappings, and how the collections of
asymptotically nonexpansive operators relate to those of nonexpansive operators. However, before
making such comparisons we will present some examples that we will make use of later.

Example 5.1. For every nontrivial convex C ⊂ R there exists an asymptotically nonexpansive function
g : C → C that is not nonexpansive. Let 0 < ε < 1 and f : [0, 1]→ [0, 1] defined by

f (x) = min{2x + ε, 1}. (5.1)

We note that f is non decreasing and K( f , | · |) = 2, thus f n is non decreasing for each n ∈ N. We
define recursively εn+1 = 2εn + ε with ε0 = 0. The sequence (εn) is non decreasing and unbounded.
We call N f = min{n | εn ≥ 1}. Then for each n < N f , εn = f n(0) and f N f (0) = min{εN f , 1} = 1. That
is, f m(x) = 1 for each m ≥ N f and x ∈ [0, 1]. Thus K( f m, | · |) = 0 for each m ≥ N f . Hence f is an
asymptotically nonexpansive function that is not nonexpansive.

Now we have constructed an asymptotically nonexpansive operator from C to C. Since C is
nontrivial, there exist a, b ∈ C such that a < y and [a, b] ⊂ C. We define ρ : C → [a, b] by

ρ(x) =


a, if x ≤ a

x, if x ∈ [a, b]
b, if x ≥ b

(5.2)
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and φ : [0, 1] → [a, b] by φ(λ) = λb + (1 − λ)a for each 0 ≤ λ ≤ 1. It is clear that ρ2 = ρ. We affirm
that g : C → C defined by g = φ fφ−1ρ = f φρ is an asymptotically nonexpansive mapping that is not
nonexpansive. In order to prove that assertion, we construct the following commutative diagram which
summarize the functions:

[0, 1]

φ

��

f
// [0, 1]

φ

��

[a, b]
f φ

// [a, b]� _

��

C
g

//

ρ

OO

C

(5.3)

Without lost of generality we may assume that λ1, λ2 ∈ [0, 1] with λ1 < λ2. Then

|φλ2 − φλ1| = |λ2b + (1 − λ2)a − (λ1b + (1 − λ1)a)|
= |λ2 − λ1||b − a|.

(5.4)

Thus φ is an M-isometry with M = |b − a|. In consequence by Lemma 4.1 we have that

K( f φ, | · |) = K( f , | · |) = 2, (5.5)

and for each m ≥ N f we have that

( f φ)m = ( f m)φ

= ( f1)φ

= fφ(1)

= fb.

(5.6)

Where f1 is the constant function 1 defined on [0, 1] and fb the constant function b defined on [a, b].
Thus

gm = ( f φρ)m

= ( f m)φρ
= ( fb)ρ
= fb.

(5.7)

Hence K(gm, | · |) = 0 for each m ≥ N f . That is, g is an asymptotically nonexpansive operator that is
not nonexpansive.

Example 5.2. Each operator T : C → C that is a contraction in any of its iterations is asymptotically
nonexpansive for each equivalent norm. In symbols, let X be a normed space, C a nonempty subset of
X with at least two elements and T : C → C such that for some N ∈ N and ‖ · ‖0 ∈ N(X) we have that
K(T N , ‖ · ‖0) = l < 1. Then T ∈ ANE(C, ‖ · ‖) for each ‖ · ‖ ∈ N(X). By Banach contraction Theorem
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the operator T has a fixed point a ∈ C. Thus we affirm that T n →K fa. In fact, for each x, y ∈ C we
have that

‖T N+r x − fax − (T N+ry − fay)‖0 = ‖T N+r x − T N+ry‖0
≤ lr‖x − y‖0.

(5.8)

Then dK(T n, fa, ‖ · ‖0) → 0 as n → ∞. That is, T →K fa. Moreover T n →K fb for each b ∈ X. In
particular for each b ∈ C and ‖ · ‖ ∈ N(X) we have that

T n →K fb ∈ NE(C, ‖ · ‖). (5.9)

Thus by Theorem 3.7, T is asymptotically nonexpansive for every equivalent norm.

In the following theorem we show that the invariant family of asymptotically nonexpansive
mappings defined in (3.26) is a proper subset of the family of invariant nonexpansive operators (3.9).

Theorem 5.3. Let X be a Banach space and C a nonempty convex, closed and bounded subset of X.
Then S ′(C) ( AS ′(C). Moreover there exist a non affine operator T ∈ AS ′(C) \ S ′(C).

Proof. Let ‖ · ‖0 ∈ N(X). By Corollary 19 in [23] there exists a nonaffine mapping T ∈ NE(C, ‖ · ‖0).
For a fixed a ∈ C and 0 < λ < 1 we define

Tλ = λ fa + (1 − λ)T. (5.10)

It is not hard to check that Tλ is a nonaffine mapping such that

K(Tλ, ‖ · ‖0) = λK(T, ‖ · ‖0)
≤ λ < 1.

(5.11)

Thus by the convexity of C it is clear that Tλ : C → C. Then by Example 5.2 it is fulfilled that
Tλ →K NE(C, ‖ · ‖) for each ‖ · ‖ ∈ N(X). Hence by Theorem 3.7 Tλ is a nonaffine asymptotically
nonexpansive mapping with respect to every equivalent norm. �

Example 5.4. An asymptotically nonexpansive mapping which is only asymptotically nonexpansive
with respect to one norm. Let (R2, ‖ · ‖2) be the two dimensional real space with the euclidean norm.
It is well known that rotations around the origin with 2πθ angle in counterclockwise direction are
‖ · ‖2-isometries and have the form

Aθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
. (5.12)

Another well-known result is that the orbit of Aθ at any x ∈ S 1 is dense in S 1 whenever θ is an
irrational number, see Theorem 3.2.3 of Kronecker in [26]. We consider

T = Aθ|B : B→ B, (5.13)

for some irrational θ and B the euclidean ball. If ‖ · ‖ ∈ N(R2) is not collinear with the euclidean
norm on B, then by Lemma 14 in [23] there exist x, y ∈ B \ {0} such that ‖x‖2 = ‖y‖2 and ‖y‖ > ‖x‖.

AIMS Mathematics Volume 8, Issue 4, 9416–9435.



9432

Without loss of generality we may assume that ‖x‖2 = ‖y‖2 = 1. Given a small enough ε > 0 and a
neighborhood Uy of y such that ‖z‖ > ‖x‖ + ε‖x‖ for each z ∈ U ∩ B. We have by the density of the
orbits that there exist a subsequence (nk) such that T nk x ∈ U ∩ B. That is, ‖T nk x‖ > ‖x‖ + ε‖x‖ for each
k ∈ N. Hence

‖T nk x − T nk0‖ = ‖T nk x‖

> ‖x‖ + ε‖x‖

= (1 + ε)‖x − 0‖.
(5.14)

Thus K(T nk , ‖ · ‖) > 1 + ε > 1 for each k ∈ N. Equivalently

lim sup
k

K(T n, ‖ · ‖) ≥ 1 + ε. (5.15)

Then for each ‖ · ‖′ ∈ N(X) not collinear with the euclidean norm we have that

lim sup
k

K(T n, ‖ · ‖) > 1. (5.16)

Hence T only is asymptotically nonexpansive with respect to the euclidean norm. Now we will
consider the complex case, in such a situation that we have R2 is a one dimensional Banach space.
Then the only one norm is the euclidean norm. Hence the operator T defined above is asymptotically
nonexpansive with respect to all norms. This situation shows us the importance of differentiating
complex and real cases when limited to one dimensional aspects.

Example 5.5. An operator T such that is asymptotically nonexpansive with respect to each equivalent
norm, but the sequence (T n) does not converge in the strong sense. Let C be a symmetric set of a
normed space X and T = −I|C. It is clear that T : C → C is an isometry with respect to all norms over
X. Then T is asymptotically nonexpansive with respect to all norms, but T n = (−I)n = (−1)nI does not
converge with the infinity norm or with the Lipschitz seminorm.

We will finish this paper separating families of asymptotically nonexpansive operators from
nonexpansive ones through nonlinear functions.

Theorem 5.6. Let X be a Banach space and C a nonempty convex, closed and bounded subset of X.
Then for each ‖ · ‖ ∈ N(X) exists a nonaffine mapping

T ∈ ANE(C, ‖ · ‖) \ NE(C, ‖ · ‖). (5.17)

Proof. Let f : [0, 1] → [0, 1] as in Example 5.1 and a, b ∈ C with x , y. We define φ : [0, 1] →
[a, b] ⊂ C by φ(λ) = λb + (1 − λ)a for each 0 ≤ λ ≤ 1. We consider R endowed with the norm
|r|0 = ‖b − a‖|r|. Since | · |0 and | · | are collinear, then K( f , | · |0) = K( f , | · |). Hence

‖φλ2 − φλ1‖ = ‖λ2b + (1 − λ2)a − (λ1b + (1 − λ1)a)‖
= |λ2 − λ1|‖b − a‖

= |λ2 − λ1|0.

(5.18)
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Thus the operator φ is a bijective 1-isometry from ([0, 1], | · |0) to ([a, b], ‖ ·‖). We define f φ = φ fφ−1.
Then By Theorem 18 in [23] there exists T : C → [a, b] ⊂ C such that T |[a,b] = f φ with

K(T, ‖ · ‖) = K( f φ, ‖ · ‖)
= K( f , | · |)
= 2.

(5.19)

We summarize the construction made in the following diagram.

[0, 1]

φ

��

f
// [0, 1]

φ

��

[a, b]
f φ

//
� _

��

[a, b]� _

��

C T // [a, b]

(5.20)

Since T (C) ⊂ [a, b], then for each n ∈ N we have that

T n+1 = T nT

= ( f φ)nT

= ( f n)φT,
(5.21)

in which the last inequality follows from Lemma 4.1. Hence using N f as in Example 5.1 we have that
for each n ≥ N f it is fulfilled that f n = f1. In consequence for each n ≥ N f

K(T n, ‖ · ‖) = K(( f n)φT, ‖ · ‖)
= K(( f1)φT, ‖ · ‖)
= K( fφ(1)T, ‖ · ‖)
= K( fbT, ‖ · ‖)
= K( fb, ‖ · ‖)
= 0.

(5.22)

Then

lim sup
n

K(T n, ‖ · ‖) = 0. (5.23)

That is, T is a ‖ · ‖-asymptotically nonexpansive mapping which is not ‖ · ‖-nonexpansive.
�
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