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Abstract: In this paper, we consider the following semilinear Schrödinger equation:{
−∆u + V(x)u = a(x)g(u) for x ∈ RN ,

u(x)→ 0 as |x| → ∞,
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1. Introduction and main results

In this paper, we consider the existence of solutions for the following semilinear Schrödinger
equation: {

−∆u + V(x)u = f (x, u) for x ∈ RN ,

u(x)→ 0 as |x| → ∞.
(1.1)

Due to its important applications in mathematical physics, Eq (1.1) receives much attention from
mathematicians to look for its solutions. For example, (1.1) is also known as the Gross-Pitaevskii
equation, which can be simulated in the Bose-Einstein condensate (see [3]). In high dimension, this
equation has also been considered by some physicians (see [6]).

In the last two decades, with the development of variational methods and critical points theory,
many mathematicians used the variational methods to show the existence and multiplicity of solutions
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for problem (1.1) and obtained many interesting results [1, 2, 4, 5, 7–12, 15, 17, 19, 20, 22]. Using this
method to deal with problem (1.1), one of the difficulties is to get compactness of the embedding
from the working space to L2(RN). The periodic and coercive conditions are introduced to regain the
compactness. In this paper, we mainly consider the coercive case. The following coercive conditions
on V(x) is first introduced by Rabinowitz in [9].

(V1) V ∈ C1(RN ,R) and there exists a V > 0 such that V(x) ≥ V for all x ∈ RN;
(V2) V(x)→ ∞ as |x| → ∞.
However, (V1) and (V2) are so strong that many functions cannot be involved with them. Then, many

mathematicians tried to relax these conditions. For example, in [16], V is required to be of C class and
V(x) ≥ −V0 with V0 > 0, which generalized condition (V1). In order to generalize condition (V2),
Bartsch and Wang in [2] introduced the following condition:

(V3) infx∈RN V(x) > 0 and for every M > 0, the set ΣM = {x ∈ RN : V(x) < M} has finite Lebesgue
measure.

Condition (V3) has been used by many mathematicians to obtain the existence and multiplicity of
solutions for problem (1.1). Under (V3), V may not have a limit at infinity. In 2000, Sirakov [11]
introduced the following condition on V to guarantee the compactness of embedding.

(V4) For any r > 0 and any sequence {xn} ⊂ R
N which goes to infinity,

lim
n→∞

inf
u∈An

∫
Bn

(|∇u|2 + V(x)u2)dx = +∞,

where An = {u ∈ H1
0(Bn)|∥u∥L2(Bn) = 1} and Bn = B(xn, r) is the open ball with center xn and the radius r.

It has been shown in [11] that condition (V4) is weaker than (V2) and (V3). Moreover, V is allowed
to change sign. In [11], f is required to satisfy the following growth condition:

(AR) There exists ι > 2 such that

t f (x, t) ≥ ιF(x, t) = ι
∫ t

0
f (x, v)dv > 0 for all x ∈ RN and t ∈ R \ {0}.

Condition (AR) is a classical condition introduced by Ambrosetti and Rabinowitz, which provides
a global growth condition of f at both origin and infinity. (AR) also plays an important role in showing
the boundedness of Palais-Smale sequences and the geometrical structure of the corresponding
function. However, the (AR) condition is so strict that many functions do not satisfy this condition.
By replacing (AR) with the following condition, Wan and Tang [16] obtained existence of solutions for
problem (1.1).

(MC) there exists a constant θ ≥ 1 such that θF̃(x, t) ≥ F̃(x, st) for all (x, t) ∈ RN ×R and s ∈ [0, 1],
where F̃(x, t) = f (x, t)t − 2F(x, t).

In this paper, we consider a class of variable separated nonlinear functions that has received limited
attention from researchers, as mentioned in [11]. Our purpose is to establish the existence of solutions
for (1.1) by introducing novel conditions to replace (AR) and (MC). Additionally, we provide examples
to highlight the distinctions between our theorems and prior ones. Precisely, we assume that f is a
variable separated function defined as follows:

f (x, t) = a(x)g(t), (1.2)
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where a(x) is allowed to go to zero at infinity.
Let G(t) =

∫ t

0
g(v)dv. Now we state our main results.

Theorem 1.1. Suppose that (1.2) and the following conditions hold:
(g1) There exists V0 > 0 such that V(x) ≥ V0 for all x ∈ RN;
(g2) a(x) ∈ L∞loc(R

N) and a(x) > 0 for all x ∈ RN;
(g3) a(x)

V(x) → 0 as |x| → ∞;
(g4) There exist ν > 2 and d1, ρ∞ > 0 such that

g(t)t − νG(t) ≥ −d1t2 for all |t| ≥ ρ∞;

(g5) There exists d2 > 0 such that G(t) ≥ −d2t2 for all t ∈ R;
(g6) g(t) = o(|t|) as t → 0;
(g7) G(t)/t2 → +∞ as |t| → ∞;
(g8) There exist β > 1 and d3 > 0 such that

a(x) ≤ d3(V(x)
1
β + 1) for all x ∈ RN .

(g9) There exist ζ ∈ (2, β∗) and d4 > 0 such that

|g(t)| ≤ d4(|t| + |t|ζ−1) for all t ∈ R,

where β∗ = 2N
N−2 −

4
β(N−2) if N ≥ 3, β∗ = +∞ if N = 1, 2.

Then, problem (1.1) possesses at least one nontrivial solution.

Remark 1.1. Condition (g3) is a mixed condition and the function a(x) = 1
1+|x|2 is allowed in

Theorem 1.1 if V(x) = 1, which means a(x) can vanish at infinity. In some most recent paper, the
authors also considered the vanishing cases. In 2020, Toon and Ubilla [13] obtianed the existence of
positive solution for Schrödinger equation, where V(x) is required to be vanishing at infinity and (g3)
is also needed. By strengthening (g3) with

(g′3) For any δ ∈ (0, 1], ω(x) := a(x)V−δ(x) > 0 satisfies ω(x) → 0 almost everywhere (a.e.) as
|x| → ∞.

Toon and Ubilla [14] obtained solutions for a class of Hamiltonian systems of Schrödinger
equations. However, in our theorem, we remove the vanishing property of V and only need the
competition condition (g3). In another paper, Wu, Li and Lin [18] introduced a new coercive condition
on V to obtain the existence of (1.1) with asymptotically linear nonlinearities. Our theorems can not
involved in above results since, besides (g3), we also introduced some new superlinear conditions. In
the following remark, we give some examples to show the differences.

Remark 1.2. As we know, there are many superlinear condition on f , which are weaker than the (AR)
condition. However, in most papers, the following condition is required:

(S Q) G̃(t) ≜ g(t)t − 2G(t) ≥ 0 for any t ∈ R.
In Theorem 1.1, we drop this condition.

Theorem 1.2. Suppose that (1.2), (g1)–(g3), (g6)–(g9), (S Q) and the following conditions hold:
(g10) There exist constants d5, l∞ > 0 and κ > β∗

β∗−2 such that

G̃(t) ≥ d5

(
|G(t)|

t2

)κ
for all |t| ≥ l∞.

Then, problem (1.1) possesses at least one nontrivial solution.
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Remark 1.3. Condition (g10) is introduced by Ding and Luan [4], which is used by many
mathematicians to obtain the existence and multiplicity of solutions for problem (1.1).

Theorem 1.3. Suppose that (1.2), (g1)–(g3), (g6)–(g9), (S Q) and the following condition holds:
(g11) there exist constants µ > β∗, λ0 ∈ (0, 1), d6, d7 > 0, s ∈ [2, β∗) and r∞ > 0 such that

1 − λ2

2
g(t)t +G(λt) −G(t) ≥ −d6λ

µ|t|β
∗

− d7λ
sts, ∀λ ∈ [0, λ0], |t| ≥ r∞.

Then, problem (1.1) possesses at least one nontrivial solution.

Remark 1.4. When d6 = d7 = 0 and r∞ = 0, (g11) goes back to the condition introduced by Tang
in [12]. As the author said in [12], (g11) unifies the (AR) and the following weak Nehari type condition:

(WN) t 7→ g(t)/|t| is increasing on (−∞, 0) ∪ (0,∞).
By an easy computation, we see that (g11) is weaker than (g4).

Remark 1.5. From (g1)–(g3), there exists A > 0 such that

a(x) ≤ AV(x) for all x ∈ RN.

Remark 1.6. There are examples satisfying conditions of Theorems 1.3, but not (g4) or (g10). Setting
2 < p < 2∗, 0 < ϵ < p − 2, consider

G(t) = |t|p + a(p − 2)|t|p−ϵ sin2(|t|ϵ/ϵ). (1.3)

For any γ > 2, let max
{
0, p−γ

p−2

}
< a < 1 and tn =

(
ϵ
(
nπ + 3π

4

))1/ϵ
, then,

g(tn)tn − γG(tn)
t2
n

=
1
t2
n

[
(p − γ)|tn|

p + a(p − 2)(p − γ − ϵ)|tn|
p−ϵ sin2(|tn|

ϵ/ϵ) + a(p − 2)|tn|
p sin(2|tn|

ϵ/ϵ)
]

= |tn|
p−2

[
(p − γ) − a(p − 2) +

a(p − 2)(p − γ − ϵ)
2|tn|

ϵ

]
≤

1
2

[
(p − γ) − a(p − 2)

]
|tn|

p−2

→ −∞ as n→ ∞.

Hence, (1.3) does not satisfy (g4). Moreover, for |t| large enough and any κ > 1, we have(
1
2

g(t)t −G(t)
) (

t2

|G(t)|

)κ
≤ 2κ−1(p − 2)|t|p−κ(p−2)

[
(1 + a sin(2|t|ϵ/ϵ)) +

a(p − 2 − ϵ) sin2(|t|ϵ/ϵ)
|t|ϵ

]
≤ 2κ (1 + a) (p − 2)|t|p−κ(p−2).

If p > 2N
N−2 −

4
β(N−2) = β

∗ and κ > β∗

β∗−2 , we can deduce that p − κ(p − 2) < 0. Then, we can not find
d5 > 0 such that (g10) holds. Next, we show that (1.3) satisfies (g11). Obviously,

AIMS Mathematics Volume 8, Issue 12, 30487–30500.



30491

λ2

2
g(t)t −G(λt)

=

[
λ2

2
p − λp

]
|t|p + a(p − 2)

[
λ2

2
(p − ϵ) sin2(|t|ϵ/ϵ) − λp−ϵ sin2(|λt|ϵ/ϵ)

]
|t|p−ϵ

+
λ2a(p − 2)

2
|t|p sin(2|t|ϵ/ϵ)

≤
λ2

2
(p + a(p − 2)(p − ϵ) + a(p − 2)) |t|p,

and for all t ∈ R,

1
2

g(t)t −G(t) =
p − 2

2
|t|p

[
(1 + a sin(2|t|ϵ/ϵ)) +

a(p − 2 − ϵ) sin2(|t|ϵ/ϵ)
|t|ϵ

]
≥

p − 2
2
|t|p [1 + a sin(2|t|ϵ/ϵ)]

≥
1
4

(1 − a)(p − 2)|t|p,

which implies

1 − λ2

2
g(t)t +G(λt) −G(t) ≥

1
8

(1 − a)(p − 2)|t|p

for λ small enough. Hence, we see (g11) is fulfilled with d6 = d7 = 1.

2. Preliminaries

Set

E :=
{

u ∈ H1(RN) :
∫
RN

(|∇u|2 + V(x)u2)dx < ∞
}

with the inner product

⟨u, v⟩ =
∫
RN

(∇u · ∇v + V(x)uv)dx

and the norm ∥u∥2 = ⟨u, u⟩. Then E is a Hilbert space. For any 2 ≤ p ≤ 2∗, we denote

∥u∥p =
(∫
RN
|u|pdx

)1/p

,

where 2∗ = 2N
N−2 if N ≥ 3, 2∗ = +∞ if N = 1, 2. Since we have (g1), the embedding theorem shows that

E ↪→ Lp(RN) continuously for p ∈ [2, 2∗], which implies that there exists a constant Cp > 0 such that

∥u∥p ≤ Cp∥u∥ (2.1)

for all u ∈ E. For any b(x) ≥ 0 and 2 ≤ q ≤ 2∗, let Lq
b(RN ,R) be a weighted space of measure functions

under the norm as follow:

∥u∥Lq
b
=

(∫
RN

b(x)|u|qdx
)1/q

. (2.2)
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Lemma 2.1. Under assumptions (g1), (g3) and (g8), the embedding E ↪→ Lq
a(RN ,R) is continuous for

all q ∈
[
2, β∗

]
and compact for all q ∈

[
2, β∗).

Proof. Since 2 < β∗ ≤ 2∗, by (g8) and (2.1), for any u ∈ Lq
a(RN ,R) with q ∈

[
2, β∗

]
, we obtain

∥u∥q
Lq

a
=

∫
RN

a(x)|u|qdx

≤ d3

(∫
RN

V(x)
1
β |u|qdx +

∫
RN
|u|qdx

)
≤ d3

(∫
RN

V(x)u2dx
) 1
β
(∫
RN
|u|

βq−2
β−1 dx

) β−1
β

+ d3Cq
q∥u∥

q

≤ d3

(
C

βq−2
β

βq−2
β−1

+Cq
q

)
∥u∥q,

which implies that the embedding is continuous. Moreover, there exists a constant Kp > 0 such that

∥u∥Lq
a
≤ Kp∥u∥ (2.3)

for all u ∈ E and q ∈
[
2, β∗

]
. Next, we prove the compactness of the embedding. Let {uk} ⊂ E be a

sequence such that uk ⇀ u in E. Subsequently, we show that uk → u in Lq
a(RN ,R) for all q ∈

[
2, β∗).

By Banach-Steinhaus theorem, there exists M1 > 0 such that

sup
k∈N
∥uk∥ ≤ M1 and ∥u∥ ≤ M1. (2.4)

It follows from (g3) that for any ε > 0, there exists T > 0 such that

a(x) ≤ εV(x) (2.5)

for all |x| ≥ T . We can deduce from (2.4) and (2.5) that∫
|x|≥T

a(x)|uk − u|2dx ≤ ε

∫
|x|≥T

V(x)|uk − u|2dx ≤ 2ε
∫
|x|≥T

V(x)(u2
k + u2)dx

≤ 2ε(∥uk∥
2 + ∥u∥2) ≤ 4M1ε. (2.6)

for all k ∈ N. Moreover, by Sobolev’s theorem, there exists k0 > 0 such that∫
|x|≤T

a(x)|uk − u|2dx ≤ ε (2.7)

for all k ≥ k0. From (2.6) and (2.7), we obtain uk → u in L2
a(RN ,R) as k → ∞, which shows that the

embedding from E to L2
a(RN ,R) is compact. By the Gagliardo-Nirenberg inequality the embedding

from E to Lq
a(RN ,R) is also compact for q ∈ (2, β∗). □

The corresponding functional of (1.1) is defined on E by

I(u) =
1
2

∫
RN

(|∇u|2 + V(x)u2)dx −
∫
RN

F(x, u)dx

=
1
2
∥u∥2 −

∫
RN

a(x)G(u)dx. (2.8)
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Lemma 2.2. Suppose that (g1), (g3), (g5), (g6), (g8) and (g9) hold, then the functional I is well defined
and of C1 class with

⟨I′(u), v⟩ = ⟨u, v⟩ − ⟨ψ′(u), v⟩, (2.9)

for all v ∈ E, where ψ(u) =
∫
RN F(x, u)dx. Moreover, the critical points of I in E are solutions for

problem (1.1).

Proof. First, we show I is well defined. By (g6), for any ε > 0, there exists σ > 0 such that

|g(t)| ≤ ε|t|, |t| ≤ σ. (2.10)

We can deduce from (2.10), (g6) and (g9), for any ε > 0, there exists Mε > 0 such that

|g(t)| ≤ ε|t| + Mε|t|ζ−1, ∀t ∈ R, (2.11)

and

|G(t)| ≤ εt2 + Mε|t|ζ , ∀t ∈ R. (2.12)

By (2.3) and (2.12), we have∫
RN
|F(x, u)|dx =

∫
RN

a(x)|G(u)|dx

≤ ε

∫
RN

a(x)u2dx + Mε

∫
RN

a(x)|u|ζdx

≤ εK2
2∥u∥

2 + MεK
ζ
ζ ∥u∥

ζ

< ∞,

which means that I is well defined. It is standard to see that I is C1 on E and (2.9) holds. □

From Lemma 2.2, we can obtain

⟨I′(u), u⟩ = ∥u∥2 −
∫
RN

f (x, u)udx. (2.13)

For the reader’s convenience, we state the classical Mountain Pass Theorem as follow.

Lemma 2.3. (Mountain Pass Theorem, see [10], Theorem 2.2) Let E be a real Banach space and
I : R → RN be a C1-smooth functional and satisfy the (C) condition that is, (u j) has a convergent
subsequence in W1,2(R,RN) whenever {I(u j)} is bounded and ∥I′(u j)∥(1 + ∥u j∥)→ 0 as n→ ∞. If

(i) I(0) = 0;
(ii) There exist constants ϱ, α > 0 such that I|∂Bϱ(0) ≥ α;
(iii) There exists e ∈ E \ B̄ϱ(0) such that I(e) ≤ 0,

where Bϱ(0) is an open ball in E of radius ϱ centred at 0, then I possesses a critical value c ≥ α

given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.
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3. Proofs of the main results

In this section, we use the Mountain Pass Theorem to show the existence of critical points of I
which help us to prove Theorems 1.1–1.3. In Lemma 3.1, we show that the (C) condition is
fulfilled for I under the conditions of Theorem 1.1. In the Step 1 and Step 2, we show I satisfies
the conditions (i)–(iii) in the Mountain Pass Theorem. In Lemmas 3.3 and 3.4, we show that I satisfies
the (C) condition under the conditions of Theorems 1.2 and 1.3 respectively.

Lemma 3.1. Suppose that (1.2) and (g1)–(g9) hold, then I satisfies the (C) condition.

Proof. Assume that {un} ⊂ E being a sequence such that {I(un)} is bounded and ∥I′(un)∥(1 + ∥un∥)→ 0
as n→ ∞. Then, there exists a constant M2 > 0 such that

|I(un)| ≤ M2, ∥I′(un)∥(1 + ∥un∥) ≤ M2. (3.1)

Now we prove that {un} is bounded in E. Arguing in an indirect way, we assume that ∥un∥ → +∞ as
n→ ∞. Set zn =

un
∥un∥

, then ∥zn∥ = 1, which implies that there exists a subsequence of {zn}, still denoted
by {zn}, such that zn ⇀ z0 in E. By (2.8) and (3.1), we get∣∣∣∣∣∫

RN

F(x, un)
∥un∥

2 dx −
1
2

∣∣∣∣∣ = ∣∣∣∣∣− I(un)
∥un∥

2

∣∣∣∣∣ ≤ M2

∥un∥
2 , (3.2)

which implies that ∫
RN

F(x, un)
∥un∥

2 dx→
1
2

as n→ ∞. (3.3)

The following discussion is divided into two cases.
Case 1: z0 . 0. Let Ω = {x ∈ RN | |z0(x)| > 0}. Then we can see that meas(Ω) > 0, where meas

denotes the Lebesgue measure. Then there exists J > 0 such that meas(Λ) > 0, where Λ = Ω
⋂
ΥJ(0)

and Υr(x̄) = {x ∈ RN : |x − x̄| ≤ r}. Since ∥un∥ → +∞ as n → ∞ and |un| = |zn| · ∥un∥, then we have
|un| → +∞ as n→ ∞ for a.e. x ∈ Λ. Let a1 = infx∈ΥJ(0) a(x) > 0. By (1.2), (g5), (g7), (3.1), Remark 1.5
and Fatou’s lemma, we can obtain

lim inf
n→∞

∫
RN

F(x, un)
∥un∥

2 dx = lim inf
n→∞

∫
RN

a(x)G(un)
∥un∥

2 dx

= lim inf
n→∞

∫
Λ

a(x)G(un)
∥un∥

2 dx + lim inf
n→∞

∫
RN\Λ

a(x)G(un)
∥un∥

2 dx

≥ a1 lim inf
n→∞

∫
Λ

G(un)
|un|

2 |zn|
2dx − d2 lim sup

n→∞

∫
RN\Λ

a(x)|zn|
2dx

≥ a1 lim inf
n→∞

∫
Λ

G(un)
|un|

2 |zn|
2dx − d2A lim sup

n→∞

∫
RN\Λ

V(x)|zn|
2dx

≥ a1 lim inf
n→∞

∫
Λ

G(un)
|un|

2 |zn|
2dx − d2A

= +∞,

which contradicts (3.3). So ∥un∥ is bounded in this case.
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Case 2: z0 ≡ 0. Set

Ĝ(t) = g(t)t − νG(t),

where ν is defined in (g4). From (2.11) and (2.12), we can deduce that there exits M3 > 0 such that

|Ĝ(t)| ≤ M3(t2 + |t|ζ), ∀t ∈ R. (3.4)

It follows from (3.1), (g4), (3.4) and Lemma 2.1 that

o(1) =
νM2 + M2

∥un∥
2

≥
νI(un) − ⟨I′(un), un⟩

∥un∥
2

≥

(
ν

2
− 1

)
+

1
∥un∥

2

∫
RN

a(x)Ĝ(un)dx

≥

(
ν

2
− 1

)
+

1
∥un∥

2

(∫
|un |≤ρ∞

a(x)Ĝ(un)dx +
∫
|un |>ρ∞

a(x)Ĝ(un)dx
)

≥

(
ν

2
− 1

)
−

M3

∥un∥
2

(∫
|un |≤ρ∞

a(x)|un|
2dx +

∫
|un |≤ρ∞

a(x)|un|
ζdx

)
−

d1

∥un∥
2

∫
|un |>ρ∞

a(x)|un|
2dx

≥

(
ν

2
− 1

)
− M3

(
1 + ρζ−2

∞

) ∫
RN

a(x)|zn|
2dx − d1

∫
RN

a(x)|zn|
2dx

→

(
ν

2
− 1

)
as n→ ∞,

which is a contradiction. Hence, ∥un∥ is still bounded in this case, which implies that {un} is bounded
in E. The following proof is similar to Step 3 of the main proof in [16]. □

Subsequently, we show that I possesses the Mountain Pass geometric structure under the conditions
of Theorem 1.1. The proof is divided into two steps.

Step 1. We show that there exist constants ϱ1, α1 > 0 such that I |∂Bϱ1 (0)≥ α1. For ε = 1
4A , it follows

from (g8), Remark 1.5 and (2.12) that

I(u) =
1
2
∥u∥2 −

∫
RN

F(x, u)dx

=
1
2
∥u∥2 −

∫
RN

a(x)G(u)dx

≥
1
2
∥u∥2 − ε

∫
RN

a(x)u2dx − Mε

∫
RN

a(x)|u|ζdx

≥
1
2
∥u∥2 −

1
4

∫
RN

V(x)u2dx − Mεd3

(∫
RN

V(x)
1
β |u|ζdx +

∫
RN
|u|ζdx

)
≥

1
4
∥u∥2 − Mεd3

(∫
RN

V(x)u2dx
) 1
β
(∫
RN
|u|

βζ−2
β−1 dx

) β−1
β

− Mεd3C
ζ
ζ∥u∥

ζ

≥
1
4
∥u∥2 − Mεd3

(
C

βζ−2
β

βζ−2
β−1

+Cζ
ζ

)
∥u∥ζ .
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It is easy to see that there exist positive constants ϱ1 and α1 such that I|∂Bϱ1
≥ α1. We finish the proof

of this step.
Step 2. Now, we prove that there exists ē ∈ E such that ∥ē∥ > ϱ1 and I(ē) ≤ 0. Set

e0 ∈ C∞0 (Υ1(0),R) such that ∥e0∥ = 1. Let a2 = inft∈Υ1(0) a(x) > 0 and a3 = supt∈Υ1(0) a(x) > 0.

For M4 >
(
2a2

∫
Υ1(0)
|e0|

2dx
)−1

, it follows from (g7) that there exists Q > 0 such that

G(t) ≥ M4t2 (3.5)

for all |t| > Q. Then, we can deduce from (g5) and (3.5) that

G(t) ≥ M4(t2 − Q2) − d2Q2 (3.6)

for all t ∈ R. By (2.8) and (3.6), for every η ∈ R+, we have

I(ηe0) =
η2

2
∥e0∥

2 −

∫
RN

a(x)G(ηe0)dx

≤
η2

2
−

∫
Υ1(0)

a(x)[M4(|ηe0|
2 − Q2) − d2Q2]dx

≤

(
1
2
− M4a2

∫
Υ1(0)
|e0|

2dx
)
η2 + a3(M4 + d2)Q2measΥ1(0),

which implies that

I(ηe0)→ −∞ as η→ +∞.

Hence, there exists η1 > 0 such that I(η1e0) < 0 and ∥η1e0∥ > ϱ1, which finish the proof of this step.
Proof of Theorem 1.1. It is known that the Mountain Pass Theorem still holds when the usual (PS )
condition is replaced by condition (C). From the above proofs and Lemma 2.3 under (C) condition, I
possesses a critical value c ≥ α1 and a critical point u0 such that I(u0) = c, which means problem (1.1)
has at least one nontrivial solution.
Proof of Theorem 1.2. In Theorem 1.2, we show the existence of solutions for problem (1.1) under
growth condition (g10). Similarly, we rewrite only the proof of Lemma 3.1 and the following proof is
similar to that of Theorem 1.1.

Lemma 3.2. Suppose that (g6) and (S Q) hold, then G(t) ≥ 0 for all t ∈ R.

Proof. The proof of this lemma is similar to that of Lemma 2.2 in [21]. □

Lemma 3.3. Suppose that (1.2), (g1)–(g3), (g6)–(g10) and (S Q) hold, then I satisfies the (C) condition.

Proof. Assume that {un} ⊂ E being a sequence such that {I(un)} is bounded and ∥I′(un)∥(1 + ∥un∥)→ 0
as n→ ∞. Then, there exists a constant M5 > 0 such that

|I(un)| ≤ M5, ∥I′(un)∥(1 + ∥un∥) ≤ M5. (3.7)

Now we prove that {un} is bounded in E. Arguing in an indirect way, we assume that ∥un∥ → +∞

as n → ∞. Set wn =
un
∥un∥

. Then ∥wn∥ = 1 and there exists a subsequence of {wn}, still denoted by {wn},
such that wn ⇀ w0 in E. By Lemma 2.1, we have

wn → w0 in Lq
a(RN) for any q ∈ [2, β∗). (3.8)
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Similar to Lemma 3.1, we can obtain (3.3). The following proof is divided into two cases.
Case 1: w0 , 0. The proof is similar to Lemma 3.1.
Case 2: w0 ≡ 0. By (2.8), (2.9) and (3.7), we obtain

2M5 ≥ 2I(un) + ∥I′(un)∥(1 + ∥un∥)
≥ 2I(un) − ⟨I′(un), un⟩

≥

∫
RN

a(x)G̃(un)dx. (3.9)

On one hand, by (2.12) and Lemma 2.1, we can deduce that∫
|un |<l∞

F(x, un)
∥un∥

2 dx ≤
(
ε + Mεlζ−2

∞

) ∫
RN

a(x)|wn|
2dx→ 0 as n→ ∞. (3.10)

On the other hand, it follows from (g10), (S Q) and Lemma 2.1 that∫
|un |≥l∞

F(x, un)
∥un∥

2 dx =

∫
|un |≥l∞

(
a

1
κ (x)

G(un)
u2

n

) (
a
κ−1
κ (x)w2

n

)
dx

≤

(∫
|un |≥l∞

a(x)
(
|G(un)|

u2
n

)κ
dx

) 1
κ
(∫
|un |≥l∞

a(x)|wn|
2κ
κ−1 dx

) κ−1
κ

≤ d
1
κ

5

(∫
|un |≥l∞

a(x)G̃(un)dx
) 1
κ
(∫
|un |≥l∞

a(x)|wn|
2κ
κ−1 dx

) κ−1
κ

≤ d
1
κ

5

(∫
RN

a(x)G̃(un)dx
) 1
κ
(∫
RN

a(x)|wn|
2κ
κ−1 dx

) κ−1
κ

→ 0 as n→ ∞. (3.11)

It follows from (3.10) and (3.11) that ∫
RN

F(x, un)
∥un∥

2 dx <
1
4

for n large enough, which contradicts (3.3). Then we can see that ∥un∥ is bounded in E. The following
proof is similar to S tep 3 of the main proof in [16]. □

Proof of Theorem 1.3. In Theorem 1.3, we replace condition (g4) by condition (g11). Condition (g4)
is only used in the proof of the boundedness of (C) sequence. Hence, we rewrite only the proof of
Lemma 3.1 and the following proof is similar to that of Theorem 1.1.

Lemma 3.4. Suppose that (1.2), (g1)–(g3), (g6)–(g9), (g11) and (S Q) hold, then I satisfies the (C)
condition.

Proof. Assume that {un} ⊂ E being a sequence such that {I(un)} is bounded and ∥I′(un)∥(1 + ∥un∥)→ 0
as n→ ∞. Then there exists a constant M6 > 0 such that

|I(un)| ≤ M6, ∥I′(un)∥(1 + ∥un∥) ≤ M6. (3.12)
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Now, we prove that {un} is bounded in E. Arguing in an indirect way, we assume ∥un∥ → +∞ as
n → ∞. Set wn =

un
∥un∥

. Similar to Lemma 3.3, we have (3.8). The following discussion is divided into
two cases.

Case 1: w0 . 0. The proof is similar to Case 1 in Lemma 3.1.
Case 2: w0 ≡ 0. Let R = (2M6 + 2)1/2. By (2.12), one can obtain

lim sup
n→∞

∫
RN
|F(x,Rwn)|dx ≤ lim sup

n→∞

∫
RN

a(x)(εR2w2
n + Mε|Rwn|

ζ)dx = 0. (3.13)

Set λn =
R
∥un∥

. It follows from (3.12), (2.11), (2.12), (g11), (S Q), (3.13), (2.3) and (3.8) that

M6 ≥ I(un)

= I(λnun) +
1 − λ2

n

2
∥un∥

2 +

∫
RN

(F(x, λnun) − F(x, un)) dx

= I(λnun) +
1 − λ2

n

2
⟨I′(un), un⟩ +

∫
RN

a(x)
(
1 − λ2

n

2
g(un)un +G(λnun) −G(un)

)
dx

= I(Rwn) +
1
2

(
1 −

R2

∥un∥
2

)
⟨I′(un), un⟩ +

∫
|un |≤r∞

a(x)
(
1 − λ2

n

2
g(un)un +G(λnun) −G(un)

)
dx

+

∫
|un |≥r∞

a(x)
(
1 − λ2

n

2
g(un)un +G(λnun) −G(un)

)
dx

≥
R2

2
−

∫
RN

F(x,Rwn)dx +
∫
|un |≤r∞

a(x)
(
−
λ2

n

2
g(un)un +G(λnun))

)
dx

−d6

∫
|un |≥r∞

a(x)λµn |un|
β∗dx − d7

∫
|un |≥r∞

a(x)λs
n|un|

sdx + o(1)

≥
R2

2
− M7

∫
|un |≤r∞

a(x)
(
λ2

n|un|
2 + λ2

n|un|
ζ + λζn|un|

ζ
)

dx

−d6
Rµ

∥un∥
µ−β∗

∫
|un |≥r∞

a(x)|wn|
β∗dx − d7Rs

∫
|un |≥r∞

a(x)|wn|
sdx + o(1)

≥
R2

2
− M7

∫
|un |≤r∞

a(x)
(
R2|wn|

2 + rζ−2
∞ R2|wn|

2 + Rζ |wn|
ζ
)

dx − d6

RµKβ∗

β∗

∥un∥
µ−β∗
+ o(1)

=
R2

2
+ o(1) = M6 + 1 + o(1)

for some M7 > 0, which is a contradiction. Hence, ∥un∥ is still bounded in this case, which implies
that {un} is bounded in E. The following proof is similar to Step 3 of the main proof in [16]. □

4. Conclusions

In this paper, we obtain a compact embedding theorem by using a new competition condition on the
potentials which involve the vanishing cases. Then, we show the existence of solutions for Schrödinger
equations with different superlinear conditions via the Mountain Pass Theorem. Some examples are
given to show the difference between our theorems and the results in previous works.
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