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Abstract: Motivated by the concept of type-2 fuzzy sets, we introduce a novel framework known as 

trapezoidal type-2 Pythagorean fuzzy sets (TRT-2-PFSs), an extension of triangular fuzzy sets. Basic 

operations like addition and scalar multiplication of two TRT-2-Pythagorean fuzzy numbers (TRT-2-

PFNs) are defined. We also explore comparative analysis and distance measurements between two 

TRT-2-PFNs. A methodology for evaluating unknown weight vectors and criteria weights is proposed. 

Building upon TRT-2-PFSs, an extension of the TODIM (an acronym in Portuguese of interactive and 

multi-criteria decision-making) method is developed to address intricate decision-making challenges. 

Ultimately, the newly introduced TRT-2-PFS-based TODIM technique is employed to tackle multi-

criteria decision-making (MCDM) problems. 
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1. Introduction  

The primary objective of Multiple Criteria Decision Making (MCDM) is to identify the most 

suitable alternative from a set of options based on various criteria. When dealing with multiple criteria, 

the selection process becomes intricate. This falls within the domain of MCDM, a technique for 

choosing the best alternative considering multiple criteria. In numerous decision-making problems, 

data is often quantified with precise statistics [1,2]. However, practical situations sometimes prevent 

decision-makers from expressing preferences with exact numerical values [3,4]. To address this 
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limitation, Atanassov [5] introduced intuitionistic fuzzy sets (IFS) as an improved version of fuzzy 

sets, using membership degree (MD) and non-membership degree (NMD) to represent information. 

However, the range of IFS is restricted due to the constraint that MD (𝜑 ) and NMD (𝜓)  cannot 

exceed one, i.e., 𝜑 + 𝜓. In complex decision-making scenarios, decision-makers may deviate from 

this requirement. For instance, if an expert uses IFS to express preferences with MD 0.8 and NMD 

0.7 , their sum is 1.5 ≻ 1 , contradicting the constraint. Therefore, IFSs inadequately address such 

situations. To overcome this, Yager [6,7] proposed Pythagorean fuzzy sets (PFSs) with MD (𝜑) and 

NMD (𝜓) such that 𝜑2 + 𝜓2 ≼ 1. Subsequent studies have explored PFS applications extensively. 

Yager and Abbasov [8] examined the link between Pythagorean fuzzy numbers and complex numbers. 

Basic operational laws like division and subtraction for PFSs were introduced by Peng and Yang [9]. 

Zhang and Xu [10] extended the TOPSIS method under the Pythagorean fuzzy environment for 

MCDM problems. Further research includes Amin et al. [11] work on generalized cubic PFSs and 

Rahim et al. [12] presentation of basic operations for cubic PFSs. Huang et al. [13] developed an 

integrated design alternative assessment model by introducing Z-cloud rough numbers (ZCRNs) that 

combine cloud model, Z-numbers, and rough numbers to handle various uncertainties and introduced 

associated operating rules, comparison measures, correlation measures, and aggregation operators for 

ZCRNs. Xiao et al. [14] introduced a novel q-ROF score function for assessing q-ROF values and used 

it to develop q-ROF best-worst methods for determining fuzzy criteria weights. Huang et al. [15] used 

T-spherical fuzzy sets to represent expert preferences, introduce a maximizing deviation method to 

determine weights, developed a consensus mechanism and present a combined compromise solution 

method to rank failure modes effectively, as demonstrated in a case study. 

1.1. Literature review 

The mentioned studies are widely utilized by scholars to address various applications. However, 

these studies predominantly focused on assessing objects using precise membership functions. Yet, 

real-world situations often introduce uncertainty in the form of imprecision or ambiguity, rather than 

probability. To tackle these challenges, Mendel and John [16] introduced Type-2 fuzzy sets (T-2FSs) 

as an extension of Type-1 fuzzy sets. T-2FSs include an additional membership function that offers 

experts greater flexibility in simulating uncertainty. A real number in the [0,1] range signifies a Type-

1 fuzzy set, while the membership value of T-2FSs itself becomes a Type-1 fuzzy set. The foundational 

concepts of T-2FSs were presented by Mendel and We [17,18]. Extensive investigations into the 

operational laws of T-2FSs were undertaken by Chen and Lee [19]. Chen et al. [20] and Mitchell [21] 

provided levels for different Type-2 fuzzy numbers. Hung and Yang [22] introduced similarity 

measures for T-2FSs. Researchers have developed diverse techniques to address decision-making 

problems across various contexts. In this context, Singh and Garg introduced Type-2 intuitionistic 

fuzzy sets (T-2IFSs) to resolve MCDM problems. T-2IFSs represent a notable expansion of IFS, 

encompassing both primary and secondary MD and NMD elements. T-2IFSs effectively express 

decision-makers’ preferences regarding their choices across various criteria. Den et al. [23] described 

the fundamental operational laws like union, complement, necessity operators, and possibility 

operators for T-2IFSs. Roy and Bhaumik [24] applied a game-theoretic approach to study intelligent 

water management problems within the triangular Type-2 intuitionistic fuzzy environment. 

Additionally, Mondal and Roy [25] introduced Type-2 Pythagorean fuzzy sets. 
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1.2. An extensive review of the TODIM method 

The TODIM technique, initially introduced by Games and Lima in 1992 [26], offers an effective 

approach for addressing decision-making problems. This method considers the risk preferences of 

decision-makers, creating a versatile decision-making environment. Its adaptability has led to 

widespread applications in various decision-making scenarios. For instance, Fan et al. [27] utilized 

TODIM to tackle MCDM problems with diverse criteria values, including crisp numbers, interval 

numbers, linguistic variables, and fuzzy numbers. Wang et al. [28] integrated alpha-level sets with 

fuzzy information to develop a TODIM technique, while Wei et al. [29] introduced a hesitant fuzzy 

TODIM method with a score function. In a different context, Krohling et al. [30] applied the TODIM 

method to solve MCDM problems involving intuitionistic fuzzy information. Zhao et al. [31] proposed 

the Pythagorean fuzzy TODIM approach based on the cumulative prospect theory for multi-criteria 

group decision-making problems, and Kaur et al. [32] presented a Pythagorean fuzzy approach for 

sustainable supplier selection using TODIM. Zhao et al. [33] extended the TODIM method to interval-

valued Pythagorean fuzzy sets, and Zhang et al. [34] expanded it through correlation coefficients of 

PFS. Additionally, Zhou and Chen combined AHP and TODIM for blockchain technology within a 

PFS framework [35]. Alternatively, Type-2 fuzzy sets, as introduced by Zadeh [36], provide a way to 

relax membership function constraints, commonly known as the footprint of uncertainty. Integrating 

Type-2 fuzzy sets into the existing TODIM [37] framework offers researchers greater flexibility in 

handling uncertainty. Castillo et al. [38] explored a unique class of IFSs capable of addressing specific 

types of uncertainty, drawing inspiration from the concepts of FS and generic T2-FSs. 

In this context, building upon the concept of type-2 fuzzy sets and harnessing the advantages of 

Pythagorean fuzzy sets to express uncertainty, we introduce a novel structure called TRT-2-PFS. TRT-

2-PFS combines elements of Type-2 fuzzy sets, creating a hybrid structure to address uncertainty. 

Furthermore, within our investigation, we deal with attribute values presented as TRT-2-PFS. Given 

the intricate and uncertain nature of the MCDM problem, decision-makers frequently encounter 

imprecise information that transcends the scope of crisp numerical representation. TRT-2-PFNs are a 

fundamental approach for conveying such imprecision. Consequently, it becomes imperative to 

explore MCDM in the context of emergency response, specifically when attribute values are expressed 

as TRT-2-PFNs. The conventional TODIM method is adept at handling multi attribute decision-making 

problems using crisp numerical data. However, we extend the TODIM method to address the unique 

challenges posed by the MCDM problem with attribute values in the form of TRT-2-PFNs. 

1.3. Motivations 

Triangular fuzzy sets, commonly used for modeling uncertainty in decision-making, exhibit 

limitations including lack of flexibility in representing asymmetric or complex uncertainties, difficulty 

in handling extreme values, and a limited ability to discriminate between different degrees of 

membership. They are constrained to a symmetrical triangular shape and may not adequately address 

situations with multimodal, or higher-order fuzzy data. To address this overcome, we introduce a novel 

concept known as TRT-2-PFS, which builds upon the foundation of trapezoidal membership functions. 

Trapezoidal fuzzy numbers, constituting the basis of our framework, are defined by two pivotal values 

that encapsulate the essence of uncertainty more effectively. This feature is especially pertinent in 

decision-making scenarios enriched with domain expertise. Consider a complex engineering project, 
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where a range of completion times is plausible due to unforeseen challenges. TRT-2-PFS empowers 

decision-makers to represent these intricate uncertainties more aptly. Moreover, the trapezoidal 

membership function serves as a versatile tool for capturing the linguistic ambiguity inherent in 

decision-making. Often, stakeholders express their preferences in qualitative terms rather than precise 

numerical values. A trapezoidal membership function accommodates these varied expressions of 

uncertainty in a more generic manner. 

This study delves into various facets of TRT-2-PFS. We explore its generation, operations, 

comparison, and the quantification of distances between two TRT-2-PFSs. This comprehensive 

analysis equips decision-makers with a toolkit to navigate uncertainties systematically and arrive at 

well-informed choices. To illustrate the practical implications of TRT-2-PFS, we present a 

groundbreaking technique: a new TODIM method. This innovative approach leverages the power of 

the TRT-2-PFS environment to address complex MCDM problems. By incorporating TRT-2-FFS into 

the TODIM framework, we offer decision-making an advanced tool to tackle intricate real-world 

challenges. 

1.4. Objectives 

The following are the important contributions to this article: 

1) This research introduces the novel concept of TRT-2-PFS, a cutting-edge framework for 

effectively modeling uncertainties in decision-making processes. This introduction provides a 

foundational understanding of a powerful new tool for addressing uncertainty. 

2) By leveraging TRT-2-PFS, we provide decision-makers with a more sophisticated and versatile 

method for representing uncertainties affected by multiple factors, surpassing traditional 

numerical approaches. This advancement enhances the precision of uncertainty representation. 

3) We develop an innovative TODIM technique based on TRT-2-PFS, empowering decision-

makers to tackle intricate multi-criteria decision challenges with precision. This innovation 

advances the field of decision-making under uncertainty and illustrates the practical 

implications of TRT-2-PFS and the developed TODIM method through a real-world case study, 

demonstrating their effectiveness in solving complex decision-making problems and offering 

practical insights into their application. 

The following is the article’s structure: Section 2 introduces the idea Trapezoidal Type-2 

Pythagorean fuzzy sets and describes the weight computation process for TODIM, which makes use 

of TRT-2-PFSs. Section 3 digs into the detailed process of the unique TODIM technique for informed 

decision-making, as well as a discussion of case scenario validation utilizing experimental data. Finally, 

Section 4 summarizes the article’s conclusion. 

2. TRT-2-PFS 

In this section, some necessary definitions, and mathematical models for TRT-2-PFS are 

presented. 

2.1 Trapezoidal type-2 Pythagorean fuzzy number 

A trapezoidal type-2 Pythagorean fuzzy number (TRT-2-PFN) is superior type-2 Pythagorean 
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fuzzy sets on a real number set ℛ, indicated by 

𝒫̂ = (𝑝, 𝑞, 𝑞, 𝑝; 𝜑𝑝𝑢̂ , 𝜓𝑝𝑙̂) (𝑞, 𝑟, 𝑟, 𝑞; 𝜑𝑝𝑙̂ , 𝜓𝑝𝑢̂). 

The mathematical representation of upper membership (UM) and lower membership (LM) is 

represented in Eqs (1) and (2) respectively. 

𝜑𝒫𝑢̂(𝑥) =

{
 
 
 

 
 
 𝜑𝑢 (𝑥 − 𝑝)

𝑞1 − 𝑝
           𝑝 ≼ 𝑥 ≼ 𝑞 

𝜑𝑢                             𝑞 ≼ 𝑥 ≼ 𝑞    

𝜑𝑢(𝑞 − 𝑥)

𝑞 − 𝑞2
           𝑞 ≼ 𝑥 ≼ 𝑝

0                               otherwise

 (1) 

𝜑𝒫𝑢̂(𝑥) =

{
 
 
 

 
 
 𝜑𝑢 (𝑥 − 𝑞)

𝑟 − 𝑞
           𝑞 ≼ 𝑥 ≼ 𝑟 

𝜑𝑢                             𝑟 ≼ 𝑥 ≼ 𝑟    

𝜑𝑢(𝑞 − 𝑥)

𝑞 − 𝑟
           𝑟 ≼ 𝑥 ≼ 𝑞

0                               otherwise

 (2) 

 

Similarly, the mathematical representation of UM and LM are represented in Eqs (3) and (4) 

respectively. 

𝜑𝒫𝑢̂(𝑥) =

{
  
 

  
 (𝑟 − 𝑥) + (𝑥 − 𝑞)𝜓𝑢

𝑟 − 𝑝1
           𝑞 ≼ 𝑥 ≼ 𝑟 

𝜓𝑢                             𝑟 ≼ 𝑥 ≼ 𝑟    

(𝑥 − 𝑟) + (𝑞 − 𝑥)𝜓𝑢
𝑞 − 𝑟

           𝑟 ≼ 𝑥 ≼ 𝑞

1                               otherwise

 (3) 

𝜑𝒫𝑢̂(𝑥) =

{
 
 
 

 
 
 (𝑞 − 𝑥) + (𝑥 − 𝑝)𝜓𝑢

𝑟 − 𝑝1
           𝑝 ≼ 𝑥 ≼ 𝑞 

𝜓𝑢                             𝑞 ≼ 𝑥 ≼ 𝑞    

(𝑥 − 𝑞) + (𝑝 − 𝑥)𝜓𝑢
𝑝 − 𝑞

           𝑞 ≼ 𝑥 ≼ 𝑝

1                               otherwise

 (4) 

where 0 ≼ 𝜑𝑝𝑢̂ , 𝜓𝑝𝑙̂ , 𝜑𝑝𝑙̂ , 𝜓𝑝𝑢̂ ≼ 1 , (𝜑𝑝𝑢̂)
2
+ (𝜓𝑝𝑙̂)

2
≼ 1 , and (𝜑𝑝𝑙̂)

2
+ 𝜓𝑝𝑢̂

2 ≼ 1 . The upper 

hesitancy of the term 𝑥 to 𝜌̂ is defined as: 
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𝐻𝜌̂𝑢 = √1 − (𝜑𝑝𝑢̂(𝑥))
2
+ (𝜓𝑝𝑙̂(𝑥))

2
, (5) 

similarly, lower hesitancy is defined as: 

𝐻𝜌̂𝑙 = √1 − (𝜑𝑝𝑙̂(𝑥))
2
+ (𝜓𝑝𝑢̂(𝑥))

2
. (6) 

2.2. Generation of TRT-2-PFN 

Let 𝛼𝑖𝑗
𝑘 = ((𝛼𝑖𝑗

𝑘 , 𝛼𝑖𝑗
𝑘 , 𝛼𝑖𝑗

𝑘
); 𝜑𝛼𝑖𝑗

𝑘 , 𝜓𝛼𝑖𝑗
𝑘 ) be the estimation value given by 𝑘𝑡ℎ consultants for 𝑖𝑡ℎ 

alternative with respect to 𝑗𝑡ℎ criterion. In addition, 𝑑𝑡ℎ decision-maker construct a decision matrix 

of TRT-2-PFNs in the form of  

𝒫̂𝑘 = [𝒟̂𝑖𝑗
𝑘 ]
𝑚×𝑛

 (7) 

where 𝒟̂𝑖𝑗
𝑘 = ((𝑝𝑖𝑗

𝑒 , 𝑞𝑖𝑗
𝑒 , 𝑞

𝑖𝑗

𝑒
, 𝑝
𝑖𝑗

𝑒
) ; 𝜑𝑢

𝒟̂𝑖𝑗
𝑘
, 𝜓𝑙

𝒟̂𝑖𝑗
𝑘
)((𝑞𝑖𝑗

𝑒 , 𝑟𝑖𝑗
𝑒 , 𝑟𝑖𝑗

𝑒
, 𝑞
𝑖𝑗

𝑒
) ; 𝜑𝑙

𝒟̂𝑖𝑗
𝑘
, 𝜓𝑢

𝒟̂𝑖𝑗
𝑘
),  

𝑝𝑖𝑗
𝑒 = 𝑚𝑖𝑛 (𝑝𝑖𝑗

1 , 𝑝𝑖𝑗
2 , … , 𝑝𝑖𝑗

𝑘 ), 𝑞𝑖𝑗
𝑒 = 𝑚𝑖𝑛(𝑝𝑖𝑗

𝑘 ), 𝑞
𝑖𝑗

𝑒
= 𝑚𝑎𝑥(𝑝𝑖𝑗

𝑘 ), 𝑝
𝑖𝑗

𝑒
= 𝑚𝑎𝑥 (𝑝𝑖𝑗

1 , 𝑝𝑖𝑗
2 , … , 𝑝𝑖𝑗

𝑘 ), 

𝑟𝑖𝑗
𝑒 = 𝑞𝑖𝑗

𝑘 +
𝜎
𝒟̂𝑖𝑗
𝑘

2
, 𝑟𝑖𝑗

𝑒
= 𝑞

𝑖𝑗

𝑒
−
𝜎
𝒟̂𝑖𝑗
𝑘

2
, where 𝜎

𝒟̂𝑖𝑗
𝑘  stranded for deviation of 𝑝𝑖𝑗

𝑘  

𝜑𝑢
𝒟̂𝑖𝑗
𝑘
= 𝑚𝑎𝑥 (𝜑𝑝𝑖𝑗

1 , 𝜑𝑝𝑖𝑗
2 , … , 𝜑𝑝𝑖𝑗

𝑘 ) , 𝜑𝑙
𝒟̂𝑖𝑗
𝑘
= 𝑚𝑖𝑛 (𝜑𝑝𝑖𝑗

1 , 𝜑𝑝𝑖𝑗
2 , … , 𝜑𝑝𝑖𝑗

𝑘 ) , 𝜓𝑢
𝒟̂𝑖𝑗
𝑘
=

𝑚𝑎𝑥 (𝜓𝑝𝑖𝑗
1 , 𝜓𝑝𝑖𝑗

2 , … , 𝜓𝑝𝑖𝑗
𝑘 ), and 𝜓𝑙

𝒟̂𝑖𝑗
𝑘
= 𝑚𝑖𝑛 (𝜓𝑝𝑖𝑗

1 , 𝜓𝑝𝑖𝑗
2 , … , 𝜓𝑝𝑖𝑗

𝑘 ). 

2.3. Operational laws of TRT-2-PFNs 

In this section, some basic operational laws such as addition and scalar multiplication of TRT-2-

PFNs are discussed. 

2.3.1. Sum of two TRT-2-PFNs 

Definition 1. Let 𝑎̂ = (𝑎, 𝑏, 𝑏, 𝑎; 𝜑𝑎𝑢̂ , 𝜓𝑎𝑙̂)(𝑏, 𝑐, 𝑐, 𝑏; 𝜑𝑎𝑙̂ , 𝜓𝑎𝑢̂),  

and 𝑑̂ = (𝑑, 𝑒, 𝑒, 𝑑; 𝜑𝑑𝑢̂ , 𝜓𝑑𝑙̂) (𝑒, 𝑓, 𝑓, 𝑒; 𝜑𝑑𝑙̂ , 𝜓𝑑𝑢̂) are two TRT-2-PFNs, then  
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𝑎̂ + 𝑑̂ =

(

 
 

𝑎 + 𝑑, 𝑏 + 𝑒, 𝑏 + 𝑒, 𝑎 + 𝑑;√1 − (1 − (𝜑𝑎𝑢̂)
2
) (1 − (𝜑𝑑𝑢̂)

2
) ,

√((1 − (𝜑𝑎𝑢̂)
2
) (1 − (𝜑𝑑𝑢̂)

2
) − (1 − ((𝜑𝑎𝑢̂)

2
+ (𝜓𝑎𝑙̂)

2
) (1 − ((𝜑𝑑𝑢̂)

2
+ (𝜓𝑑𝑙̂)

2
))))

)

 
 

  

(

  
 

𝑏 + 𝑒, 𝑐 + 𝑓, 𝑐 + 𝑓, 𝑏 + 𝑒;√1 − (1 − (𝜑𝑎𝑙̂)
2
) (1 − (𝜑𝑑𝑙̂)

2
) ,

(√(1 − (𝜑𝑎𝑙̂)
2
) (1 − (𝜑𝑑𝑙̂)

2
) − (1 − ((𝜑𝑎𝑙̂)

2
+ (𝜓𝑎𝑢̂)

2
) (1 − ((𝜑𝑑𝑙̂)

2
+ (𝜓𝑑𝑢̂)

2
))))

)

  
 

. 

(8) 

2.3.2. Scalar multiplication of TRT-2-PFNs 

Definition 2. Let 𝑎̂ = (𝑎, 𝑏, 𝑏, 𝑎; 𝜑𝑎𝑢̂ , 𝜓𝑎𝑙̂)(𝑏, 𝑐, 𝑐, 𝑏; 𝜑𝑎𝑙̂ , 𝜓𝑎𝑢̂)  be a TRT-2-PFNs and 𝜉  be any 

positive real number then 

𝜉𝑎̂ =

(

 
 

𝜉𝑎, 𝜉𝑏, 𝜉𝑏, 𝜉𝑎;√1 − (1 − (𝜑𝑎𝑢̂)
2
)
𝜉

,

√((1 − (𝜑𝑎𝑢̂)
2
)
𝜉

− (1 − ((𝜑𝑎𝑢̂)
2
+ (𝜓𝑎𝑙̂)

2
))

𝜉

)
)

 
 

 

(

  
 

𝜉𝑏, 𝜉𝑐, 𝜉𝑐, 𝜉𝑏;√1 − (1 − (𝜑𝑎𝑙̂)
2
)
𝜉

,

(√(1 − (𝜑𝑎𝑙̂)
2
)
𝜉

− (1 − ((𝜑𝑎𝑙̂)
2
+ (𝜓𝑎𝑢̂)

2
))

𝜉

)

)

  
 

. 

2.3.3. Comparative study of Two TRT-2-PFNs 

Definition 3. Let 𝑎̂ = (𝑎, 𝑏, 𝑏, 𝑎; 𝜑𝑎𝑢̂ , 𝜓𝑎𝑙̂)(𝑏, 𝑐, 𝑐, 𝑏; 𝜑𝑎𝑙̂ , 𝜓𝑎𝑢̂) be a TRT-2-PFN. The score function 

is defined as follows: 

𝑆𝑐(𝑎̂) =
(𝑎+𝑏+𝑏+𝑎)((𝜑𝑎𝑢̂)

2
−(𝜓𝑎𝑙̂

)
2
)+(𝑏+𝑐+𝑐+𝑏)((𝜑𝑎𝑙̂

)
2
−(𝜓𝑎𝑢̂)

2
)

4
, (9) 

and accuracy function is defined as follows: 

𝐴𝑐(𝑎̂) =
(𝑎+𝑏+𝑏+𝑎)((𝜑𝑎𝑢̂)

2
+(𝜓𝑎𝑙̂

)
2
)+(𝑏+𝑐+𝑐+𝑏)((𝜑𝑎𝑙̂

)
2
+(𝜓𝑎𝑢̂)

2
)

4
. (10) 

Definition 4. Let 𝑎𝑖̂ = (𝑎𝑖 , 𝑏𝑖, 𝑏𝑖, 𝑎𝑖; 𝜑𝑎𝑖𝑢̂ , 𝜓𝑎𝑖𝑙̂) (𝑏𝑖, 𝑐𝑖, 𝑐𝑖, 𝑏𝑖; 𝜑𝑎𝑖𝑙̂ , 𝜓𝑎𝑖𝑢̂) (𝑖 = 1,2) be the collection 
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of TRT-2-PFNs. then we have   

i. If 𝑆𝑐(𝑎̂1) ≻ 𝑆𝑐(𝑎̂2) then 𝑎̂1 ≻ 𝑎̂2, 

ii. If 𝑆𝑐(𝑎̂1) ≺ 𝑆𝑐(𝑎̂2) then 𝑎̂1 ≺ 𝑎̂2, 

iii. If 𝑆𝑐(𝑎̂1) = 𝑆𝑐(𝑎̂2), 

(a) If 𝐴𝑐(𝑎̂1) ≻ 𝐴𝑐(𝑎̂2) then 𝑎̂1 ≻ 𝑎̂2, 

(b) If 𝐴𝑐(𝑎̂1) ≻ 𝐴𝑐(𝑎̂2) then 𝑎̂1 ≺ 𝑎̂2, 

(c) If 𝐴𝑐(𝑎̂1) = 𝐴𝑐(𝑎̂2) then 𝑎̂1 ∼ 𝑎̂2. 

Definition 5. Let 𝑎𝑖̂ = (𝑎𝑖, 𝑏𝑖, 𝑏𝑖, 𝑎𝑖; 𝜑𝑎𝑖𝑢̂ , 𝜓𝑎𝑖𝑙̂) (𝑏𝑖, 𝑐𝑖, 𝑐𝑖, 𝑏𝑖; 𝜑𝑎𝑖𝑙̂ , 𝜓𝑎𝑖𝑢̂)  (𝑖 = 1,2,3,4)  be the 

collection of TRT-2-PFNs. then we have 

1) If 𝑎̂1 ⊆ 𝑎̂2 and 𝑎̂2 ⊆ 𝑎̂3 then 𝑎̂1 ⊆𝑃 𝑎̂3. 

2) If 𝑎̂1 ⊆ 𝑎̂2 then 𝑎̂2
𝑐 ⊆ 𝑎̂1

𝑐. 

3) If 𝑎̂1 ⊆ 𝑎̂2 and 𝑎̂1 ⊆ 𝑎̂3 then 𝑎̂1 ⊆ 𝑎̂2 ∩ 𝑎̂3. 

4) If 𝑎̂1 ⊆ 𝑎̂2 and 𝑎̂3 ⊆ 𝑎̂4 then 𝑎̂1 ∪ 𝑎̂3 ⊆𝑃 𝑎̂2 ∪ 𝑎̂4 and 𝑎̂1 ∩ 𝑎̂3 ⊆𝑃 𝑎̂2 ∩ 𝑎̂4. 

5) If 𝑎̂1 ⊆ 𝑎̂2 and 𝑎̂3 ⊆ 𝑎̂2 then 𝑎̂1 ∪ 𝑎̂3𝛽2. 

2.4. Distance between two TRT-2-PFNs 

The distance measure between two TRT-2-PFNs is a real function Φ:TRT − 2 − PFN × TRT −

2 − PFN → [0,1] if Φ has the characteristics listed below: 

a) Φ(𝒟̂, 𝒟̂) = 0; 

b) Φ(𝒟̂, ℰ̂) = Φ(ℰ̂, 𝒟̂); 

c) For three TRT-2-PFNs 𝒟̂, ℰ̂ and ℱ̂ then Φ(𝒟̂, ℱ̂) = Φ(𝒟̂, ℰ̂) + Φ(ℰ̂, ℱ̂). 

2.4.1. Hamming distance 

Let 𝛼̂ = (𝑎, 𝑏, 𝑏, 𝑎; 𝜑𝑎𝑢̂ , 𝜓𝑎𝑙̂)(𝑏, 𝑐, 𝑐, 𝑏; 𝜑𝑎𝑙̂ , 𝜓𝑎𝑢̂)  and 𝛽̂ =

(𝑑, 𝑒, 𝑒, 𝑑; 𝜑𝑑𝑢̂ , 𝜓𝑑𝑙̂) (𝑒, 𝑓, 𝑓, 𝑒; 𝜑𝑑𝑙̂ , 𝜓𝑑𝑢̂) be two TRT-2-PFNs. then Hamming distance between them 

is defined as 

H(𝛼̂, 𝛽̂) =
1

16
|(𝜑𝑎𝑢̂)

2
𝑎 − (𝜑𝑑𝑢̂)

2
𝑑| + |(𝜑𝑎𝑢̂)

2
𝑏 − (𝜑𝑑𝑢̂)

2
𝑒| + |(𝜑𝑎𝑢̂)

2
𝑏 − (𝜑𝑑𝑢̂)

2
𝑒| +

|(𝜑𝑎𝑢̂)
2
𝑎 − (𝜑𝑑𝑢̂)

2
𝑑| + |(𝜓𝑎𝑙̂)

2
𝑎 − (𝜓𝑑𝑙̂)

2
𝑑| + |(𝜓𝑎𝑙̂)

2
𝑏 − (𝜓𝑑𝑙̂)

2
𝑒| + |(𝜓𝑎𝑙̂)

2
𝑏 − (𝜓𝑑𝑙̂)

2
𝑒| +

|(𝜓𝑎𝑙̂)
2
𝑎 − (𝜓𝑑𝑙̂)

2
𝑑| + |𝑎 − 𝑑| + 2|𝑏 − 𝑒| + 2|𝑏 − 𝑒| + |𝑎 − 𝑑| + |(𝜑𝑎𝑙̂)

2
𝑏 − (𝜑𝑑𝑙̂)

2
𝑒| +

|(𝜑𝑎𝑙̂)
2
𝑐 − (𝜑𝑑𝑙̂)

2
𝑓| + |(𝜑𝑎𝑙̂)

2
𝑐 − (𝜑𝑑𝑙̂)

2
𝑓| + |(𝜑𝑎𝑙̂)

2
𝑏 − (𝜑𝑑𝑙̂)

2
𝑒| + |(𝜓𝑎𝑙̂)

2
𝑏 − (𝜓𝑑𝑙̂)

2
𝑒| +

|(𝜓𝑎𝑙̂)
2
𝑐 − (𝜓𝑑𝑙̂)

2
𝑓| + |(𝜓𝑎𝑙̂)

2
𝑐 − (𝜓𝑑𝑙̂)

2
𝑓| + |(𝜓𝑎𝑙̂)

2
𝑏 − (𝜓𝑑𝑙̂)

2
𝑒| + |𝑐 − 𝑓| + |𝑓 − 𝑐|. 
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2.5. Decision-maker weights and criteria weights 

The classic fuzzy TODIM method is used to determine decision-maker weights and criteria 

weights. Suppose 𝒟̂𝑖𝑗
𝑘   (𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛)  is the assessment values of alternative 𝑋𝑖 

under the criterion 𝒞𝑖 given by the decision-maker 𝐷𝑡 (𝑡 = 1,2, … , 𝑙). The assessment values of each 

alternative can be expressed as: 

𝑔̂𝑖𝑗
∗ = (𝑎𝑖𝑗

∗ , 𝑏𝑖𝑗
∗ , 𝑏𝑖𝑗

∗
, 𝑎𝑖𝑗
∗
; 𝜑𝑢𝑔̂𝑖𝑗

∗ , 𝜓𝑙𝑔̂𝑖𝑗
∗ ) (𝑏𝑖𝑗

∗ , 𝑐𝑖𝑗
∗ , 𝑐𝑖𝑗

∗
, 𝑏𝑖𝑗
∗
; 𝜑𝑙𝑔̂𝑖𝑗

∗ , 𝜓𝑢𝑔̂𝑖𝑗
∗ ) (11) 

and it may be calculated using the following equation: 

𝑔̂𝑖𝑗
∗ =

1

𝑡
(𝑔̂𝑖𝑗

1 , 𝑔̂𝑖𝑗
2 , … , 𝑔̂𝑖𝑗

𝑡 ). (12) 

The degree of similarity 𝑠(𝑔̂𝑖𝑗
𝑘 , 𝑔̂𝑖𝑗

∗ ) between 𝑔̂𝑖𝑗
∗  and 𝑔̂𝑖𝑗

𝑘  is defined as follows: 

𝑠(𝑔̂𝑖𝑗
𝑘 , 𝑔̂𝑖𝑗

∗ ) = 1 −
 𝒟(𝑔̂𝑖𝑗

𝑘 , 𝑔̂𝑖𝑗
∗ )

∑ 𝒟(𝑔̂𝑖𝑗
𝑘 , 𝑔̂𝑖𝑗

∗ )𝑙
𝑡=1

 (13) 

where 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛; 𝑘 = 1,2, … , 𝑙. 

The weight of decision-makers can be calculated as follows: 

𝜔𝑖𝑗
𝑡 = 1 −

 𝑠(𝑔̂𝑖𝑗
𝑘 , 𝑔̂𝑖𝑗

∗ )

∑ 𝑠(𝑔̂𝑖𝑗
𝑘 , 𝑔̂𝑖𝑗

∗ )𝑙
𝑡=1

 (14) 

where 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛; 𝑡 = 1,2, … , 𝑙. 

Combination of different decision matrices 𝒫̂𝑘 = [𝒟̂𝑖𝑗
𝑘 ]
𝑚×𝑛

  into group decision matrix 𝔾 =

[𝕘̂𝑖𝑗
𝑘 ]

𝑚×𝑛
 as follows: 

𝕘̂𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑦𝑖𝑗, 𝑥𝑖𝑗; 𝜑𝑢𝕘̂𝑖𝑗
, 𝜓𝑢𝕘̂𝑖𝑗

) (𝑦𝑖𝑗 , 𝑧𝑖𝑗, 𝑧𝑖𝑗, 𝑦𝑖𝑗; 𝜑𝑢𝕘̂𝑖𝑗
, 𝜓𝑢𝕘̂𝑖𝑗

) 

=∑𝜔𝑖𝑗
𝑡 𝑔𝑖𝑗

𝑡

𝑙

𝑡=1

=

(

 
 
 
(∑𝜔𝑖𝑗

𝑡 𝑎𝑖𝑗
𝑡 ,

𝑙

𝑡=1

∑𝜔𝑖𝑗
𝑡 𝑏𝑖𝑗

𝑡 ,

𝑙

𝑡=1

∑𝜔𝑖𝑗
𝑡 𝑏𝑖𝑗

𝑡
,

𝑙

𝑡=1

∑𝜔𝑖𝑗
𝑡 𝑎𝑖𝑗

𝑡

𝑙

𝑡=1

) ; 1 −∏(1 − 𝜑𝑢
𝑔𝑖𝑗
𝑡
)

𝜔𝑙

𝑡=1

,

∏(1 − 𝜑𝑢
𝑔𝑖𝑗
𝑡
)

𝜔𝑙

𝑡=1

−∏(1 − (𝜑𝑢
𝑔𝑖𝑗
𝑡
+ 𝜓𝑙

𝑔𝑖𝑗
𝑡
))

𝜔𝑙

𝑡=1 )

 
 
 

 

(

  
 
(∑ 𝜔𝑖𝑗

𝑡 𝑏𝑖𝑗
𝑡 ,𝑙

𝑡=1 ∑ 𝜔𝑖𝑗
𝑡 𝑐𝑖𝑗

𝑡 ,𝑙
𝑡=1 ∑ 𝜔𝑖𝑗

𝑡 𝑐𝑖𝑗
𝑡
,𝑙

𝑡=1 ∑ 𝜔𝑖𝑗
𝑡 𝑏𝑖𝑗

𝑡
𝑙
𝑡=1 ) ; 1 − ∏ (1 − 𝜑𝑙

𝑔𝑖𝑗
𝑡
)

𝜔

𝑙
𝑡=1 ,

∏ (1 − 𝜑𝑙
𝑔𝑖𝑗
𝑡
)

𝜔

𝑙
𝑡=1 −∏ (1 − (𝜑𝑙

𝑔𝑖𝑗
𝑡
+ 𝜓𝑢

𝑔𝑖𝑗
𝑡
))

𝜔

𝑙
𝑡=1

)

  
 

. 
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To estimate the criteria weight for the group decision matrix 𝔾 = [𝕘̂𝑖𝑗
𝑘 ]

𝑚×𝑛
 , the mean of the 

analysis for the set of criteria 𝒞𝑗 is determined as follows: 

𝕘̂𝑖𝑗
∗ = (𝑥𝑖𝑗

∗ , 𝑦𝑖𝑗
∗ , 𝑦

𝑖𝑗

∗
, 𝑥𝑖𝑗
∗
; 𝜑𝑢𝑔̂𝑖𝑗

∗ , 𝜓𝑙𝑔̂𝑖𝑗
∗ ) (𝑦𝑖𝑗

∗ , 𝑧𝑖𝑗
∗ , 𝑧𝑖𝑗

∗
, 𝑦
𝑖𝑗

∗
; 𝜑𝑙𝑔̂𝑖𝑗

∗ , 𝜓𝑢𝑔̂𝑖𝑗
∗ ), 

𝕘̂𝑖𝑗
∗ =

1

𝑚
(𝕘̂1𝑗, 𝕘̂2𝑗, … , 𝕘̂𝑚𝑗), where 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛; 𝑘 = 1,2, … , 𝑙. 

The weight for the criteria 𝒞𝑗 will then be calculated as follows: 

𝑤𝑗 = 1 −
 𝑑(𝕘̂𝑖𝑗

𝑘 , 𝕘̂𝑖𝑗
∗ )

∑ ∑ 𝑑(𝕘̂𝑖𝑗
𝑘 , 𝕘̂𝑖𝑗

∗ )𝑛
𝑖=1

𝑛
𝑗

 (15) 

where 𝑑(𝕘̂𝑖𝑗
𝑘 , 𝕘̂𝑖𝑗

∗ ) represents the distance between 𝕘̂𝑖𝑗
𝑘  and 𝕘̂𝑖𝑗

∗ . 

3. TRT-2 Pythagorean fuzzy TODIM for MCDM 

The method for the planned TRT-2 Pythagorean fuzzy sets based on TODIM for sensible 

decisions in MCDM is presented. 

Step 1. Collect the information and assessment values of each alternative 𝑋𝑖 concerning each criterion 

𝒞𝑖 given by the decision-makers 𝒟𝑡 in the form of TRT-2-PFNs. the collective decision matrix for 

decision-maker 𝒟𝑡(𝑡 = 1,2, … , 𝑙) is given by: 

𝔾𝑘 = [𝕘̂𝑖𝑗
𝑘 ]

𝑚×𝑛
 (𝕘̂𝑖𝑗 = (𝑥𝑖𝑗

𝑘 , 𝑦𝑖𝑗
𝑘 , 𝑦𝑖𝑗

𝑘 , 𝑥𝑖𝑗
𝑘 ; 𝜑𝑢

𝕘̂𝑖𝑗
𝑘
, 𝜓𝑢

𝕘̂𝑖𝑗
𝑘
)(𝑦𝑖𝑗

𝑘 , 𝑧𝑖𝑗
𝑘 , 𝑧𝑖𝑗

𝑘 , 𝑦𝑖𝑗
𝑘 ; 𝜑𝑢

𝕘̂𝑖𝑗
𝑘
, 𝜓𝑢

𝕘̂𝑖𝑗
𝑘
)). (16) 

Step 2. Convert the collective decision matrix 𝔾𝑘 = [𝕘̂𝑖𝑗
𝑘 ]

𝑚×𝑛
 into normalized decision matrix ℛ𝑘 =

[𝑟̂𝑖𝑗
𝑘]
𝑚×𝑛

. 

ℛ𝑘 = [𝑟̂𝑖𝑗
𝑘]
𝑚×𝑛

(𝕘̂𝑖𝑗 = (𝑥̂𝑖𝑗
𝑘 , 𝑦̂𝑖𝑗

𝑘 , 𝑦̂𝑖𝑗
𝑘 , 𝑥̂𝑖𝑗

𝑘 ; 𝜑𝑢
𝑟̂𝑖𝑗
𝑘
, 𝜓𝑢

𝑟̂𝑖𝑗
𝑘
)(𝑦̂𝑖𝑗

𝑘 , 𝑧̂𝑖𝑗
𝑘 , 𝑧̂𝑖𝑗

𝑘 , 𝑦̂𝑖𝑗
𝑘 ; 𝜑𝑢

𝑟̂𝑖𝑗
𝑘
, 𝜓𝑢

𝑟̂𝑖𝑗
𝑘
)). (17) 

Step 3. Calculate the weight vector of decision-makers 𝒟𝑡 with respect to criteria 𝒞𝑗 by using 

Eqs (12) and (13). 

𝜔𝑖𝑗
𝑡 = (𝜔𝑖𝑗

1 , 𝜔𝑖𝑗
2 , … , 𝜔𝑖𝑗

𝑙 ). (18) 

Step 4. Convert the individual decision matrices 𝒫̂𝑘 = [𝒟̂𝑖𝑗
𝑘 ]
𝑚×𝑛

  into group decision matrix 𝔾 =

[𝕘̂𝑖𝑗
𝑘 ]

𝑚×𝑛
. 
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Step 5. Determine the weight vector 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛) of each criterion 𝒞𝑗 (𝑗 = 1,2, … , 𝑛) using 

Eq (15). 

Step 6. Determine the relative weight 𝑤𝑟 of each relative criterion 𝒞𝑟. 

𝑤𝑟𝑗 =
𝑤𝑗

𝑤𝑟
 (19) 

where 𝑤𝑟 = 𝑚𝑎𝑥(𝑤𝑗) (𝑗 = 1,2, … , 𝑛). 

Step 7. Based on the existing TODIM approach, the dominance of alternative 𝑋𝑖 over the alternative 

𝑋𝑘 can be calculated as follows: 

∆𝑗(𝑋𝑖, 𝑋𝑘) =

{
  
 

  
 √

𝑤𝑟𝑗

∑ 𝑑(𝕘̂𝑖𝑗,𝕘̂𝑘𝑗)
𝑛
𝑗=1

           if     𝕘̂𝑖𝑗 ≻ 𝕘̂𝑘𝑗  

0                                        if   𝕘̂𝑖𝑗 = 𝕘̂𝑘𝑗

−1

𝜌
√
∑ 𝑑(𝕘̂𝑖𝑗,𝕘̂𝑘𝑗)
𝑛
𝑗=1

𝑤𝑟𝑗
   if   𝕘̂𝑖𝑗 ≺ 𝕘̂𝑘𝑗

. (20) 

Step 8. The dominance degree matrix concerning each criterion 𝒞𝑗 can be calculated as:  

∆𝑗= [∆𝑖𝑗
𝑘 ]

𝑚×𝑛
=

𝑋1
𝑋2
⋮
𝑋𝑚

(

 
 

∆11
𝑗

∆12
𝑗

… ∆1𝑚
𝑗

∆21
𝑗

⋮
∆22
𝑗

⋮

…
⋱

∆2𝑚
𝑗

⋮

∆𝑛1
𝑗

∆𝑛2
𝑗

… ∆𝑛𝑚
𝑗
)

 
 

 (21) 

where ∆11
𝑗
= ∆22

𝑗
= ⋯ = ∆𝑡𝑡

𝑗
= 0. 

Step 9. The global dominance of alternative 𝑋𝑖 over alternative 𝑋𝑘 can be calculated as follows: 

𝑟̂𝑖𝑗
𝑘 =

(

 
 (

𝑥𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
,

𝑦𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
,

𝑦𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
,

𝑥𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
) ;

𝜑𝑢
𝑟̂𝑖𝑗
𝑘
, 𝜓𝑢

𝑟̂𝑖𝑗
𝑘

)

 
 

  

(

 
 (

𝑦𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
,

𝑧𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
,

𝑧𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
,

𝑦𝑖𝑗
𝑡 −𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )

𝑚𝑎𝑥𝑗(𝑥𝑖𝑗
𝑡 )−𝑚𝑖𝑛𝑗(𝑥𝑖𝑗

𝑡 )
) ;

𝜑𝑢
𝑟̂𝑖𝑗
𝑘
, 𝜓𝑢

𝑟̂𝑖𝑗
𝑘

)

 
 

  

(22) 

𝜎(𝑋𝑖, 𝑋𝑘) = ∑ ∆𝑗(𝑋𝑖, 𝑋𝑘)
𝑛
𝑗=1 . (23) 

Step 10. To calculate the global value for alternative 𝑋𝑖 , we can normalize the global dominance 

degree matrix using the following method: 
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𝜇𝑖 =
∑ 𝜎(𝑋𝑖,𝑋𝑘)
𝑚
𝑘=1 −𝑚𝑖𝑛𝑖∈𝑚(∑ 𝜎(𝑋𝑖,𝑋𝑘)

𝑚
𝑘=1 )

𝑚𝑎𝑥𝑖∈𝑚(∑ 𝜎(𝑋𝑖,𝑋𝑘)
𝑚
𝑘=1 )−𝑚𝑖𝑛𝑖∈𝑚(∑ 𝜎(𝑋𝑖,𝑋𝑘)

𝑚
𝑘=1 )

. (24) 

Step 11. Rank the alternative and select the optimal one.  

3.1. Case study 

The experiments are carried out about selecting resources for renewable energy. Because of the 

massive consumption of fossil fuels in recent decades, an unprecedented quantity of chemicals has 

been released into the environment. Renewable sources of energy (RES) do not emit such chemicals 

and are thus particularly successful in reducing environmental harm. As a result, it is important to 

develop such energy production, which will also aid in alleviating renewable power difficulties. For 

instance, the Chinese “long-term renewable energy development plan” states that they would make 

significant investments in renewable sources of energy such as hydropower, wind, biomass, solar, and 

geothermal energy [37]. 

In this scenario, we selected four renewable energy resources (RES) which are Solar energy (𝑋1), 

wind energy (𝑋2), geothermal energy (𝑋3) and ocean energy 𝑋4 as alternative solutions. Each form 

of RES has advantages and disadvantages in defending on the local environment. Thus, it is critical to 

choose the optimal source among them to optimize advantage. Four factors (criteria), including energy 

source superiority (𝒞1), socio-political (𝒞2), economic (𝒞3) and environmental (𝒞4), are used to 

assess the best alternative. Three experts (𝒟1, 𝒟2, 𝒟3) be responsible to provide their performance 

for each RES after combining the assessment given by the three advisors. The advisors will assess each 

alternative with concerning criterion and provide a decision matrix within the form of TRT-2-PFN. 

The criteria values are expressed as triangular Pythagorean fuzzy numbers (TPFN) with performance 

ratings ranging from 1 to 5. Superior efficiency for this criterion is shown the substantially greater 

values. There are six advisors (Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ψ6). Advisor Ψ1 and Ψ2 will be under 𝒟1, Ψ3 

and Ψ4 will be under 𝒟2 and Ψ5 and Ψ6 will be under 𝒟3. The number of advisors is a personal 

preference that may be modified by the organizers. 

Tables 1, 2, 3, 4, 5 and 6 indicate the assessment ratings supplied by advisors Ψ1, Ψ2, Ψ3, Ψ4, 

Ψ5 and Ψ6. 

Table 1. Decision matrix of Ψ1. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((2,1,3); 0.3,0.3) ((2,3,5); 0.1,0.2) ((3,3,4); 0.3,0.4) ((2,2,1); 0.2,0.7) 

𝑋2 
((1,1,2); 0.5,0.7) ((1,4,3); 0.4,0.6) ((1,1,3); 0.2,0.5) ((5,2,2); 0.7,0.1) 

𝑋3 
((2,1,3); 0.6,0.4) ((5,2,4); 0.3,0.5) ((4,3,1); 0.6,0.2) ((4,2,3); 0.4,0.5) 

𝑋4 
((3,1,4); 0.3,0.3) ((3,1,2); 0.6,0.2) ((3,2,3); 0.5,0.5) ((2,1,5); 0.4,0.6) 
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Table 2. decision matrix of Ψ2. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((1,1,4); 0.5,0.4) ((4,4,2); 0.4,0.3) ((3,1,4); 0.4,0.1) ((2,2,3); 0.8,0.1) 

𝑋2 
((4,2,3); 0.2,0.4) ((1,5,4); 0.2,0.8) ((4,2,5); 0.2,0.5) ((3,1,5); 0.5,0.3) 

𝑋3 
((5,1,2); 0.6,0.3) ((2,3,1); 0.1,0.4) ((5,3,3); 0.6,0.5) ((4,3,2); 0.3,0.7) 

𝑋4 
((2,1,3); 0.1,0.7) ((3,1,2); 0.5,0.2) ((2,2,1); 0.3,0.7) ((1,5,4); 0.5,0.6) 

Table 3. decision matrix of Ψ3. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((4,1,3); 0.7,0.6) ((1,4,2); 0.2,0.3) ((3,1,4); 0.8,0.4) ((3,2,4); 0.5,0.3) 

𝑋2 
((3,2,1); 0.4,0.5) ((3,1,5); 0.5,0.2) ((4,2,3); 0.7,0.3) ((1,1,5); 0.5,0.2) 

𝑋3 
((4,1,2); 0.7,0.2) ((5,2,2); 0.3,0.4) ((2,1,3); 0.5,0.7) ((2,1,2); 0.7,0.4) 

𝑋4 
((5,3,3); 0.5,0.3) ((4,3,1); 0.5,0.2) ((4,3,5); 0.4,0.1) ((4,3,3); 0.3,0.5) 

Table 4. decision matrix of Ψ4. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((3,5,1); 0.5,0.2) ((3,1,1); 0.2,0.3) ((2,1,3); 0.2,0.7) ((1,5,3); 0.5,0.6) 

𝑋2 
((4,3,2); 0.3,0.4) ((4,3,3); 0.3,0.5) ((3,5,4); 0.3,0.4) ((4,1,4); 0.7,0.2) 

𝑋3 
((2,4,1); 0.6,0.4) ((2,4,3); 0.5,0.4) ((1,3,5); 0.2,0.6) ((5,4,2); 0.3,0.4) 

𝑋4 
((5,1,2); 0.2,0.3) ((2,2,3); 0.7,0.4) ((5,1,2); 0.4,0.3) ((4,3,5); 0.4,0.5) 

Table 5. decision matrix of Ψ5. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((4,3,4); 0.6,0.7) ((5,2,4); 0.4,0.3) ((3,4,1); 0.1,0.5) ((2,1,4); 0.5,0.3) 

𝑋2 
((5,2,3); 0.3,0.2) ((1,1,5); 0.3,0.5) ((2,2,3); 0.4,0.7) ((3,4,3); 0.3,0.6) 

𝑋3 
((3,5,1); 0.1,0.4) ((3,3,2); 0.2,0.8) ((4,5,4); 0.3,0.5) ((4,5,5); 0.2,0.8) 

𝑋4 
((2,1,2); 0.5,0.3) ((2,5,2); 0.1,0.3) ((5,3,2); 0.2,0.4) ((1,3,1); 0.1,0.7) 
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Table 6. decision matrix of Ψ6. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((3,1,3); 0.4,0.2) ((5,3,3); 0.5,0.2) ((5,4,5); 0.6,0.4) ((5,1,5); 0.5,0.2) 

𝑋2 
((4,2,2); 0.2,0.3) ((4,5,5); 0.7,0.3) ((4,3,3); 0.7,0.2) ((4,2,1); 0.4,0.3) 

𝑋3 
((2,4,5); 0.7,0.4) ((2,4,3); 0.4,0.2) ((1,2,4); 0.5,0.3) ((4,3,3); 0.6,0.4) 

𝑋4 
((5,3,1); 0.1,0.8) ((3,1,4); 0.3,0.5) ((2,1,1); 0.3,0.4) ((2,4,5); 0.2,0.6) 

The next step is to develop a decision matrix for the decision-makers 𝒟1, 𝒟2, and 𝒟3, which 

are presented in Tables 7, 8, and 9. 

Table 7. TRT-2-PFN decision-matrix for 𝒟1. 

𝑋𝑖 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((4,2,3,1); 0.3,0.4) 

((5,2,1,4); 0.5,0.6) 

((3,4,5,4); 0.7,0.5) 

((2,2,3,3); 0.1,0.6) 

((2,1,5,1); 0.4,0.6) 

((4,3,3,1); 0.3,0.7) 

((2,3,5,4); 0.3,0.6) 

((3,2,1,4); 0.2,0.7) 

𝑋2 
((2,3,5,4); 0.5,0.4) 

((3,2,1,4); 0.2,0.3) 

((3,3,2,1); 0.4,0.7) 

((5,3,1,3); 0.5,0.2) 

((4,5,5,2); 0.5,0.6) 

((2,3,1,2); 0.3,0.1) 

((2,3,5,4); 0.3,0.4) 

((3,2,1,4); 0.2,0.5) 

𝑋3 
((1,3,3,1); 0.4,0.7) 

((2,3,5,1); 0.1,0.3) 

((4,2,2,5); 0.2,0.3) 

((3,4,1,1); 0.3,0.5) 

((2,3,3,1); 0.7,0.4) 

((1,2,1,5); 0.4,0.2) 

((2,3,5,4); 0.2,0.4) 

((3,2,1,4); 0.5,0.7) 

𝑋4 
((3,2,2,3); 0.6,0.4) 

((5,2,1,1); 0.5,0.1) 

((4,1,2,4); 0.4,0.5) 

((3,2,5,3); 0.2,0.6) 

((5,3,1,3); 0.3,0.5) 

((1,3,5,2); 0.5,0.6) 

((2,3,5,4); 0.5,0.4) 

((3,1,5,5); 0.2,0.3) 

Table 8. TRT-2-PFN decision-matrix for 𝒟2. 

𝑋𝑖 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 ((2,3,5,4); 0.5,0.4) 

((3,2,1,4); 0.2,0.5) 

((2,2,1,3); 0.4,0.7) 

((3,4,5,4); 0.5,0.3) 

((1,3,3,4); 0.3,0.4) 

((3,5,4,4); 0.2,0.5) 

((2,3,3,2); 0.5,0.4) 

((5,2,4,2); 0.1,0.3) 

𝑋2 ((1,2,1,5); 0.2,0.4) 

((2,2,1,3); 0.3,0.6) 

((1,3,1,5); 0.7,0.6) 

((2,4,1,5); 0.2,0.5) 

((5,3,5,2); 0.1,0.3) 

((3,2,3,4); 0.5,0.6) 

((2,3,3,5); 0.7,0.5) 

((2,2,1,3); 0.2,0.2) 

𝑋3 ((5,3,5,2); 0.6,0.5) 

((3,5,1,1); 0.3,0.4) 

((3,3,1,3); 0.3,0.5) 

((5,2,3,4); 0.2,0.3) 

((4,3,5,1); 0.3,0.2) 

((3,4,1,3); 0.2,0.5) 

((1,3,1,4); 0.1,0.4) 

((1,2,4,5); 0.3,0.5) 

𝑋4 ((4,2,3,1); 0.2,0.6) 

((4,3,1,4); 0.4,0.3) 

((1,5,5,4); 0.5,0.4) 

((3,5,1,3); 0.2,0.7) 

((1,3,4,4); 0.3,0.4) 

((3,3,5,3); 0.1,0.8) 

((3,3,1,4); 0.4,0.3) 

((5,1,1,3); 0.7,0.5) 
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Table 9. TRT-2-PFN decision-matrix for 𝒟3. 

𝑋𝑖 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 
((1,2,5,3); 0.3,0.4) 

((3,2,1,4); 0.2,0.5) 

((3,3,4,4); 0.2,0.4) 

((1,2,4,3); 0.3,0.6) 

((1,4,5,2); 0.1,0.9) 

((2,2,5,4); 0.7,0.3) 

((4,1,2,2); 0.3,0.5) 

((5,3,3,4); 0.7,0.2) 

𝑋2 
((5,3,2,1); 0.5,0.3) 

((2,4,1,3); 0.3,0.2) 

((1,4,5,5); 0.3,0.7) 

((4,1,2,3); 0.1,0.4) 

((4,2,1,1); 0.7,0.1) 

((3,2,1,2); 0.6,0.4) 

((5,3,5,2); 0.4,0.6) 

((3,2,2,1); 0.3,0.8) 

𝑋3 
((5,4,1,1); 0.8,0.2) 

((3,1,5,3); 0.4,0.3) 

((4,1,2,2); 0.1,0.2) 

((3,5,2,4); 0.4,0.3) 

((1,3,3,3); 0.4,0.5) 

((4,5,1,5); 0.3,0.2) 

((2,2,5,2); 0.5,0.7) 

((1,2,5,4); 0.4,0.5) 

𝑋4 
((4,5,3,3); 0.2,0.6) 

((3,2,1,4); 0.1,0.4) 

((2,3,5,4); 0.2,0.3) 

((3,3,1,5); 0.6,0.1) 

((1,3,1,2); 0.9,0.3) 

((2,4,5,3); 0.8,0.2) 

((4,3,5,3); 0.6,0.4) 

((2,2,1,5); 0.6,0.7) 

In the next step, we will normalize these three TRT-2-PFNs by using Eq (22). The normalized 

decision matrices are in Tables 10, 11 and 12. 

Table 10. normalized decision matrix 𝒟1. 

𝒞1 𝒞2 

𝑋1: (
(0.212,0.331,0.214,0.534);

0.3,0.4
) (
(0.335,0.435,0.421,0.324);

0.5,0.6
) 𝑋1: (

(0.301,0.336,0.317,0.398);
0.7,0.5

) (
(0.355,0.405,0.414,0.386);

0.1,0.6
) 

𝑋2: (
(0435,0.543,0215,0.342);

0.5,0.4
) (
(0.311,0.234,0.463,0.581);

0.2,0.3
) 𝑋2: (

(0.302,0.332,0.294,0.418);
0.4,0.7

) (
(0.352,0.387,0.416,0.367);

0.5,0.2
) 

𝑋3: (
(0.421,0.531,0.632,0.356);

0.4,0.7
) (
(0.281,0.489,0.557,0.243);

0.1,0.3
) 𝑋3: (

(0.284,0.301,0.295,0312);
0.2,0.3

) (
(0.331,0.391,0.389,0.307);

0.3,0.5
) 

𝑋4: (
(0.327,0.341,0.427,0.487);

0.6,0.4
) (
(0.367,0.536,0.439,0.307);

0.5,0.1
) 𝑋4: (

(0.387,0.373,0.451,0.510);
0.4,0.5

) (
(0.211,0.283,0.314,0.332);

0.2,0.6
) 

𝒞3 𝒞4 

𝑋1: (
(0.292,0.303,0.289,0.339);

0.4,0.6
) (
(0.321,0.340,0.341,0.375);

0.3,0.7
) 𝑋1: (

(0.346,0.326,0.337,0.318);
0.3,0.6

) (
(0.332,0.355,0.382,0.348);

0.2,0.7
) 

𝑋2: (
(0.402,0.381,0.395,0.418);

0.5,0.6
) (
(0.373,0.400,0.416,0.385);

0.3,0.1
) 𝑋2: (

(0.285,0.293,0.279,0.231);
0.3,0.4

) (
(0.308,0.317,0.327,0.303);

0.2,0.5
) 

𝑋3: (
(0.320,0.353,0.414,0.434);

0.7,0.4
) (
(0.387,0.404,0.411,0.424);

0.4,0.2
) 𝑋3: (

(0.405,0.432,0.458,0467);
0.2,0.4

) (
(0.411,0.433,0.429,0.404);

0.5,0.7
) 

𝑋4: (
(0.412,0.371,0.342,0.383);

0.3,0.5
) (
(0.393,0.405,0.413,0.371);

0.5,0.6
) 𝑋4: (

(0.321,0.351,0.346,0.352);
0.5,0.4

) (
(0.315,0.335,0.322,0.317);

0.2,0.3
) 
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Table 11. normalized decision matrix 𝒟2. 

𝒞1 𝒞2 

𝑋1: (
(0.480,0.391,0.387,0.419);

0.5,0.2
) (
(0.383,0.432,0.404,0.373);

0.4,0.5
) 𝑋1: (

(0.293,0.295,0.302,0.317);
0.4,0.7

) (
(0.314,0.323,0.352,0.367);

0.5,0.3
) 

𝑋2: (
(0.356,0.345,0.356,0.362);

0.2,0.4
) (
(0.331,0.384,0.390,0.379);

0.3,0.6
) 𝑋2: (

(0.332,0.371,0.311,0.343);
0.7,0.6

) (
(0.453,0.416,0.401,0.423);

0.2,0.5
) 

𝑋3: (
(0.412,0.398,0.421,0.491);

0.6,0.5
) (
(0.432,0.431,0.424,0.320);

0.3,0.4
) 𝑋3: (

(0.415,0.401,0.432,0.401);
0.3,0.5

) (
(0.426,0.408,0.429,0.425);

0.2,0.3
) 

𝑋4: (
(0.293,0.300,0.312,0.311);

0.2,0.6
) (
(0.301,0.354,0.376,0.381);

0.4,0.3
) 𝑋4: (

(0.298,0.304,0.272,0.324);
0.5,0.4

) (
(0.353,0.350,0.341,0.324);

0.2,0.7
) 

𝒞3 𝒞4 

𝑋1: (
(0.430,0.392,0.404,0.417);

0.3,0.4
) (
(0.385,0.396,0.406,0.383);

0.2,0.5
) 𝑋1: (

(0.293,0.311,0.282,0.332);
0.5,0.4

) (
(0.335,0.435,0.321,0.324);

0.1,0.3
) 

𝑋2: (
(0.345,0.334,0.290,0.343);

0.1,0.3
) (
(0.332,0.316,0.337,0.351);

0.5,0.6
) 𝑋2: (

(0.312,0.302,0.293,0.331);
0.7,0.5

) (
(0.335,0.435,0.421,0.321);

0.2,0.2
) 

𝑋3: (
(0.261,0.306,0.236,0.240);

0.3,0.2
) (
(0.301,0.305,0.321,0.352);

0.2,0.5
) 𝑋3: (

(0.299,0.309,0.283,0.339);
0.1,0.4

) (
(0.305,0.334,0.327,0.327);

0.3,0.5
) 

𝑋4: (
(0.234,0.233,0.274,0.234);

0.3,0.4
) (
(0.305,0.335,0.321,0.322);

0.1,0.8
) 𝑋4: (

(0.212,0.331,0.214,0.534);
0.4,0.3

) (
(0.323,0.315,0.421,0.325);

0.7,0.5
) 

Table 12. normalized decision matrix 𝒟3. 

𝒞1 𝒞2 

𝑋1: (
(0.341,0.312,0.294,0.335);

0.3,0.4
) (
(0.314,0.326,0.340,0.314);

0.2,0.5
) 𝑋1: (

(0.401,0.431,0.455,0.431);
0.2,0.4

) (
(0.395,0.475,0.412,0.426);

0.3,0.6
) 

𝑋2: (
(0.407,0.332,0.367,0.398);

0.5,0.3
) (
(0.315,0.350,0.421,0.323);

0.3,0.2
) 𝑋2: (

(0.432,0.413,0.445,0.423);
0.3,0.7

) (
(0.389,0.437,0.431,0.427);

0.1,0.4
) 

𝑋3: (
(0.432,0.416,0.404,0.434);

0.8,0.2
) (
(0.398,0.452,0.430,0.421);

0.4,0.3
) 𝑋3: (

(0.503,0.471,0.442,0.514);
0.1,0.2

) (
(0.438,0.415,0.429,0.434);

0.4,0.3
) 

𝑋4: (
(0.512,0.431,0.514,0.501);

0.2,0.6
) (
(0.433,0.437,0.429,0.424);

0.1,0.4
) 𝑋4: (

(0.452,0.433,0.457,0.507);
0.2,0.3

) (
(0.504,0.453,0.441,0.457);

0.6,0.1
) 

𝒞3 𝒞4 

𝑋1: (
(0.244,0.302,0.295,0.431);

0.1,0.9
) (
(0.350,0.375,0.420,0.358);

0.7,0.3
) 𝑋1: (

(0.348,0.343,0.414,0.434);
0.3,0.5

) (
(0.313,0.405,0.452,0.424);

0.7,0.2
) 

𝑋2: (
(0.282,0.331,0.314,0.354);

0.7,0.1
) (
(0.395,0.408,0.441,0.454);

0.6,0.4
) 𝑋2: (

(0.432,0.431,0.455,0.345);
0.4,0.6

) (
(0.335,0.407,0.323,0.421);

0.3,0.8
) 

𝑋3: (
(0.401,0.394,0.424,0.431);

0.4,0.5
) (
(0.452,0.430,0.423,0.426);

0.3,0.2
) 𝑋3: (

(0.312,0.302,0.374,0.327);
0.5,0.7

) (
(0.335,0.435,0.421,0.326);

0.4,0.5
) 

𝑋4: (
(0.422,0.431,0.351,0.432);

0.9,0.2
) (
(0.335,0.435,0.421,0.324);

0.8,0.2
) 𝑋4: (

(0.324,0.319,0.344,0.331);
0.6,0.4

) (
(0.405,0.435,0.423,0.332);

0.6,0.7
) 

Now using Eqs (12), (13), and (14) to determine the weight of each decision-maker. The results 

are summarized in Tables 13, 14, and 15. 
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Table 13. weight vector of decision-maker 𝒟1. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 0.3412 0.3387 0.3577 0.3365 

𝑋2 0.3313 0.3154 0.3298 0.3411 

𝑋3 0.2916 0.3034 0.3412 0.3217 

𝑋4 0.3361 0.3437 0.3266 0.3045 

Table 14. weight vector of decision-maker 𝒟2. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 0.3452 0.2376 0.3675 0.3298 

𝑋2 0.2564 0.3427 0.3354 0.3019 

𝑋3 0.3156 0.3678 0.3198 0.3144 

𝑋4 0.3126 0.3421 0.3156 0.3367 

Table 15. weight vector of decision-maker 𝒟3. 

Alternatives 𝒞1 𝒞2 𝒞3 𝒞4 

𝑋1 0.2143 0.3421 0.2341 0.2354 

𝑋2 0.3425 0.2312 0.3411 0.3123 

𝑋3 0.3216 0.3564 0.2342 0.3178 

𝑋4 0.3125 0.3265 0.2436 0.3275 

Using Eq (17) to combine the group decision matrix. The rating values of the alternatives 

concerning each criterion are summarized in Table 16. 

Table 16. The group decision matrix. 

𝒞1 𝒞2 

𝑋1: (
(0.191,0.423,0.697,0.874);

0.701,0.310
) (
(0.413,0.493,0.628,0.697);

0.470,0.539
) 𝑋1: (

(0.149,0.379,0.656,0.900);
0.699,0.310

)(
(0.379,0.449,0.586,0.367);

0.490,0.514
) 

𝑋2: (
(0.150,0.379,0.656,0.900);

0.699,0.300
) (
(0.379,0.449,0.586,0.656);

0.495,0.514
) 𝑋2: (

(0.150,0.410,0.739,0.996);
0.799,0.210

) (
(0.410,0.494,0.656,0.739);

0.533,0.475
) 

𝑋3: (
(0.138,0.310,0.693,0.911);

0.729,0.280
) (
(0.310,0.407,0.597,0.693);

0.488,0.521
) 𝑋3: (

(0.032,0.258,0.622,0.943);
0.694,0.315

) (
(0.258,0.350,0.530,0.623);

0.530,0.479
) 

𝑋4: (
(0.089,0.293,0.633,0.921);

0.720,0.259
) (
(0.293,0.378,0.548,0.463);

0.546,0.463
) 𝑋4: (

(0.185,0.322,0.702,0.945);
0.697,0.312

) (
(0.322,0.423,0.601,0.702);

0.449,0.560
) 

𝒞3 𝒞4 

𝑋1: (
(0.112,0.295,0.631,0.824);

0.680,0.329
) (
(0.295,0.379,0.547,0.631);

0.417,0.592
) 𝑋1: (

(0.056,0.265,0.453,0.733);
0.586,0.423

)(
(0.265,0.315,0.403,0.443);

0.395,0.614
) 

𝑋2: (
(0.239,0.417,0.749,0.994);

0.705,0.304
) (
(0.417,0.501,0.665,0.749);

0.475,0.533
) 𝑋2: (

(0.079,0.320,0.693,0.919);
0.766,0.243

) (
(0.320,0.417,0.595,0.691);

0.471,0.537
) 

𝑋3: (
(0.105,0.266,0.652,0.873);

0.690,0.319
) (
(0.267,0.366,0.552,0.652);

0.461,0.547
) 𝑋3: (

(0.108,0.341,0.698,0.974);
0.714,0.295

) (
(0.341,0.437,0.602,0.698);

0.565,0.444
) 

𝑋4: (
(0.059,0.268,0. ,0.623.824);

0.758,0.251
) (
(0.268,0.360,0.531,0.623);

0.487,0.522
) 𝑋4: (

(0.143,0.352,0.580,0.808);
0.726,0.283

) (
(0.353,0.410,0.523,0.580);

0.496,0.512
) 
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To calculate the relative criteria weight 𝑤𝑟𝑗  by using Eq (19). The relative weight of each 

criterion is listed in Table 17. 

Table 17. Relative weight of criterion. 

 𝒞1 𝒞2 𝒞3 𝒞4 

𝑤𝑟𝑗 0.9347 1.0000 0.6800 0.7520 

The dominance of each alternative with respect to each criterion is summarized in Tables 18, 19, 

20, and 21. 

Table 18. Dominance degree matrix for 𝒞1. 

∆1 𝑋1 𝑋2 𝑋3 𝑋4 

𝑋1 0.000 −0.086 −0.129 0.052 

𝑋2 0.086 0.000 −0.087 0.035 

𝑋3 0.0.32 0.022 0.000 0.025 

𝑋4 −0.186 −0.112 −0.80 0.000 

Table 19. Dominance degree matrix for 𝒞2. 

∆2 𝑋1 𝑋2 𝑋3 𝑋4 

𝑋1 0.000 −0.326 −0.086 −0.190 

𝑋2 0.086 0.000 −0.251 −0.142 

𝑋3 0.035 0.074 0.000 0.036 

𝑋4 0.061 0.048 −0.159 0.000 

Table 20. Dominance degree matrix for 𝒞3. 

∆3 𝑋1 𝑋2 𝑋3 𝑋4 

𝑋1 0.000 0.050 0.016 0.018 

𝑋2 −0.310 0.000 −0.305 0.060 

𝑋3 −0.066 0.049 0.000 0.013 

𝑋4 −0.074 −0.308 −0.042 0.000 

Table 21. Dominance degree matrix for 𝒞4. 

∆4 𝑋1 𝑋2 𝑋3 𝑋4 

𝑋1 0.000 −0.396 0.068 −0.298 

𝑋2 0.060 0.000 0.018 −0.178 

𝑋3 −0.409 −0.122 0.000 −0.194 

𝑋4 0.045 0.032 0.029 0.000 

The global dominance of alternative 𝑋𝑖  over 𝑋𝑘  can be determined using Eq (23), which is 

summarized in Table 22. 
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Table 22. Global dominance degree. 

 𝑋1 𝑋2 𝑋3 𝑋4 

𝑋1 0.000 −1.081 −0.257 −0.698 

𝑋2 −0.271 0.000 −0.838 −0.285 

𝑋3 −0.582 −0.017 0.000 −0.121 

𝑋4 −0.334 −0.501 −0.545 0.000 

Finally, by using Eq (24) to calculate the global value of each alternative. the global values and 

rank of presented in Table 23. 

Table 23. Global values and order ranking. 

𝜎 𝜇 ranking 

𝑋1 0.001 4 

𝑋2 0.3532 2 

𝑋3 0.991 1 

𝑋4 0.216 3 

As we can see, after redefining our resource selection problem and using a new method to defend 

TRT-2-PFSs, we concluded that alternative 𝑋3 has the highest global dominance value, making it the 

optimal alternative out of the four. We set the loss 𝜌 attenuation factor to 1. Its range is 1 to 2.5, but 

it is entirely dependent on the performance of decision-makers. 

3.2. Validity test 

We used a set of testing techniques developed by Wang and Trianaphyllou [39] that included the 

following phases to verify the robustness and adaptability of the suggested method over a wide variety 

of circumstances. 

Stability Test (Step 1): For this assessment, rating values connected with fewer desirable alternatives 

were substituted for those associated with non-optimal alternatives. The top alternative should not 

change, keeping its status as the greatest option notwithstanding this modification. By highlighting the 

ranking’s stability under constant relative criterion weights, this test highlights the method’s robustness 

against alterations in alternative ratings. 

Transitivity test (Step 2): Transitivity is a crucial characteristic of decision-making processes; it states 

that if alternative A is chosen over alternative B and alternative B is preferred over alternative C, then 

alternative A should be preferred over alternative C. Through this test, the suggested method’s 

adherence to the transitive property was confirmed, as well as the obtained rankings’ logical coherence. 

Aggregation Test (Step 3): Sometimes it is required to break large issues down into smaller 

subproblems while using the same decision-making strategy in complex decision-making settings. The 

aggregation test checks to see if the final ranking of solutions to these subproblems is identical to the 

initial rating. By consistently producing correct rankings across various issue subdivisions, this verifies 

the suggested approach’s capacity to tackle complicated problems. 

Validity test using criterion 1 

The ranking order achieved through the proposed approach is 𝑋3 ≻ 𝑋2 ≻ 𝑋4 ≻ 𝑋1. To evaluate 
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the robustness of our approach according to test criterion 1, we conducted a sensitivity analysis by 

replacing the non-optimal alternative 𝑋1 with a subpar alternative 𝑋1
∗. The rating values of 𝑋1

∗ were 

defined as ((1,2,1,2); 0.1,0.5)((1,3,2,2); 0.2,0.2) , ((1,3,1,1); 0.1,0.2)((1,3,2,2); 0.1,0.2) , 

((1,1,1,2); 0.3,0.4)((1,3,2,1); 0.1,0.6) and ((1,2,1,1); 0.1,0.4)((1,1,2,2); 0.3,0.7).  

Utilizing our approach, we computed the aggregated score values for the alternatives: 𝜇(𝑋1) =

0.001, 𝜇(𝑋1
∗) = 0.0003, 𝜇(𝑋2) = 0.3532 and 𝜇(𝑋3) = 0.991. Consequently, the revised ranking 

order emerged as 𝑋3 ≻ 𝑋2 ≻ 𝑋1 ≻ 𝑋1
∗, with the best alternative maintaining its position consistent 

with the original approach. This outcome underscores the reliability and consistency of our proposed 

approach, particularly with respect to test criterion 1. 

To assess the validity based on criteria 2 and 3, we consider fragmented decision-making subcases, 

namely {𝑋1, , 𝑋3, 𝑋4}, {𝑋2, 𝑋3, 𝑋4} and {𝑋2, 𝑋3, 𝑋1}. Implementing the outlined procedure, their rank 

orders are obtained as follows: 𝑋3 ≻ 𝑋4 ≻ 𝑋1 , 𝑋3 ≻ 𝑋4 ≻ 𝑋2  and 𝑋3 ≻ 𝑋2 ≻ 𝑋1 , respectively. 

Upon aggregating all results, the overall ranking emerges as 𝑋3 ≻ 𝑋4 ≻ 𝑋2 ≻ 𝑋1, which aligns with 

the original outcomes of our decision-making approach. Therefore, we can confirm that our proposed 

approach remains valid according to test criteria 2 and 3. 

Table 24. Different types of FSs and their attributes. 

Characteristics  Different types of fuzzy sets 

FS IFS Type-2 FS Type-2 IFS PFS Type-2 PFS 

membership value ✓ ✓ ✓ ✓ ✓ ✓ 

Describe ambiguity MD MD and 

NMD 

Both primary 

and secondary 

membership 

Primary and secondary 

membership, non-

membership, and uncertainty 

Membership and 

non-membership 

grade 

Primary and secondary 

membership, non-

membership, and uncertainty 

unknown parameters ✕ ✕ ✓ ✓ ✓ ✓ 

The ability of Multi-

Attribute modelling 

✓ ✓ ✓ ✓ ✓ ✓ 

modelling of 

increasing 

uncertainty 

✕ ✕ ✓ ✓ ✕ ✓ 

Taking reluctance 

into account while 

making decisions 

✕ ✓ ✕ ✓ ✕ ✓ 

3.3. Comparative analysis 

In the existing literature, a variety of fuzzy sets have been developed to address specific scenarios, 

utilizing their unique properties. Notable examples include fuzzy sets, type-2 fuzzy sets, intuitionistic 

fuzzy sets, and Pythagorean fuzzy sets, which have gained recognition in the field of fuzzy set theory. 

Our study introduces a novel addition to this landscape: the trapezoidal type-2 Pythagorean fuzzy set. 

To facilitate a clear comparison, Table 24 provides a comprehensive overview of these fuzzy sets based 

on various attributes. All these fuzzy sets share the common feature of using graded membership values, 

allowing them to effectively represent uncertainty across multiple attributes. However, type-2 fuzzy 
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sets, type-2 intuitionistic fuzzy sets, and type-2 Pythagorean fuzzy sets excel in modeling scenarios 

with high levels of uncertainty, especially when dealing with hesitancy, a nuanced form of uncertainty. 

Pythagorean fuzzy sets stand out for their ability to comprehensively address parameter uncertainty 

through primary and secondary memberships. Among these options, the type-2 Pythagorean fuzzy set 

is a standout choice due to its versatility in handling complex challenges and capturing the essence of 

reluctance. This unique capability positions it as a powerful tool for addressing multifaceted 

complexities and accommodating scenarios where decision-makers exhibit hesitation in their 

preferences or judgments. 

3.4. Advantages 

▪ The utilization of Trapezoidal Type-2 Pythagorean fuzzy sets provides an extended range of 

uncertainty representation, enabling decision-makers to express their preferences more 

accurately, especially in situations involving complex and hesitant judgments. 

▪ By combining the characteristics of trapezoidal fuzzy and type-2 fuzzy sets, our methods 

effectively address multifaceted uncertainties and provide a more comprehensive framework 

for decision-making. 

▪ The method presents a systemic process for evaluating unknown weights of decision-makers 

and criteria, contributing to a more objective and precise weighting of factors in the decision-

making process. 

▪ The novel Trapezoidal Pythagorean fuzzy TODIM method integrates the strengths of both the 

TODIM technique and the trapezoidal type-2 Pythagorean fuzzy sets. This integration enhances 

the accuracy and reliability of the decision outcomes. 

▪ Through rigorous testing and comparison with existing decision-making approaches, the 

validity and robustness of the proposed method have been demonstrated, ensuring its practical 

applicability in real-world scenarios. 

▪ The method facilitates the identification of the optimal alternatives by considering global 

dominance values. This assists decision-makers in selecting the best option, aligning with their 

preferences and hesitancy levels. 

▪ The loss 𝜌 attenuation factor can be adjusted within a range of 1 to 2.5, offering decision-

makers the flexibility to fine-tune method according to their requirements and preferences.  

▪ By integrating hesitancy and advanced fuzzy set concepts, the proposed approach aids in more 

efficient allocation of resources, leading to informed and rational decision outcomes. 

3.5. Limitations 

▪ The method involves multiple steps for evaluating unknown weights, conducting comparisons, 

and aggregating scores. This complexity might require additional computational resources and 

time, especially for larger decision-making problems. 

▪ Accurate weight assignment and preference evaluations rely on expert input. If experts provide 

incomplete or inaccurate information, the quality of the decision outcomes could be 

compromised. 
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▪ The method’s effectiveness is contingent on the subjectivity of decision-makers and their 

ability to express hesitancy accurately. Biases or inconsistent judgment could lead to unreliable 

results. 

▪ While the proposed method is designed to handle hesitancy and uncertainty effectively, its 

optimal performance may be limited to specific decision contexts. Its applicability might vary 

across different domains and industries. 

▪ The loss 𝜌 attenuation factor’s range of adjustment (1 to 2.5) offers flexibility, but determining 

the optimal value requires a deep understanding of the problem and may necessitate trial and 

error. 

▪ While the proposed method has been validated through comparisons and testing, real-world 

scenarios might present unforeseen challenges that could impact the method’s performance. 

4. Conclusions 

In this study, we introduce an innovative structure known as trapezoidal type-2 Pythagorean fuzzy 

sets, by synergizing the concepts of trapezoidal fuzzy sets and type-2 fuzzy sets. Additionally, we 

present fundamental operational laws, including addition, scalar multiplication, distance measurement, 

and comparison, specifically tailored for trapezoidal type-2 Pythagorean fuzzy numbers. To tackle the 

issue of unknown weights, we put forth a method for assessing the weights associated with each 

decision-maker and criterion. Furthermore, we devise a novel TOMID method, operating within the 

trapezoidal type-2 Pythagorean fuzzy environment, which effectively addresses multi-criteria 

decision-making (MCDM) problems with uncertain weights. Additionally, we contribute a method that 

facilitates the transformation of triangular Pythagorean fuzzy numbers into the proposed trapezoidal 

type-2 Pythagorean fuzzy framework. To demonstrate the practicality and versatility of our proposed 

TODIM method, we present a detailed example, showcasing its rationality and adaptability. For 

empirical validation, we benchmark the outcomes of our proposed approach against various existing 

decision-making methods. Through this comparative analysis, we establish the efficacy and robustness 

of our TODIM approach in resolving complex MCDM scenarios. This comprehensive investigation 

underscores the valuable contributions of our work in enhancing decision-making methodologies and 

addressing uncertainty within a trapezoidal type-2 Pythagorean fuzzy framework. 

There is an exciting avenue for future research to expand upon our proposed work by integrating 

Z-fuzzy clouds [40] and best-worst entropy methods [41]. By doing so, we can further enhance the 

depth and scope of our investigations, providing a richer and more comprehensive perspective in our 

upcoming research endeavors. This promising direction opens opportunities for exploring and 

advancing the capabilities of our study. 
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