In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results.
Citation: Aphirak Aphithana, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon. Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain[J]. AIMS Mathematics, 2023, 8(9): 20018-20047. doi: 10.3934/math.20231020
In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results.
[1] | S. Abbas, Y. Xia, Existence and attractivity of k-almost automorphic solutions of model of cellular neutral network with delay, Acta. Math. Sci., 33 (2013), 290–302. https://doi.org/10.1016/S0252-9602(12)60211-2 doi: 10.1016/S0252-9602(12)60211-2 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[3] | R. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10 |
[4] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[5] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. |
[6] | L. Debanath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486 |
[7] | D. Baleanu, J. A. Machado, A. C. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
[8] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. https://doi.org/10.48550/arXiv.1106.0965 doi: 10.48550/arXiv.1106.0965 |
[9] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27 |
[10] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[11] | K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335 |
[12] | A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On $k$-generalized $\psi$-Hilfer boundary value problems with retardation and anticipation, Adv. Theor. Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992 |
[13] | K. Kotsamran, W. Sudsutad, C. Thaiprayoon, J. Kongson, J. Alzabut, Analysis of a nonlinear $\psi$-Hilfer fractional integro-differential equation describing cantilever beam model with nonlinear boundary conditions, Fractal Fract., 5 (2021), 177. https://doi.org/10.3390/fractalfract5040177 doi: 10.3390/fractalfract5040177 |
[14] | A. Boutiara, M. S. Abdo, M. A. Almalahi, H. Ahmad, A. Ishan, Implicit hybrid fractional boundary value problem via generalized Hilfer derivative, Symmetry, 13 (2021), 1937. https://doi.org/10.3390/sym13101937 doi: 10.3390/sym13101937 |
[15] | D. Baleanu, A. Mousalou, S. Rezapour, On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations, Bound. Value Probl., 2017 (2017), 145. https://doi.org/10.1186/s13661-017-0867-9 doi: 10.1186/s13661-017-0867-9 |
[16] | A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017 |
[17] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of $\psi$-Hilfer nonlocal Cauchy problem, Rend. Circ. Mat. Palerm., 70 (2021), 57–77. https://doi.org/10.1007/s12215-020-00484-8 doi: 10.1007/s12215-020-00484-8 |
[18] | S. Pleumpreedaporn, W. Sudsutad, C. Thaiprayoon, J. E. Nápoles, J. Kongson, A study of $\psi$-Hilfer fractional boundary value problem via nonlinear integral conditions describing Navier Model, Mathematics, 9 (2021), 3292. https://doi.org/10.3390/math9243292 doi: 10.3390/math9243292 |
[19] | B. Ahmad, S. K. Ntouyas, Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5 (2021), 195. https://doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195 |
[20] | S. Pleumpreedaporn, C. Pleumpreedaporn, W. Sudsutad, J. Kongson, C. Thaiprayoon, J. Alzabut, On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function, AIMS Math., 7 (2022), 7817–7846. https://doi.org/10.3934/math.2022438 doi: 10.3934/math.2022438 |
[21] | L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a non-local abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11–19. https://doi.org/10.1080/00036819008839989 doi: 10.1080/00036819008839989 |
[22] | L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional differential evolution nonlocal Cauchy problem, In: Selected Problems in Mathematics, Cracow University of Technology, 1995, 25–33. |
[23] | S. Muthaiaha, M. Murugesana, N. G. Thangaraja, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theor. Nonlinear Anal. Appl., 3 (2019), 162–173. https://doi.org/10.31197/atnaa.579701 doi: 10.31197/atnaa.579701 |
[24] | C. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. https://doi.org/10.4064/FM-15-1-301-309 doi: 10.4064/FM-15-1-301-309 |
[25] | G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Semin. Mat. U. Pad., 24 (1955), 84–92. |
[26] | J. Banaś, Measures of noncompactness in Banach spaces, 1980. |
[27] | A. Arara, M. Benchohra, N. Hamidi, J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal. Theor., 72 (2010), 580–586. https://doi.org/10.1016/j.na.2009.06.106 doi: 10.1016/j.na.2009.06.106 |
[28] | X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal. Theor., 74 (2011), 2844–2852. https://doi.org/10.1016/j.na.2011.01.006 doi: 10.1016/j.na.2011.01.006 |
[29] | M. Beddani, B. Hedia, Existence result for fractional differential equation on unbounded domain, Kragujev. J. Math., 48 (2024), 755–766. |
[30] | K. Benia, M. Beddani, M. Fečkan, B. Hedia, Existence result for a problem involving $\psi$-Riemann-Liouville Fractional Derivative on Unbounded domain, Differ. Equ. Appl., 14 (2022), 83–97. https://doi.org/10.7153/dea-2022-14-06 doi: 10.7153/dea-2022-14-06 |
[31] | R. P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problem for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 18 (2011), 235–244. |
[32] | S. Liang, J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Model., 54 (2011), 1334–1346. https://doi.org/10.1016/j.mcm.2011.04.004 doi: 10.1016/j.mcm.2011.04.004 |
[33] | L. Zhang, A. Bashir, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc., 91 (2015), 116–128. https://doi.org/10.1017/S0004972714000550 doi: 10.1017/S0004972714000550 |
[34] | G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 47 (2015), 1–7. https://doi.org/10.1016/j.aml.2015.03.003 doi: 10.1016/j.aml.2015.03.003 |
[35] | L. Zhang, B. Ahmad, G. Wang, Monotone iterative method for a class of nonlinear fractional differential equations on unbounded domains in Banach spaces, Filomat, 31 (2017), 1331–1338. https://doi.org/10.2298/FIL1705331Z doi: 10.2298/FIL1705331Z |
[36] | T. S. Cerdik, F. Y. Deren, N. A. Hamal, Unbounded solutions for boundary value problems of Riemann Liouville fractional differential equations on the half-line, Fixed Point Theor., 19 (2018), 93–106. https://doi.org/10.24193/fpt-ro.2018.1.08 doi: 10.24193/fpt-ro.2018.1.08 |
[37] | C. Zhai, L. Wei, The unique positive solution for fractional integro-differential equations of infinite intervals, Sci. Asia, 44 (2018), 118–124. https://doi.org/10.2306/scienceasia1513-1874.2018.44.118 doi: 10.2306/scienceasia1513-1874.2018.44.118 |
[38] | F. Wang, Y. Cui, Unbounded solutions to abstract boundary value problems of fractional differential equations on a half line, Math. Method. Appl. Sci., 44 (2021), 8166–8176. https://doi.org/10.1002/mma.5819 doi: 10.1002/mma.5819 |
[39] | W. Zhang, W. Liu, Existence of solutions for fractional multi-point boundary value problems on an infinite interval at resonance, Mathematics, 8 (2020), 126. https://doi.org/10.3390/math8010126 doi: 10.3390/math8010126 |
[40] | A. Boutiara, M. Benbachir, M. K. Kaabar, F. Martinez, M. E. Samei, M. Kaplan, Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval, J. Inequal. Appl., 2022 (2022), 29. https://doi.org/10.1186/s13660-022-02764-6 doi: 10.1186/s13660-022-02764-6 |
[41] | H. A. Salem, M. Cichon, Analysis of tempered fractional calculus in Hölder and Orlicz spaces, Symmetry, 14 (2022), 1581. https://doi.org/10.3390/sym14081581 doi: 10.3390/sym14081581 |
[42] | J. Bana$\mathop {\rm{s}}\limits^{{`}} $, M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, New Delhi: Springer, 2014. https://doi.org/10.1007/978-81-322-1886-9 |
[43] | D. J. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Dordrecht: Springer Science & Business Media, 1996. https://doi.org/10.1007/978-1-4613-1281-9 |
[44] | C. Derbazi, Z. Baitiche, M. Benchohra, Cauchy problem with $\psi$-Caputo fractional derivative in Banach spaces, Adv. Theor. Nonlinear Anal. Appl., 4 (2020), 349–360. https://doi.org/10.31197/atnaa.706292 doi: 10.31197/atnaa.706292 |
[45] | A. Aghajani, M. Mursaleen, A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35 (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5 doi: 10.1016/S0252-9602(15)30003-5 |
[46] | R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Mat., 15 (2007), 179–192. https://doi.org/10.48550/arXiv.math/0405596 doi: 10.48550/arXiv.math/0405596 |
[47] | Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266 |