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1. Introduction

In this paper, we aim to establish the existence of solutions for the following nonlinear boundary
value problems (BVPs) of (k, ¥)-Riemann-Liouville (RL) fractional differential equation with nonlocal
conditions on an unbounded domain (short (k, ¥)-RL-NBVP) as:

O%u() = f(tu®), ae(1,2], te(a®), a>0,
—a; C . a—K; - 0, (11)
T u(aty = A+ Z (&), Tim D) = B+ Yy I utny),

J=1
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where kDZf' denotes the (k, ¥)-RL-fractional derivative of order g € {a,a — k} with k > 0, , I Zf
is the (k,y)-RL-fractional integral of order p € {2k — a,0;} > 0, j = 1,2,...,n, & is a Banach
space, f € C((a, ) X &,&), the given constants A, B, A;, u; € R, and the points &;, n; € (a, ), for
i=1,2,...,mand j=1,2,...,n.

The (k, ¥)-RL-NBVP problem (1.1) in this work was inspired by the following important histories:
hundreds of years ago, fractional calculus (FC) was first constructed and later developed by many
researchers in the branches of applied sciences and engineering such as biology, control theory,
economics, electromagnetic, electrochemistry, finance, mechanics, and other fields which have been
established in the last few decades. It has become a better tool for understanding some physical
phenomena in the last decade, especially when dealing with processes with memory [1]. Modeling
viscoelastic and viscoplastic materials [2], bioengineering [3], and a variety of sciences and
engineering problems are a few examples of applications. It is non-integer calculus and deals with
fractional integral and derivative operators (FIO/FDO) such as RL, Caputo, Hadamard,
Erdélyi-Kober, Katugampola, Hilfer, and others; we refer to read the details of applications on
FC [2-10]. Especially, the FDO of Hilfer’s type, which uses the notation “D%x(r). It is a
generalization of RLL’s type when = 0 and Caputo’s type when 8 = 1 ( [5]). In a more profound,
there is another type of Hilfer derivative. It is called (k,)-Hilfer-FDO [11, 12], which uses the
notation EDng;‘pu(I), and it is a generalized form of the Hilfer-FDO that covers the y-Hilfer-FDO
when k = 1. Particularly, it can be reduced to (k, ¥)-RLL-FDO with k > 0 and 8 = 0. Many researchers
use differential equations (DEs) for real-world problems simulation and solving difficulties employing
some powerful techniques. Moreover, fractional differential equations (FDEs) which are the
combination between FC and DEs, have been applied to model the problems since fractional-order
has more additional degrees of freedom than integer-order and also to describes the memory and the
hereditary properties that allow for more accurate and realistic solutions. Plenty of great pieces of
literature have been produced to study nonlinear FDEs dealing with initial/boundary conditions under
various kinds of fractional derivatives that discuss the qualitative properties such as existence,
uniqueness and stability of solutions utilizing a variety of fixed-point theorem. We refer readers to
some works [13-20] for contemporary papers on FDEs.

Nonlocal conditions were introduced by Byszewaski [21] in 1991, who established the existence
and uniqueness of mild and classical solutions to nonlocal Cauchy problems. As remarked by
Byszewski [22, 23], nonlocal conditions can be more useful than the standard condition to explain
some physical phenomena. In 1930, Kuratowski [24] initially recommended the idea of a measure of
noncompactness. It is significant in fixed-point theory and has several capitalizations in nonlinear
analysis techniques, such as DEs, integro-differential equations (IDEs), optimization, and so on. In
conclusion, it is a function determined in a class of nonempty and bounded subsets of satisfaction of
some metric space that is equal to zero in all families of relatively compact sets. In 1955, Darbo [25]
applied the Kuratowski measure to study a family of operators known as condensing operators, whose
qualities are middle between those of contraction and compact mappings. For more details on a
variety of measures of noncompactness, see; [26]. Besides, many researches have been produced
involving establishing the qualitative properties of solutions on finite intervals. However, fewer
research works studied the solutions on unbounded domain as [0, 00); for example, in 2010, Arara et
al. [27] utilized a fixed-point theory of Schauder’s type under the diagonalization procedure to discuss
the existence results of BVPs of FDEs on an unbounded domain under Caputo-FDO as:
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“Dp.u(t) = f(t,u(t)), @€ (1,2], te€]0,00),
u(0) = up, u is bounded on [0, ),

where CDg+ denotes the Caputo-FDO of order «, f € C([0,00) X R,R) and uy, € R. Later, in 2011,
Su [28] used Darbo’s fixed-point theorem to investigate an existence of solutions for BYP under RIL-
FDO in Banach space of the form

Dpu(t) = f(t,u®), ae(l,2], te]l0,o),
u@©) =0, DI 'u(o) = ug,

where D, denotes the RL-FDO of order g € {a, @ — 1}, f € C([0, 00) xR, R), s, € R, and Df; ' u(c0) =
llgl0 Dgr 'u(f). Recently, Beddani and Hedia [29] employed Tykhonoff’s fixed-point theorem to obtain
f[he existence results of solutions on an unbounded domain to BYP of FIDEs under RL-FDQO in a Fréchet
space of the form:

Dou) = ft,u(®), aec(1,2], te(0,0),
u@©) =0, DL 'u(0) = e,

where D!, denotes the RL-FDO of order g € {a, @ — 1}, f € C((0, ) X R,R), and u., € R. After that,
in 2022, Benia et al. [30] studied FDEs with -RIL-FDO on an unbounded domain in Banach space
and investigated its existence of solution sets and topological structure as follows:

{ DYu(r) = ft,u(r), ae(1,2], te(0,c0),

0% = A, D5 u(eo) = B,

> 70+

f € C((0,00) X R,R), and A, B € R. Several prices of research studied FDEs on unbounded domain,
we recommended readers to good works; [31-42] and references therein.

Motivated by the aforementioned works, to make it different and novel, the spotlight in this study
is to establish the existence result of solution sets for the (k, )-RL-NBVP problem (1.1) which will be
introduced later in the main Theorem (3.1). Next, some consequences of the main theorem are listed.
Finally, numerical examples of applications are pointed out to support our theoretical results. This
work is collected as follows: the basic definition of a measure of noncompactness under Kuratowski
and its essential qualities are mentioned in Section 2. The existence result of the considered problem is
established using a fixed-point theorem for Meir-Keeler condensing operators in Section 3. Numerical
examples are provided in Section 4, and the conclusion is shown in the last section.

where DY denotes the y-RL-FDO of order g € {a,a — 1}, I,," is the y-RL-FDO of order 2 —a > 0,

2. Fundamental concepts

Next, we define the basic definition of the measure of noncompactness under Kuratowski and its
essential qualities. For any D C &, the set of all bounded subsets of D is denoted by S,(D). Next, we
give the Kuratowski measure of noncompactness and provide some of its important properties.

Definition 2.1. ( [26,43]) The Kuratowski measure of noncompactness ® is defined on each bounded
subset D of Banach space & by

(D) = inf {e > 0 | D admits a finite cover by sets of diameter < €}.
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The following properties about the Kuratowski measure of noncompactness are well known.
Lemma 2.1. ( [26,43]) Let & be a Banach space and H, K € Sy(E). The following properties true:

(P1) O(H) = 0 if and only if H is relatively compact.

(P,) G(H) = G(H), where H is the closure of H.

(P3) O(H +K) < G(H) + G(K).

(Py) H c K implies G(H) < G(K).

(Ps) GaH) = ||lal|G(H) for all a € E.

(Ps) G{a} UH) = O(H) forall a € E.

(P7) G(H) = G(Conv(H)), where Conv(H) is the smallest convex that contains H.

The following lemmas are need in our argument.

Lemma 2.2. ( [44]) Let D € §,(E) and € > 0. Then, there exists a sequence {z,},eny C D, so that
GD) <26({z,};n e N) +e.

Lemma 2.3. ( [43]) Let & be a Banach space. If D is an equicontinuous and bounded subset
of C(la, b], &), then &(D()) € C([a,b],R")

t b
Ge(D) = max G(D(s)) css({ f z(s)ds:zei)})s f G(D(s))ds.

where D(s) = {z(s) : s € D} and G is the noncompactness measure on the space C([a, b], E).

Definition 2.2. ( [45]) Assume that k is an arbitrary measure of noncompactness on & and D is a
nonempty subset of & Assume that Q : D — D is an operator. The operator Q is said to be Meir-
Keeler condensing operator if

Ye>0,IN(e) >0,VD e S,(D): e <k(D)<e+ N = «k(QD) < e.
Theorem 2.1. ( [45]) Assume that k is an arbitrary measure of noncompactness on & and D is a

nonempty subset of & Assume that Q : D — D is an operator, and Q is a Meir-Keeler condensing
operator and continuous, then the set {z € D : Q(z) = z} is nonempty and compact.

Definition 2.3. ( [46]) For Re(z) > 0 and k > 0, the k-gamma function Uy (-) is defined by
00 4
[(z) = f sle ™ ds,
0

which satisfies the following properties: I'i(z + k) = z11(2), ['v(k) = 1, and T';(z) = ki‘ll“k(i).
Definition 2.4. ( [46]) For Re(a), Re(b), k > 0. Then, the k-beta function B;(a, b) is defined by

1.,
Bu(a,b) = %f sEI(1 = 5)t 1 ds,
0

which has the following relations: Bi(a,b) = %B(%, %), and By(a,b) = %
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Definition 2.5. ( [47]) Assume that h € L'[a,b] and k > 0. Then, the (k,)-RL-FIO of order a > 0
(a € R) of h is provided by

Wh) = =~ ( ) f W (OPE (1, Dh(s)ds,  PE(E,8) = ((r) — w(s)E"

Definition 2.6. ( [47]) Assume that a,k > 0, ¥ € C"[a,b](n e N), ¥'(t) # 0, t € [a,b] and h € C"[a, b].
Then, the (k,)-RL-FDO of order a > 0 (@ € R) of h is provided by

k d\" a
DYt —( ) It :[_]

kK~ a+ ( ) lp,(t) dt k= a+ ( ) n k
Throughout this work, assume J C (0, o) is a compact interval and C(J, &) is a Banach space
of continuous functions u : J — & equipped with the usual supremum norm |lullc = sup,. {||lu(D)l[}.
By L1, E), we denote the space of Bochner integrable functions u : J — & with the norm ||u|| ;1 =

Foo . .
fa |lu(s)|| ds. Consider the following Banach space

¢ ={ue 0.0 st ¥t < 40 and fim TGO,

equipped with the norm

B W2k (t, a) llu)l|
i} = sup - :
7 1+WY«(t,a)

For u € CE, we define uf by
P21 (¢, a)u(r)
uf(,) ) 1+¥ita)
im Y2 % (s, )u(r), if r=a>0.
—a

if te€(a, ), a>0,

It is clear that uj € CE.
The following are some significant basic properties that will be used throughout this paper.

Lemma 2.4. ( [47]) Assume that «, k > 0 and % > —1. Then, we have
(i) Jo(Pita) = —Fk%:flj‘fk ),

T kY &
(ii) DU (Vi a) = %

(i) I”( I F) @) = TP fay = I8 (12 ) .
Lemma 2.5. ( [47]) Assume that a, k > 0 and n = [%-‘ where n € N. If h € C"*(la,b],R) and
L e C'([a, b, R), then

S Wit a)

L2 (REh0) = h0 = ) e

1 d " —i nk —a;
(w'a)'d_t) GG wh(“))]

Next, we require the following auxiliary result.
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Lemma 2.6. Letve (m—1,m),ac(n—1,n),n meN,n<m,andk > 0. If h € C"([a, b],R), then

DL h()| = k7 L ). 2.1)

a

Proof. By applying Definition 2.6 and (iii) of Lemma 2.4, we have

: : 1 d\" .
ay vy _ kn—a+viy
R g TG (W(I) : d—t) K28 ho)]. (2.2)
By using Definition 2.5, for n = 1, we obtain
1 d fn— a+viy k d kn (1/+V_1
k2. hit) = — - — t, h(s)d
(l//’(t) dt) O =00 @ (ka(kn —a+) (& W (h(s)ds

1 !
/\ll (H—v —k -1

kytkn —a +v —k) J, (& W ()h(s)ds
= 1 ];Z_Mv_k;wh(f)-
In the same way, for n = 2, we have
1 d ’ 5 k2 d 1 ! kn—a+v—k
. k2 _Z-klz—(l+v,¢ht - . — f\},_l , , hs\d
(l//'(t) dt) a O = o0 @ ( P E—" EE s (9)h(s)ds
k ! kn r+v —2k 1
= N h(s)d
o —asv=20 . (. )W ()h(s)ds
= kU,
Repeating the above method, we obtain
1 d\' kn —a+vi k" d 1 ' w_l
(e!r’(t) dt) ¢ O = 0o @ (ka(kn “atv—(n-Dk) J, (t, W ()h(s)ds
kn—l t .
e — \Pf—l ’ h
kl“k(v _ a,) f k (t7 S)l// (S) (S)ds
= KT h().
The proof is done.

Lemma 2.7. Let Q # 0, k,0; >0, A, B, 4, uyj e Rand &, nj € (a,0),i=1,2,...,m, j=1,2,...,n
Then the problem

Da;wu(t) =h(t), ac(l,2], te(a,c), a>0,
a; . a—k; - YK 2.3
Ay = A+ Z Au@), im0 =B+ Y I .

J=1

has a unique solution provided by

. Yil(r,a) S fi , -
M(l) = W[w4(ﬂ+;m ; l//(S)\P (é:i,S)h(S)dS)
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| 8 n Mj 71 , T%—] (s ) s

ey *Zm VOV T (s = | (s
R (0} .

Bl 3)(ﬂ+zkr< ) f v (5) ! (f,-,s)h(s)ds)

+w2(8+;—kl“k(a:— - f W (¥ T (g, O(s)ds f w’(s)h(s)ds)]

t
()P, $)h(s)d 2.4
+krk(a)fal//(S) £, )h(s)dss, (2.4)
where
O AWE2(E, a) O A& a)
w) = —_, , 2.5
'L rk(a—lo Zl rk(m )
" T () W T2, a)
= = , 2.6
@s Z:; Ta+o;) = LiTa+o;-k) 2.6)
Q= (1 —a)])(l —a)3)—w2cu4. (27)
Proof. Using Lemma 2.5, the problem (2.3) can be rewritten as
aVi-l(t,a) it a) 1 f’ -
u(t) = + + ()P (¢, a)h(s)ds, 2.8
=" " Fan @ ) YO e 2.8)

where ¢y, ¢c; € R. Taking the (k,)-RL-FIO of order 2k — @ and the (k, ¥)-RL-FDO of order @ — k
into (2.8), respectively, we have

2k aw c1'¥Y(t,a) f
u(t) I (a) + ¢ kF ( % W' (s)P(t, a)h(s)ds, 2.9)
B = e gt f W (h(s)ds. (2.10)

From the nonlocal conditions of (2.3), it follows that

Cz(l —

= Z f "($)PEN(EL a)h(s)ds, (2.11)

=1

Ms

/1‘1’“2(&,6!)) Ci P&, a)
Tu(a — k) ! [i(@)

Il
—_

i=

-, "2,
Cl(l Mj (77] a )_szlu] (77] a)

‘= (@ + o)) INa+o;-k)

=8B+ Z —ka(a r o) f s (S)‘I‘ e (nj,a)h(s)ds - f U (s)h(s)ds. (2.12)
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Solving the systems (2.11) and (2.12), we obtain

cp = [w4(ﬂ+zkr( )f a,[/(s)‘I’_l(f,-,a)h(s)ds)
+(1—w0(8+2m f W (¥ Ty, @h(s)ds - f ¢(s)h(s)ds)]

¢ = 5[(1—w3)(ﬂ+zkr—£® f w’<s>\P‘k’—1<f,-,a>h(s>ds)

+w2(8+ f W' (s)‘I’ = (nj,a)h(s)ds—f W (s)h(s)ds)]

Z ka( +0))
Substituting the constants ¢; and ¢, into (2.8), we achieve (2.4). The converse follows by direct
calculation. The proof is done.

3. Existence result

This section establishes the main theorem for the existence result utilizing the concept of the Meir-
Keeler contraction fixed point theorem with condensing operators via a measure of . Let Bgx = {u €
C; 2 lulle < R}, where R is set by (3.3). From Lemma 2.7, we set an operator & : Bg — Bg by

(Fu)(t)
B Yi-l(¢,q) moo fv& / .
i W[w“(m;kr (@ J, POY e S)f(s,u(s))ds)

n 1j ato; e
+(1 - wl)(B + W)Y (s 9)f (s, uls))ds — f W' () f (s, M(S))ds)]

Z o
- ka(a + O'J-)
\Pk Z(t a) \f' -

Qrk( _ k) (1 - w})(ﬂ + Z kl"k( ) w (S)\IJ (é:i’ S)f(s, I/[(S))ds)

+w2(8+;m f W (SYE T (0 5) (s, u(s))ds — f t//(s)f(s,u(s))ds)]

f W ($)PEN(t, 5) f (s, u(s))ds. 3.1)

+
k(@)
It should be noted that ¥ has a fixed-point if the problem (1.1) has a solution.
Theorem 3.1. Let f € C(J X &,E). Suppose that the following assumptions

(H,) There exists a constant L > 0 so that
£t u) = fE I < LYE@ a)llu - v,

foreachu,ve & te(a,T]C(a,00), T >a>0,with the following conditions

= f"" W' (8)ds < +oo, Q = f"" W ()1 +WPi(s,a)lds < ]M‘
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(H,) There is a function g € C([a, o0),R"), for each nonempty, bounded set A C CE ((a, ), E) so that
G(f, AD) < gOP* L (t, a)B(A®1)), 1 € (a,00), (3.2)

with the following condition

max {?Qf Zg}<ka(a) where G = f WO+ s lg(s)ds.

(Hj3) There is a strictly real constant R > 0 so that

Al + 6|8+ F(EE + .
R > GIA| + 4|8B) G 71)’ Vo= 2lty 4] + 5HQ <l (3.3)
1-Y k
where
¢ lws| + |a — k|1 + w; 1+ ] + |a = kllw,| M+ o] +a—kllw] + 1
1 D) 2 = ) - )
QT () QT () ’ QI (@)
MPEEa) S LY (7,0)
¥, Z {1| | (f ) " Z 214 J ’
I'i(a + k) =) I'i(a + o+ k)
2a+u'j
& Gl + PE (&, a)  ~ LlulTa + DY (), a)
Y2 Z + Z .
I2a+k) I'iQa +o;+k)

=1
Then the (k,y)-RL-NBVP problem (1.1) has at least one solution.

Proof. We transform the (k, )-RL-NBVP problem (1.1) into a fixed-point problem, that is u = Fu,
where § is given by (3.1). It is easily to see that the fixed-points of ¥ are the solution to the (k, y)-RL-

NBVP problem (1.1). Let sup,cp, ) I/ (2, 0)l| := F* < oo and define u € CE . According to assumption
(H;). we get

1wl < £ O+ f L w) = £ 0l < F* + L E L allu@l < 7~ + L1+ P a)lull. (3.4)

The process of the procedure is finished in four steps.

Step 1. We show that §Bg C Bg.

By applying (H;) with (3.4), for each u € B and ¢ € (a, o), we obtain
2R (1, @) (Fu) (1)

‘ 1 +¥E(t, a)

lwal + |l — kIl + ws] LY -
: Q@) ('?‘”Z; T f W ()P (& s)llf(s,u(s))llds)

1+ wi| + | — kl|lw,|
|QI ()

Il AP
(|B| Z‘kfk( j+<r,) Y (¥ ](nj,S)IIf(s,u(S))IIdS)

11+ wi| + la = kllws| + 1
|QIkT ()

f W ()Pt 9)IIf (s, uls))llds

AIMS Mathematics Volume 8, Issue 9, 20018-20047.
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IA

OIAl + LIB| +

GPF QL s A S T 0
3 + X ||M||¢ +7'~(§IZ (@ + k) +é — INa+oj+k)

i=1

PR (&, a) || (77],
({Z I(a + k) gz‘ll“k(a+o' +k))” ”‘”

& [Tk + YT (&, a) i Ui (@ + k)‘P ('7], a)\ e
+L(g‘ 2. L+l 2 Z [2a+o,+ k) )””“w

j=1

= LAl + &HIBl + k

. QL) ¢
+F i+ (13[71 +y2] + & p )Ilullj <R

Then, we obtain ||%u||£ < R. Hence, & is bounded on Bg.
Step 2. We show that & is continuous.
Now, we rewrite § as

(&u)(®)
_ Y 'ta f @y
= Ql'v(a) [ ( Z kr‘k( ) U ()PE (&L ) f(s, M(S))ds)
+(1 —wl)(B+ Z m f W (T (), 9)f(s, u(s))ds - f W (5)f (s, u(s))ds)]
Wi2(t, a) A f,- , .
+m (1 — W3)(ﬂ + ; m ; !,0 (S)\P ('fi, S)f(S, M(S))dS)

n . 7j ato 0
+w2(B+ JZ:; #jﬂf}‘)ﬁ ()Y (s ) (s, M(S))dS—f W' (s)f (s, M(S))ds)]

f w'(s)[‘{f‘i-l(r, 5) — %‘Pz‘l(u a) — %‘Pf-la, a)] F(s, u(s))ds.

T iT@)

Assume that {u,}> | is a sequence so that u, — u € Cj. Assume that 7 > a > 0 and € > 0, by noticing
that Ehe function u, forn € N gnd u are bounded, which verifies that there is a constant M > 0 so that
||u,,||£ < M, forn e N, and ||u||§ < M. From (3.4), there is 7 > a > 0 with " > T, so that

< ek ek
f W (s)ds < L f W ()1 + Wit a))ds < YA

From (H,), there is N € N so that, for all » > N and ¢ € (a, 7*], we obtain

£ (s, u(s)) = F(s, un())I| < %k max{ ['i(@) @ +o)) 1 }

mEANEE ) | T (py.0) YT Q)
Hence, for each r € (a, ") and n > N, it follows that

‘ P2 (1, @) (Fu) (1) — (Fu) ()

1 +Yi(t,a)
AIMS Mathematics Volume 8, Issue 9, 20018-20047.
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< lw4l+||g|;k’(<'0';+w3'(zkr'*(' ) f izﬁ’(S)‘P‘f?“(&,S)Ilf(s,un(S))—f(s,u(S))IIdS)
Lol o "”‘“2'(; e = | o T i e - o M(S))Ilds)
e e [ ) - fsasplds
L+ wl'lgl'lj’r;( g"‘”' +1 f W5 (s)) — Fs, uls)lds

_ {1( Zkr“(' ) f "l//(s)w-l@.,s>||f(s,un(s)>—f(s,u(s»uds)

7 i
52( #ﬁrﬂf WO T s, un(s)) — £Gs, u(S))IIdS)

+;f YOS s, uals)) = f(s, u(S))IIdS+—f W ONfCs, un() = s, uls)llds

+%f W (N f(s, un() = fs,uls)llds

IA

g1( krlL(l) f‘ l//(s)\{l{i—l(gi,s)||f(s,un(S))—f(S,M(S))HdS)

42( Z krk(lf; . Y ¥ g M55 - £ u(s))nds)

—f YIS, uals)) = f(s, M(S))IIdS+—f W (Nf(s, un() = s, uls)llds

{3‘P(L a)ek ng* 2£ .
+5k§3‘P(L a) f i(s)ds + — f W (s)(1 + P (s,a))ds
€ €

< g + 5 + = 3 + 5 + 5 = €.

Then, we can conclude that ||&u,, — ‘&'ullf — 0, as n — oo, namely, & is continuous.
Step 3. We show the following results:

(Py) &Bg = {(Ju)g : u € Bg} is equicontinuous on any compact [a, T'] of (a,), T > a > 0.
(P,) For given € > 0, there exists a positive constant N; such that

P2 (1, a)(Fu)(t) PP, a)(Fu)(n)
1 +‘I’%(t2,a) 1 +lPk(t1 (l)

for any #1, t, > Nj and u € Bg.

Let us show the equicontinuity of §Bg on any compact [a, T]. Indeed, let u € Bg, t;,1, € [a,T],
where t; > t,. Then
Y25 (1, a)(Fu)(t) B W2k (1, a)(Fu)(h)
1 +Yi(ty,a) 1 +WYi(t,a)
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<

IA

IA

[Iml(lﬂl + Z kF f W ()P (& I G, u(S))IIdS)

+1+ w1|(|8| + Z # f WY Ty (s, uCs)ds
J

T(IZ, Cl) \P(ll ) a)
1 +W¥i(th,a) 1+Wi(t,a)

+(|1 + wsl(lﬂl + Z kl“k f W (OWE &L NG, u(S))IIa’S)

+|wz|(|8| + Z % "W 9L u( s
j a

+ f l//(s)llf(s,u(s))”ds) QI ()

1 1
1+ ¥i(t,a) 1+%i(,a)

" f v (IfGs, M(S))Ilds)]

QI (e = k)

—f lV(S)‘P(’f_l(tz,S)f(S,u(S))a'S—f W (W (11, ) f (s, u(s))ds

Iw4|(|ﬂ| + Z kF f W (OWEE NG, u(S))IIdS)

+1+ w1|(|B| - Z ﬁ f W ¥ T (s, uCs)ids
J

1
QI (@)

¥(12,a) ¥(11,a)
1 +¥i(th,a) 1+Wi(t,a)

+([1+ wsl(lﬂl + Z kl“k f W (OWE &, NG, M(S))IIdS)

+|a)2|(|8| + Z; #’10) ' (s )‘P;_l(m SIS (s, uCs))llds
=

+f Y (IS (s, M(S))Ilds)

1 1
1+ ¥i(t,a) 1+¥i(,a)

+ f WV SIfGs, u(s»nds)]

QI (e = k)

+k1"k(a) L‘l ‘///(S)[‘P%—l(tz, S) - T%_l(tl, S)]”f(s’ M(S))||ds

5]

i ), YO sl uids

Ol [FrYEELa) Pig,a) Tla+PEEa)) o
["”4'("7” ’ Z‘ krk(a)[ T@+h) £(Fk(a T LQath )”””4)

- |l
+1 +w |(|B| +
‘ ; kT + o))

FWT (1}, a) s Y (), a)
Fk(a+0'j+k) Fk(a+0'j+k)
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Ti(a + k¥~ 7 (nj,a))”u”(kr )+go*9r* Q*L“ " ] 1 ¥(h,a)  Yn,a)
TQ2a + o + k) v k Y ]1QI k() 1+‘Pk(tz,a) L +¥i(t,a)

Ol [FrYEE a) Pi(¢,a) Ta+ P E ) o
M “’3l(|ﬂ| " Z‘ ka(a)[ Tath L(Fk(a 0 LQatk )”””w])

- |
+|w2|(|8| " Z ki@ + o))

+Fk(a + k)lP (T]J,Cl) ”M”% N P*g_‘* Q*L“ “ 1
Qe + o + k) y k Y11QIT (e = k)
T+ LR) @t (1. a) = W (1. 1)) — W _ IR wEa) -
+m(‘1’ (tr,a) = Wi (t, 1)) — V(ty,a)) + T2+ k)(‘{l (tr,a) =Y (11, a))
+7:*‘I’%(f2,f1) N LR(‘W(Q,Q) N (e + k)‘lfky(lz,fl)).
INi(a + k) INi(a + k) I'Qa + k)

FWT (1, a) s Y (57, a)
Fk(a+0'j+k) Fk(a+0'j+k)

1 1
1+‘I’k(t2,a) 1 +¥i(t;,a)

Then w2t (@, a)(szR)(t)
149 % (1,0)

As t, — t; the right-hand side of the above inequality tends to zero. is
equicontinuous on any compact [a, T] of (a, o).
Next, let us show the equiconvergence of ¥Bg. From (H,), (3.4) and the boundedness of By, there

exists a positive real constant A such that

f“’ U (If(s,uls)llds < A, foreach u e Bg. (3.5)

Let € > 0, we obtain
| Y2l (6, ) (Fu)(t) PP, a)(Fu)(n)
1 +Wi(ty, a) 1 +Wi(t),a)
Ol [T @) Vi a)  Ta+ k¥ Ea) o
= ["”4'('“7” ’ Z‘ krk(a)[ Ttk £(Fk(a T T(2a+th )”””4)

FWT (1}, a) s Y (), a)
Fk(a+0'j+k) Fk(a+0'j+k)

ol
+1+ w1|(|59| + Z T
j J

+Fk(a+k)‘P (m, ))”M”g])+50*7—‘* Q*L” N ] 1 Y(t,,a) ¥(ty,a)
[ Q2a + o + k) 4 k Y1) [1+ Wi, a) 1+ Wi, a)

ol [FrYEELa) PiE,a)  Tile+DPEE a), o
L “’3|(|ﬂ| " Z‘ ka(a)[ Ta+h L(Fk(a 0 Qath )””W])

- |
+|w2|(|8| " Z ka(a + 0']')

+rk(a+k>\P (), DNt ) 27 cu:” i 1
T Q2a + 0 + k) v k Y IQIT (@ — k)

T 0 (P00
Ia+o;+k) Ia+oj+k)

1 1
1+ ¥i(t.a) 1+¥i(.a)
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f W (WE (1, ) (s, M(S))ds—f W (WE (11, )f (s, u(s))ds|| -

which yields that

()W (12, 5) f (s, M(S))ds—f W (WE (11, 9)f (s, u(s)ds]| < e

From (3.5), it follows that there exits a positive number N, such that

) U (s, u(s))llds < g, forany u € Bg. (3.6)
No

On the other hand, since lim W%~' (¢, Ny) = 0, there exists N, > N such that, for any #,,#, > N; and
—o0
s € [0, Ny], we get that

(P57 (t1, 5) — P57 (1, 5)| < 3A (3.7)

By applying (3.6) and (3.7), for t;,, > N, one has

()P (1, 8) (s, u(s))ds — f W (P11, 8)f (s, u(s))ds

N1
f W (s) [P (1, 8) = P (0, 9)| 11£ s, us))llds

f W (P (0, 9N f (s, uls))llds + f W (P (11, I (s, uls))llds
o f W () f (s, u(s))llds +2 fN W (S f(s,uls))llds < e.

Hence, By is equiconvergent.
Step 4. We show that § verifies the assumptions of Theorem 2.1.
Firstly, we will show that § is given from Bg to Bg. So, for each u € Bg, by using (H,), (H3), (3.4)
and by according to a few computation, we obtain
W2 (1, a)(Fu)(1)

' 1 +¥i(t,a)
< |wa| + |a — k||1 + w3|( Z = ( ) f " (S)\I"i_l(‘fi, I, u(s))lldS)

QL)

1+ wi| + la — kllw,|

Q@) ('B' Zkrk( + j)f YOy DG ”(s))”ds)
11+ wil + | — Kllws| + 1
)

&P
k

f W ()Pt 9)IIf (s, uls))llds

QL) -
o )uun;sﬂ

IA

OIAl+ &IB] +

+F v+ (l:[% + 2] +
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We set D = conv(FBg), Clearly, D is a closed, bounded and convex subset of Bg. Since, §D C FBg C
D, then § keeps given from D to D. We denote ¢z 4 by the Kuratowski measure of noncompactness

onC j we will show the following equality

Y2 (1, a)(FV)0)
1 +WYi(t,a)

9z (FV) = sup {0( ),t € (a, oo)}, forall Vc D, (3.8)

Let us first present that for all € > 0, there exists a positive real number 7, so that, for each #;,#, > T,
and u € V, we have

Y2l (1, )(Fu)(n) P, a)(Fu)n)

Y2k (1, a)(Fu)(t) W2k (1, a)(Fu)(t)
1 +Wi(t2,q) 1+ Wi(t,a)

(3.9)

Then, we obtain

1 + ¥i(1p, a) 1 +Wi(t),a)
Ol [FrYEELa) Pi(E,a)  Tla+PEE a)
: [""“('ﬂl T ka(a)[ Ta+h) L(Fk(a Th T T2a+h )”””wl)

C I
1+ w1|(|B| + Z Y
j J

+Fk(a + k)lP (77/7 a))”u”f]) N PrF Q*£“ ” :| 1 ‘I’(l‘z, a) _ \P(tl, (1)
[2a + 0+ k) v k YIQI0@) [1+¥i(1,a) 1+ Wi, a)

i +w3|(|ﬂ| N Z - |4l [T*Tk(fi,a) +£(‘P’<(§i,a) N Li(a + b)Y (fi,a))”u”;,;])
i=1

Fk(a+a'j+k) Fk(a/+0'j+k)

I'i(@)| T'i(a +k) I'i(a + k) I'Qa + k)

a |,
+|w2|(|8| i Z K@ + o)

Ii(a + k)‘P (77], a))”u”ka
[Qa+ 0 +k) v
Y(t, a) ¥, a)

1+‘P%(t2,a) 1 +Wi(t,a)

T*\p%(qj,a)JrL Y (5, a)
Fk(a+0'j+k) Fk(a+0'j+k)

1 1
1+ ¥i(t,a) 1+%i(1,a)

k QI (e = k)

P au: 1
* el

ka(a)f W (N f (s, u(s))llds.

For this, we will separated into two cases.

Case L. If lim ¥(¢, a) = +o00 we obtain lim 9 — gand lim —— =0 then,
t—o00 t—o00 1+‘1" ( a) t—oo 1+Vk (t,a)
P2 (1, a)(Fu)(t) PR, a)(Fu)(n)

1 +Yi(tr,a) 1 +W¥i(t,a)
_ P2 (1, a)(Fu)(t) PP (1, a)(Fu)(t) ‘Pz_%(fz, a)(Fu)(t)  PE, a)(Fu)n)

1 + ¥ (1, a) 1 + W (1, a) 1 + W (1y, a) 1 + ¥i(1y,a)
¥ i, 0) ~ Y i (,a) YR, a)
ol iy (Bu(t) - Fu)) + ( TV iV (M)) (Fu)1)))| -
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This implies that

P2 (1, a)(Fu)(t) PP, a)(Fu)(t)
1+ Win,a) 1+ Wi, a)

—0 as 1, — oo, (3.10)

Case IL If lim Y(z,a) = € < +00 by observing the inequality

t—00

”‘I’(tz, a)Fu)(t) W, a)(Fu)(t)
1 + ¥Yi(ty,a) 1 +WYi(t;,a)

<H‘P(tz,a)(?su)(tz)_ ¢
N 1+ ¥i(t,a) 1+ L%

N Y, a)@Fw@) L
1 +‘P%(t1,a) 1 +Q%

It is easily to reach the estimate (3.10). In the same way, we verify that for all € > 0, there exists a
positive real number 0 < Ty << T, so that, for each #,,1, < T, and u € V, we have

Next, we will show that the equality (3.8), we have

P2 (1, @)(Fu) (1) PR (0, @)(Fu)(n)
1+ Wi (1, a) 1+ Y1, a)

(3.11)

Dz gp(FV) < sup &

te(a,o0)

(‘I’z“k’ (t, a)(zw)(t))
1 +%¥i(t,a) |

Let V|« be the restriction of FV on K = [Ty, T]. Assume that € is a strictly positive real number,
by applying Lemma 2.3 and the third step, it follows that

(‘112‘75 (@, a)(%"V)(t))
1+ Y, a)

B2 y)(§Vlx) = sup d
teK

(‘1’2_(Z (1, a)(‘&“V)(t))
p 9
te(a,o)

< su a
1+WY«(t,a)
which implies that there is a finite partition §V; of FV such that FV = [ J; FV; and

Y2 (1, a)(FV0)
1 +Yi(t,a)

diam(FVilx) < sup 19(
te(a,o)

)+E, i=0,1,...,k (3.12)

Consequently, using inequalities (3.9) and (3.12), we get, for all Fu;, Fu, of FV;and t > T,

P a)@u) @) P a)(Fun)(0) YL @) (T, @)(Fu)(Te)

PR 1+ 9 () 1+ ¥i(t,a) 1 +¥i(Tw,a)
+‘ P (T, ) (Tw) 27 H (T, )(F1u1)(To)
|+ ¥H(Tw, a) 1+ ¥i(Tw, )
+ | @G0 T, (G )(Tw)
1 +W¥i(t,a) 1+ ¥i(Tw,a)

< 3e+ sup ¥

te(a,o0)

(‘I’Z“i (t, a)(iW)(t))
1 +W¥i(t,a) |

So,
YR @) (Fua)(@) WP a)(Fun)(2)

2 m (3.13)
1+W¥5(t,a) 1 +W¥«(t,a)

<3e+ sup V¥
te(a, o)

AIMS Mathematics Volume 8, Issue 9, 20018-20047.

(‘Pz‘?’ (1, a)(‘&(V)(t))
1+¥i(t,a) |



20034

By the same procedure and using inequalities (3.11) and (3.12), it is not difficult to show that the
inequality (3.13) is also true for all Fu;, Fu, of FV;-t < Ty. Then, from (3.12) and (3.13), we obtain

(‘1’2‘0 a)(?s‘V)(t)) 43
1 + ¥i(z,a) '

diam(FV;) < sup &

te(a,o0)
Thus,
ﬂ(%,w)(‘&(V) < sup v

te(a,o0)

(‘Iﬂ k@, a)(‘&(V)(t))
1+¥i(r,a)

Since € is arbitrary, which leads us to the result. Conversely, we show that

( WL (1, a)(FV)(0)
1+ Wit a)

sup ¢
te(a, o)

) < 19(%11,)(8(‘/)

According to the definition of Kuratowski measure of noncompactness, we obtain, for all € > 0 we
will find a finite partition FV = (J; FV; so that diam(FV;) < ﬁ(%,w)(‘&"V) + €, then for any u, u, € V
and ¢ € (a, o), we have

l PRt a)(Fua)(®) VPR a)(Fu)(7)

1+ ¥ () 1+ ¥, a)
Since V(1) = U; 3Vi(t), we get ﬂ(w) < B@p(FV) + € and € is arbitrary, then

< ||Fup — ‘&ulllﬁ < ﬂ(%,lp)(gf(v) + €.

1+¥ % (t,a)

(AT < 9y ) FV). So.

1+¥% (t,a)

sup
te(a,o0)

(‘Pz‘z (1, a)(FV)(@)

" < the V).
1+ ¥, a) ) ¢ (&V)

Next, it remains to show that §§ is a Meir-Keeler condensing operator via a measure of noncompactness
U2 ), this is equivalent to demonstrating the following implication

Ye>0,3p(e) : € <Dy (V) <e+p = T2y (FV) <e foranyV c D. (3.14)

Assume that € is a strictly positive real, V € D and t € (a, ), for all p, g € R* verifying0 < p <t < g,
we define the auxiliary operator &, , by

(1, a) .
(Bpg)0) = Qm )[ ( Zkrk( ) f W (s) ¥ 1(gf,-,s)f(s,u(s»ds)

+(1 —w1)(3+ t// (¥ T ", 91 G, M(S))ds—f Y ()f (s, u(S))dS)]

Z ka(a +0;) Ja

‘Pk 2(t a) ff |
Qrk( s (1- 0)3)(?( + Z T ( ) W' (S)‘P (&, $)f(s, M(S))ds)

. ) a+o q
+‘“2(B+;#’w,-> f W (SYET (ny 5)f (s, u(s))ds — f w’(s)f(s,u(s))ds)]
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_ - _ e
f w<s>[\1““(t g -zt 0a) (- ReAT@a) g g

ka( ) Q Q

By using the properties of ¥, we get

2-¢ 2-¢
o[BI | (PIDEVO) oy g g

1 +WYi(t,a) 1 +WYi(t,a)

An argument is similar to show that of the third step, we show that the &, ,V is equicontinuous and
bounded on [p,g]. From Lemmas 2.1, 2.3 and 2.7, (H,) and the previous steps, we get, there is a
sequence {u,},", C V so that

9 (\1’2—‘5 (1, a)(‘&p,q(v)(r))
1+ P, a)

{f W' () f (s, un(s))ds,n € N} @) {f W' ()f (s, up(s))ds,n € N}

f W' () {f (s, un(s)),n € N}ds

€
27
€
27 ka( )
€
2

s G 9 (V)
B kL'i(a)
From (3.15), we know that
(g (FV) < g + g—*zl(ﬂi’?;(;v).
If )
B g (FV) < g + % <e
which implies that
D (V) < krzk(gc?e’

so that implication (3.14) is fulfilled, we take

_ k(@) —2G")e
= G _

So, & is a Meir-Keeler condensing operator via ¢z 4. Finally, all the conditions of Theorem 2.1 are
satisfied, which implies that the solution sets of problem (1.1) are nonempty and compact.

4. Numerical illustrations

This section presents two numerical examples to show the application of our theoretical results.
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Example 4.1. Consider the following designed problem of the form:

D, de™¥ AL, O)u (D))
DT’w t = + . L Py t S Oa + s
) [6t+ 7 2u+5 ) (0, +e0)

I7u(0) =2 + u(g) +3u(2) + 4u(§), (4.1)

3
2

2 9
lim D7 u(eo) = 3+ 4(, I u(;)) +8a(, 1)) u(lﬂl)) )]

Here y(t) = —e /8, @ = 12/7, k =3/2,a =0, A =2, = 1,4, = 3,23 = 4, & = 15/2,
& =2,6=13/2,B=3, uy =4 uy =8m, u3 = 2/5, 1 =7/2,my = 11/m, 3 = 9/5, oy = 1/9,
o0, = 1/7, 03 = 1/8. From the previous data, we obtain w; ~ 10.34150, w, ~ 5.99069, w; ~ 18.10022,
w4 = 51.09593, and Q =~ —146.35805 # 0. Assume that £, consisting of all bounded sequences of real
numbers equipped with the norm ||u|;, := sup,aellu,l} and u = {u,} € €. Itis easy to see that (£, |-]])e.,
includes a Banach space. By the considered problem (4.1), we get f(¢, u(t)) = {f,(¢, u(t)); n € N}, where

4ot 4e P (1, 0)
—_—U.

=——7/fL1,1,...
f(t,u) 6t+7{”’ b+ 73

Since, for any u, v € ., we have
f(t,u) = f@&v)le, < suNp{Ifn(t, u(®) = fot, v} < W3 (2, 0)llue — V...

The assumption (H,) is satisfied with £ = 4/5. Since f(t,u) : J X l, — € with the following
inequality [|£(z, w)ll,., < 2™ + 273 (7, 0)llu(®)ll,... Then

1503 ()

P* ~ 0.12500 < oo, Q" ~ 0.13042 < 272.01233 ~ g

For each bounded set A C C’E, it follows that

A(D).

de™ ) 4eWI(1,0)
+ b

f(“\(t))_{ +7 2%+ 5
Then,

4¢P (1,0
Do (f1. ) < 200

s Dgu(AD).

It is easily to calculate that

NS [98]

1—*%(12)

7

2 9

f v'(9)[1 + lI’%(s, a)lg(s)ds =~ 0.63973 < 0.74342 =~

which the assumption (H,) is verified. Finally, we will show that the assumption (Hj) is true. Since

5*]( ) ~ 023199 < 1,

Y = L([)’1+)’2]+
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OIAl + LIBl + FH(EF + 1)
1-Y
Since the all conditions of Theorem 3.1 are true. Hence, the considered problem (4.1) has at least

one solution on [0, c0). Moreover, We will represent the relationship between the constant values
such as wy, Wy, w3, wy, Q, &1, &, &, Y1, Y2, Y, and R*, which are shown in Tables 1 and 2 for vary

R = ~ 1.52910.

values @ € [1.5,2.0] and k € [1.0, 1.4].

Table 1. The numerical values of a, k, w;, w,, w3, w4, and Q in Example 4.1.

a k wi wy w3 Wy Q
1.50000 1.00000 12.81061 3.18052 8.71232 44.52751 -50.53357
1.52500 1.02000 12.94636 3.18240 8.75187 45.08040 -50.85736
1.55000 1.04000 13.08167 3.18413 8.79009 45.62960 -51.17354
1.57500 1.06000 13.21655 3.18573 8.82705 46.17524 -51.48238
1.60000 1.08000 13.35099 3.18719 8.86280 46.71744 -51.78419
1.62500 1.10000 13.48502 3.18853 8.89738 47.25631 -52.07920
1.65000 1.12000 13.61864 3.18974 8.93084 47.79196 -52.36768
1.67500 1.14000 13.75185 3.19084 8.96323 48.32450 -52.64986
1.70000 1.16000 13.88466 3.19182 8.99459 48.85403 -52.92598
1.72500 1.18000 14.01708 3.19270 9.02495 49.38063 -53.19625
1.75000 1.20000 14.14912 3.19348 9.05437 49.90441 -53.46088
1.77500 1.22000 14.28078 3.19415 9.08286 50.42544 -53.72006
1.80000 1.24000 14.41207 3.19474 9.11047 50.94380 -53.97400
1.82500 1.26000 14.54300 3.19523 9.13723 51.45958 -54.22286
1.85000 1.28000 14.67356 3.19564 9.16317 51.97283 -54.46683
1.87500 1.30000 14.80378 3.19596 9.18831 52.48365 -54.70607
1.90000 1.32000 14.93364 3.19620 9.21270 52.99208 -54.94074
1.92500 1.34000 15.06317 3.19637 9.23634 53.49820 -55.17099
1.95000 1.36000 15.19236 3.19646 9.25928 54.00207 -55.39697
1.97500 1.38000 15.32121 3.19648 9.28153 54.50374 -55.61882
2.00000 1.40000 15.44974 3.19644 9.30312 55.00328 -55.83667
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Table 2. The numerical values of «, k, {1, &>, {3, Y1, V2, M, and R* in Example 4.1.

a

k

i

&

&

Y1

Y2

Y

R*

1.50000
1.52500
1.55000
1.57500
1.60000
1.62500
1.65000
1.67500
1.70000
1.72500
1.75000
1.77500
1.80000
1.82500
1.85000
1.87500
1.90000
1.92500
1.95000
1.97500
2.00000

1.00000
1.02000
1.04000
1.06000
1.08000
1.10000
1.12000
1.14000
1.16000
1.18000
1.20000
1.22000
1.24000
1.26000
1.28000
1.30000
1.32000
1.34000
1.36000
1.38000
1.40000

1.10270
1.09882
1.09530
1.09209
1.08919
1.08656
1.08419
1.08206
1.08016
1.07847
1.07698
1.07567
1.07454
1.07357
1.07275
1.07208
1.07154
1.07113
1.07084
1.07067
1.07060

0.34389
0.34177
0.33981
0.33799
0.33630
0.33473
0.33328
0.33193
0.33067
0.32951
0.32844
0.32744
0.32652
0.32568
0.32489
0.32417
0.32351
0.32290
0.32235
0.32185
0.32139

0.36622
0.36375
0.36145
0.35931
0.35731
0.35545
0.35371
0.35209
0.35058
0.34918
0.34787
0.34664
0.34551
0.34445
0.34346
0.34255
0.34170
0.34091
0.34018
0.33951
0.33889

0.51862
0.50922
0.50025
0.49167
0.48345
0.47558
0.46802
0.46077
0.45379
0.44708
0.44062
0.43440
0.42839
0.42259
0.41699
0.41158
0.40635
0.40128
0.39637
0.39161
0.38700

0.006494
0.006480
0.006466
0.006451
0.006436
0.006420
0.006403
0.006386
0.006368
0.006350
0.006332
0.006313
0.006295
0.006275
0.006256
0.006236
0.006217
0.006197
0.006177
0.006156
0.006136

0.45736
0.44886
0.44076
0.43301
0.42561
0.41851
0.41172
0.40520
0.39893
0.39291
0.38712
0.38154
0.37617
0.37098
0.36598
0.36114
0.35647
0.35195
0.34757
0.34333
0.33923

6.37350
6.24630
6.12916
6.02102
5.92093
5.82811
5.74183
5.66150
5.58656
5.51654
5.45101
5.38961
5.33198
5.27784
5.22691
5.17894
5.13372
5.09105
5.05075
5.01265
4.97660
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Figure 1 (la—1d) shows the graphical representations of w; for i =

1, 2, 3, 4, under

k € {1.00,1.05,...,1.40}. Figure 2 (2a-2c) shows the graphical representations of ¢; fori = 1, 2, 3,
under k € {1.00, 1.05, ..., 1.40}. Figure 3 (3a—3b) shows the graphical representations of y; fori = 1,
2, under k € {1.00, 1.05, ..., 1.40}. Figures 4 and 5 show the graphical representations of Y and R*.
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Figure 1. Graphical representation of w; for i = 1,2, 3,4 in Example 4.1.
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Figure 2. Graphical representation of ¢; for i = 1,2, 3 in Example 4.1.
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045 —

025 —|

Figure 4. Graphical representation of Y in Example 4.1.

1.05 195

Figure 5. Graphical representation of R* in Example 4.1.

Example 4.2. Consider the following linear designed problem of the form:
D) = W 0), 1€ (0, +00),
2 0+

10 u0) =2+ u(%) +3u(2) + 4u(§), (4.2)

3
2

o u(ee) =3+ 4 Z50u()) + sl 23 (L) + 228 D))

%
By applying Lemma 2.5 under the function f(t,u(t)) = W3(¢,0), the solution of considered

AIMS Mathematics Volume 8, Issue 9, 20018-20047.
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problem (4.2) is can be rewritten as

e " ATH(E + DPETE(E
() ¥y (t’o)[w4(ﬂ+z Lk ((5 + Dk) (&,O))

Q@) L T+ &+ Dh)

DG DY, 0 1
—_ 1 \P +
ap Til@+0;+ G+ Dk g+1ti€[ 1.0)

ﬂl—m%
=1

Pi2(1,0) " ATG + DOYE2(E,0)
OV [(1 B “’3)(?( 2 T(a + 2+ k) )

i=1
iyﬂu@+nmwﬁ”ﬂmﬁy_1
= l(a+o;+ (5 + k) +1
[W(§ + DOYE(,0)

Ti(a + (Z + k)

+wz(B + lim [wit'e, O)])]

4.3)

The solution u(¢) of the considered problem (4.2) via @ = 1.5,1.6,1.7,1.8,1.9,2.0 with various
functions ¥(¢) and the constants k > 0 (see; Table 3), is presented in Figures 6-9.

Table 3. The various functions (¢) and the constants k > 0 in Example 4.2.
k>0 0.70 0.35 1.10 0.65

27 k'+3 3+l _k
Y(t) kcosh (ﬁ) —2k — 5t log, (2«/::1) >e

Figure 6. The solution u(#) of Example 4.2 under (¢) = k cosh (%) with k = 0.70.
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a=20
T

Figure 7. The solution u(f) of Example 4.2 under y/(r) = -2k — 552 with k = 0.35.
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Figure 8. The solution u(¢) of Example 4.2 under y(¢) = log, (%) with & = 1.10.
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—a=15
—a=16

a=17
—a=18]]
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-0.3
0

Figure 9. The solution u(¢) of Example 4.2 under y(¢) = 5 — e with k = 0.65.
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5. Conclusions

In conclusion, an outstanding qualitative analysis is accomplished in this work. We have proved
the existence and uniqueness of solution sets as well as their topological structure for (k, y)-Riemann-
Liouville fractional differential boundary value problem with nonlocal conditions on an unbounded
domain. The Arrangement of the proof began with the provision of the measure of noncompactness
in the sense of Kuratowski and its necessary properties. Later, a fixed point theorem for the Meir-
Keeler condensing operators with a measure of noncompactness was applied to the proposed nonlinear
problem (1.1) until the crucial outcome was finally achieved. Furthermore, suitable examples were
illustrated to support the accuracy of the theoretical results. It was shown in Example 4.1 that the
existence of the solution satisfied the conditions of Theorem 3.1 with varing values @ and k. Numerical
values of all parameters were calculated and given as in Tables 1 and 2. While, Example 4.2 presented
the solution sets of the specific problem for different values k and various functions (¢) in the case of
polynomial, trigonometric, exponential, and logarithmic functions as seen in Table 3.

This research would be a great work to enrich the qualitative theory literature for the problem of
nonlinear fractional differential with nonlocal boundary conditions on an unbounded domain involving
a particular function. It probably extends future works to study the existence of solutions for the
nonlinear differential and integral equations in the context of the other fractional operators and/or
boundary conditions. In future work areas, we recommend working on nonlinear fractional integro-
differential equations involving a special function, stability, or the algorithms to solve the (k, y)-Hilfer
fractional differential equations in mathematical software. For some possible future works, researchers
can provide applications to sciences and engineering using our obtained results.
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