This study presents a new and attractive analytical approach to treat systems with fractional multi-pantograph equations. We introduce the solution as a rapidly-converging series using the Laplace residual power series technique. This method controls the range of convergence and can be easily programmed to find many terms of the series coefficients by computer software. To show the efficiency and strength of the proposed method, we compare the results obtained in this study with those of the Homotopy analysis method and the residual power series technique. Furthermore, two exciting applications of fractional non-homogeneous pantograph systems are discussed in detail and solved numerically. We also present graphical simulations and analyses of the obtained results. Finally, we conclude that the obtained approximate solutions are very close to the exact solutions with a slight difference.
Citation: Ahmad Qazza, Rania Saadeh, Osama Ala'yed, Ahmad El-Ajou. Effective transform-expansions algorithm for solving non-linear fractional multi-pantograph system[J]. AIMS Mathematics, 2023, 8(9): 19950-19970. doi: 10.3934/math.20231017
This study presents a new and attractive analytical approach to treat systems with fractional multi-pantograph equations. We introduce the solution as a rapidly-converging series using the Laplace residual power series technique. This method controls the range of convergence and can be easily programmed to find many terms of the series coefficients by computer software. To show the efficiency and strength of the proposed method, we compare the results obtained in this study with those of the Homotopy analysis method and the residual power series technique. Furthermore, two exciting applications of fractional non-homogeneous pantograph systems are discussed in detail and solved numerically. We also present graphical simulations and analyses of the obtained results. Finally, we conclude that the obtained approximate solutions are very close to the exact solutions with a slight difference.
[1] | M. A. Matlob, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368 |
[2] | Y. Yu, Fluid-structure interaction modeling in 3d cerebral arteries and aneurysms, Biomedical Technology Springer, Cham, 2018,123–146. https://doi.org/10.1007/978-3-319-59548-1_8 |
[3] | C. S. Drapaca, Poiseuille flow of a non-local non-Newtonian fluid with wall slip: A first step in modeling cerebral microaneurysms, Fractal Frac., 6 (2018), 1–9. https://doi.org/10.3390/fractalfract2010009 doi: 10.3390/fractalfract2010009 |
[4] | M. A. Yin, A. Yazdani, G. E. Karniadakis, One-dimensional modeling of fractional flow reserve in coronary artery disease: Uncertainty quantification and Bayesian optimization, Comput. Method. Appl. Mech. Eng., 15 (2019), 66–85. https://doi.org/10.1016/j.cma.2019.05.005 doi: 10.1016/j.cma.2019.05.005 |
[5] | A. Al‐khateeb, H. Zureigat, O. Ala'yed, S. Bawaneh, Ulam-Hyers stability and uniqueness for nonlinear sequential fractional differential equations involving integral boundary conditions, Fractal Fract., 5 (2021), 235. https://doi.org/10.3390/fractalfract5040235 doi: 10.3390/fractalfract5040235 |
[6] | X. Li, Y. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. Appl., 33 (2021), 8227–8235. https://doi.org/10.1007/s00521-020-04958-9 doi: 10.1007/s00521-020-04958-9 |
[7] | X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, et al., User OCEAN personality model construction method using a BP neural network, Electronics, 11 (2022), 3022. https://doi.org/10.3390/electronics11193022 doi: 10.3390/electronics11193022 |
[8] | H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007 |
[9] | H. Y. Jin, Z. A. Wang, L. Wu, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027 |
[10] | C. C. Hou, T. E. Simos, I. T. Famelis, Neural network solution of pantograph type differential equations, Math. Method. Appl. Sci., 43 (2020), 3369–3374. https://doi.org/10.1002/mma.6126 doi: 10.1002/mma.6126 |
[11] | J. Alzabut, A. Selvam, R. A. El-Nabulsi, V. Dhakshinamoorthy, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473 |
[12] | M. Arnold, B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution, Appl. Numer. Math., 34 (2000), 345–362. https://doi.org/10.1016/S0168-9274(99)00038-0 doi: 10.1016/S0168-9274(99)00038-0 |
[13] | W. G. Ajello, H. I. Freedman, J. Wu, A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math., 52 (1992), 855–869. https://doi.org/10.1137/0152048 doi: 10.1137/0152048 |
[14] | M. D. Buhmann, A. Iserle, Stability of the discretized pantograph differential equation, J. Math. Comput., 60 (1993), 575–589. https://doi.org/10.1090/S0025-5718-1993-1176707-2 doi: 10.1090/S0025-5718-1993-1176707-2 |
[15] | J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. Ser. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078 |
[16] | S. Widatalla, M. A. Koroma, Approximation algorithm for a system of pantograph equations, J. Appl. Math., 2012 (2012), 1–9. https://doi.org/10.1155/2012/714681 doi: 10.1155/2012/714681 |
[17] | D. Li, M. Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395. https://doi.org/10.1016/j.amc.2004.02.013 doi: 10.1016/j.amc.2004.02.013 |
[18] | M. Sezer, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024 |
[19] | M. Z. Liu, D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155 (2004), 853–871. https://doi.org/10.1016/j.amc.2003.07.017 doi: 10.1016/j.amc.2003.07.017 |
[20] | C. Yang, Modified Chebyshev collocation method for pantograph-type differential equations, Appl. Numer. Math., 134 (2018), 132–144. https://doi.org/10.1016/j.apnum.2018.08.002 doi: 10.1016/j.apnum.2018.08.002 |
[21] | Z. Avazzadeh, M. H. Heydari, M. R. Mahmoudi, An approximate approach for the generalized variable-order fractional pantograph equation, Alex. Eng. J., 59 (2020), 2347–2354. https://doi.org/10.1016/j.aej.2020.02.028 doi: 10.1016/j.aej.2020.02.028 |
[22] | M. S. Hashemi, E. Ashpazzadeh, M. Moharrami, M. Lakestani, Fractional order Alpert multiwavelets for discretizing delay fractional differential equation of pantograph type, Appl. Numer. Math., 170 (2021), 1–13. https://doi.org/10.1016/j.apnum.2021.07.015 doi: 10.1016/j.apnum.2021.07.015 |
[23] | S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014 |
[24] | Ş. Yüzbaşı, An efficient algorithm for solving multi-pantograph equation systems, Appl. Math. Comput., 64 (2012). 589–603. https://doi.org/10.1016/j.camwa.2011.12.062 doi: 10.1016/j.camwa.2011.12.062 |
[25] | R. Saadeh, A reliable algorithm for solving system of multi-pantograph equations, WSEAS Trans. Math., 21 (2022), 792–800. https://doi.org/10.37394/23206.2022.21.91 doi: 10.37394/23206.2022.21.91 |
[26] | O. Mohammed, H. Salim, Computational methods based Laplace decomposition for solving nonlinear system of fractional order differential equations, Alex. Eng. J., 57 (2018), 3549–3557. https://doi.org/10.1016/j.aej.2017.11.020 doi: 10.1016/j.aej.2017.11.020 |
[27] | M. Zurigat, Solving Fractional oscillators using Laplace homotopy analysis method, Ann. Univ. Craiova Math. Comput., 38 (2011), 1–11. |
[28] | J. Prakash, M. Kothandapani, V. Bharathi, Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method, Alex. Eng. J., 55 (2016), 645–651. https://doi.org/10.1016/j.aej.2015.12.006 doi: 10.1016/j.aej.2015.12.006 |
[29] | A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus., 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9 |
[30] | T. Eriqat, A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957 |
[31] | R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via LT and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004 |
[32] | E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Math., 8 (2023), 1713–1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088 |
[33] | T. Eriqat, M. Oqielat, Z. Al-Zhour, A. El-Ajou, A. Bataineh, Revisited Fisher's equation and logistic system model: A new fractional approach and some modifications, Int. J. Dyn. Control., 2022 (2022). https://doi.org/10.1007/s40435-022-01020-5 doi: 10.1007/s40435-022-01020-5 |
[34] | T. Humphries, Delay differential equations, In: 2016 NZMRI Summer School Continuation Methods in Dynamical Systems Raglan, New Zealand, 2016. |
[35] | R. Saadeh, A. Qazza, K. Amawi, A new approach using integral transform to solve cancer models, Fractal Fract., 6 (2022), 490. https://doi.org/10.3390/fractalfract6090490 doi: 10.3390/fractalfract6090490 |
[36] | B. K. Singh, S. Agrawal, Study of time fractional proportional delayed multi‐pantograph system and integro‐differential equations, Math. Method. Appl. Sci., 45 (2022), 8305–8328. https://doi.org/10.1002/mma.8335 doi: 10.1002/mma.8335 |
[37] | Z. Gong, C. Liu, K. L. Teo, X. Yi, Optimal control of nonlinear fractional systems with multiple pantograph‐delays, Appl. Math. Comput., 425 (2022), 127094. https://doi.org/10.1016/j.amc.2022.127094 doi: 10.1016/j.amc.2022.127094 |
[38] | M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007 |
[39] | S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momanid, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624 |
[40] | S. Ray, R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167 (2005), 561–571. https://doi.org/10.1016/j.amc.2004.07.020 doi: 10.1016/j.amc.2004.07.020 |
[41] | Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524–529. https://doi.org/10.1016/j.amc.2009.05.018 doi: 10.1016/j.amc.2009.05.018 |
[42] | Q. Wang, Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton. Fract., 35 (2008), 843–850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074 |
[43] | I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014 |
[44] | H. Rezazadeh, S. M. Mirhosseini-Alizamini, A. Neirameh, A. Souleymanou, A. Korkmaz, A. Bekir, Fractional Sine-Gordon equation approach to the coupled higgs system defined in time-fractional form, Iran. J. Sci. Technol. A, 43 (2019), 2965–2973. https://doi.org/10.1007/s40995-019-00780-8 doi: 10.1007/s40995-019-00780-8 |
[45] | A. Jafarian, M. Mokhtarpour, D. Baleanu, Artificial neural network approach for a class of fractional ordinary differential equation, Neural. Comput. Appl., 28 (2017), 765–773. https://doi.org/10.1007/s00521-015-2104-8 doi: 10.1007/s00521-015-2104-8 |
[46] | A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique, Fract. Calc. Appl. Anal., 23 (2020), 356–377. https://doi.org/10.1515/fca-2020-0017 doi: 10.1515/fca-2020-0017 |
[47] | A. El-Ajou, Taylor's expansion for fractional matrix functions: Theory and applications, J. Math. Comput. Sci., 21 (2020), 1–17. https://doi.org/10.22436/jmcs.021.01.01 doi: 10.22436/jmcs.021.01.01 |
[48] | A. Burqan, R. Saadeh, A. Qazza, S. Momani, ARA-residual power series method for solving partial fractional differential equations, Alex. Eng. J., 62 (2022), 47–62. https://doi.org/10.1016/j.aej.2022.07.022 doi: 10.1016/j.aej.2022.07.022 |
[49] | D. V. Widder, Laplace transform (PMS-6), Princeton University Press, 64 (2015). |
[50] | A. Qazza, R. Saadeh, On the analytical solution of fractional SIR epidemic model, Appl. Comput. Intell. Soft Comput., 2023 (2023). https://doi.org/10.1155/2023/6973734 doi: 10.1155/2023/6973734 |
[51] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[52] | E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 111. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111 |
[53] | A. Qazza, Solution of integral equations via Laplace ARA transform, Eur. J. Pure Appl. Math., 16 (2023), 919–933. https://doi.org/10.29020/nybg.ejpam.v16i2.4745 doi: 10.29020/nybg.ejpam.v16i2.4745 |
[54] | R. Saadeh, A generalized approach of triple integral transforms and applications, J. Math., 2023 (2023). https://doi.org/10.1155/2023/4512353 doi: 10.1155/2023/4512353 |
[55] | R. Luo, Z. Peng, J. Hu, On model identification based optimal control and it's applications to multi-agent learning and control, Mathematics, 11 (2023), 906. https://doi.org/10.3390/math11040906 doi: 10.3390/math11040906 |