
AIMS Mathematics, 8(9): 19950–19970. 

DOI: 10.3934/math.20231017 

Received: 23 March 2023 

Revised: 23 May 2023 

Accepted: 06 June 2023 

Published: 15 June 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Effective transform-expansions algorithm for solving non-linear 

fractional multi-pantograph system 

Ahmad Qazza1, Rania Saadeh1,*, Osama Ala’yed2 and Ahmad El-Ajou3 

1 Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan 
2 Department of Mathematics, Jadara University, Irbid 21110, Jordan 
3 Department of Mathematics, Faculty of Science, Al Balqa Applied University, Salt 19117, Jordan 

* Correspondence: Email: rsaadeh@zu.edu.jo. 

Abstract: This study presents a new and attractive analytical approach to treat systems with fractional 

multi-pantograph equations. We introduce the solution as a rapidly-converging series using the Laplace 

residual power series technique. This method controls the range of convergence and can be easily 

programmed to find many terms of the series coefficients by computer software. To show the efficiency 

and strength of the proposed method, we compare the results obtained in this study with those of the 

Homotopy analysis method and the residual power series technique. Furthermore, two exciting 

applications of fractional non-homogeneous pantograph systems are discussed in detail and solved 

numerically. We also present graphical simulations and analyses of the obtained results. Finally, we 

conclude that the obtained approximate solutions are very close to the exact solutions with a slight 

difference. 
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1. Introduction  

Recently, fractional differential or integral equations and their applications have attracted great 

interest due to their significant role in describing and justifying various phenomena, for example, chaos 

synchronization, mechanical systems, image processing, earthquake modeling, wave propagation 
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phenomena, control theory [1–5], artificial intelligence, machine learning, and deep learning in 

different branches of science and engineering [6,7]. In addition, systems of fractional differential 

equations (DEs) are a suitable tool for modeling nonlinear dynamical systems [8,9]. The fractional 

delay DEs are thought to be a potent tool for modeling a variety of natural phenomena, such as the 

model of HIV infection [10], fractional-order chaotic delayed systems [11], some automatic control 

systems with feedback [12], etc.  

Delay DEs have various applications in different fields, such as industrial, biological, chemical, 

electronic and transport systems [13–16]. One of the most common types of delay DEs is the 

pantograph equation, which was used by Ockendon and Tayler [15] to study the collection of electric 

current via an electric locomotive pantograph, hence the name. The pantograph equation is given by 

the following DE:  

𝜌′(𝜏) = 𝜑(𝜏, 𝜌(𝜏), 𝜌(𝛿𝜏)), 𝜏 ≥ 0,   𝜌(0) = 𝜔,  

where 0 < 𝛿 < 1, 𝑚 = 1, 2, ⋯ , 𝑘.  

The multi-pantograph differential equation [17–19], which is an extension of the pantograph equation 

and has the following form: 

𝜌′(𝜏) = 𝜑(𝜏, 𝜌(𝜏), 𝜌(𝛿1𝜏), 𝜌(𝛿2𝜏), ⋯ , 𝜌(𝛿𝑘𝜏)), 𝜏 ≥ 0, 𝜌(0) = 𝜔,  

where 0 < 𝛿𝑚 < 1, 𝑚 = 1, 2, ⋯ , 𝑘 , has many applications in electrodynamics, number theory, 

astrophysics, control of ships, probability theory, physics, engineering, economics, chemistry, 

nonlinear dynamical systems, cell growth, chemical kinetics, electronic systems, infectious diseases, 

medicine, control problems and quantum mechanics [10–16, 20–22]. The multi-pantograph differential 

equation involves a system with a temporal delay, and the behavior of the known variable at any given 

point in the previous states dictates how the unknown variable will behave. 

Widatalla and Koroma [16] and other researchers [23–25] proposed the following system of multi-

pantograph equations and gave an approximate solution to it by different methods: 

𝜌𝑟
′ (𝜏) = 𝜎𝑟𝜌𝑟(𝜏) + 𝜑𝑟 (𝜏, 𝜌𝑖(𝜏), 𝜌𝑗(𝛾𝑗𝜏)) , 𝜌𝑟(0) = 𝜔𝑟 ,   𝑟 = 1, 2, 3 ⋯ , 𝑚,  

where 𝑖  and 𝑗 ∈ {1, 2, 3 ⋯ , 𝑚} , 𝜔𝑟 , 𝜎𝑟 , 𝛾𝑗 ∈ ℝ,  such that 0 < 𝜎𝑟 < 1 , and 𝜑𝑟  are functions of 

𝜏, 𝜌𝑖(𝜏), and 𝜌𝑗(𝛾𝑗𝜏). This system is considered one of the most important kinds of delay DEs that can 

describe various kinds of applications in engineering, physics and pure and applied mathematics, such 

as electronic systems, quantum mechanics and dynamical systems among others. 

Because many natural phenomena involve information from the past or memory, researchers saw 

the use of the fractional derivative as a tool to study the phenomenon in the moments leading up to the 

moment of its onset [26–34]. Thus, the fractional delay DEs are originally classical DEs that are 

reformulated by substituting the fractional derivative instead of the classical one for the 

abovementioned purpose. Therefore, the authors in [35–37] reformulated the above system by 

replacing the classical derivatives with fractional derivatives in the Caputo sense as follows and 

introduced approximate solutions to it through various methods: 

𝐷𝛼𝜌𝑟(𝜏) =  𝜎𝑟𝜌𝑟(𝜏) + 𝜑𝑟 (𝜏, 𝜌𝑖(𝜏), 𝜌𝑗(𝛾𝑗𝜏)),       (1) 

subject to  

𝜌𝑟(0) = 𝜔𝑟 ,   𝑟 = 1, 2, 3 ⋯ , 𝑚,         (2) 

where 𝐷𝛼 , 𝛼 ∈ (0,1] is the Caputo-fractional derivative operator, and as with all models of fractional 

https://www.researchgate.net/scientific-contributions/2035485027_Sabir_Widatalla?_sg=2c_XkscMfKyy_XSMY2613hAjVBsitDbefeRdZGz_gtLXSc4YDHN_bkKQqDNPddjfcMZNARY.30zYVyVsvEH2KcLfavgw_rcK2XOJJomBD6oT1qrtbcpl8vY8-nMnqGkuGsfksJpvnEdezR2j8Wlo_6ismKmY6g
https://www.researchgate.net/scientific-contributions/2119350526_Mohammed_Abdulai_Koroma?_sg=2c_XkscMfKyy_XSMY2613hAjVBsitDbefeRdZGz_gtLXSc4YDHN_bkKQqDNPddjfcMZNARY.30zYVyVsvEH2KcLfavgw_rcK2XOJJomBD6oT1qrtbcpl8vY8-nMnqGkuGsfksJpvnEdezR2j8Wlo_6ismKmY6g


19952 

AIMS Mathematics  Volume 8, Issue 9, 19950–19970. 

equations, the fractional derivative describes the motion memory in the system and provides an 

exceptional understanding of the behavior of various dynamical systems. 

Unfortunately, for the fractional multi-pantograph system (FMPS), like the different fractional 

models, it is difficult to provide an exact solution, and it may be impossible most of the time. Therefore, 

researchers resort to providing approximate solutions using analytical or numerical methods. Lately, 

many scholars have extensively researched and proposed numerous analytical and numerical 

approaches to investigate solutions of fractional equations, such as the variational iteration method [38], 

reproducing kernel method [39], Adomian decomposition method [40], fractional difference method [41], 

Homotopy perturbation method [42], Homotopy analysis method [35,43], sine-Gordon expansion 

method [44], artificial neural network methods [45], gradient-based optimization approach [36], 

fractional differential transform method [37], residual power series technique (RPST) [35,46,47] and 

other methods [48,49].  

The RPST is an effective analytical method to set the power series solution coefficients for the 

ordinary and partial DEs. It is based on creating a series solution for numerous linear and nonlinear 

DEs and provides a convergent series solution without the need for linearization, discretization, or 

perturbation. Although old-fashioned, the Laplace transform (LT) is still used to solve various classes 

of linear DE [49]. Unfortunately, it cannot be utilized directly to solve nonlinear DE. Some analytical 

methods have been modified by exploiting the Laplace transform to simplify its working mechanisms, 

such as the Laplace Homotopy perturbation [26], Laplace Adomian decomposition method [27], 

Laplace Homotopy analysis method [28] and He-Laplace method [29]. 

Recently, on the same approach, El-Ajou and his research team employed the LT in the RPST to 

simplify the tactic of determining the series solution coefficients for some DEs of fractional order, such 

as the nonlinear time-fractional dispersive PDEs, Lane-Emden equations, multi-dimensional time-

fractional Navier-Stokes system, Fisher’s equation and logistic system model among others [30–34]. This 

employment led to the facilitation and acceleration of determining the coefficients process compared 

with the RPST. The new approach is called the Laplace residual power series technique (LRPST). The 

mechanism of the new technique depends on transforming the equation into a Laplace space and then 

creating a series solution for the new equation. Due to the properties of the LT, the series solution is in 

the form of the fractional Laurent series [30]. Series coefficients are determined using the concept of 

limit at infinity instead of the fractional derivative used in the RPST. Operating the inverse LT on the 

obtained Laurent series gives the series solution to the original equation. 

The RPST and LRPST present a solution to the DE in a series form. Therefore, the result is 

supposed to be identical in both methods. But what distinguishes the LRPST from the RPST is the 

ease of obtaining the series coefficients. The RPST requires the calculation of the fractional derivative 

to the residual function in each step of determining the coefficients steps. In contrast, the LRPST needs 

to calculate the limit at infinity when specifying the coefficients. The Caputo derivative is one of the 

non-local derivatives that need improper integration calculation, and it takes a long time as we progress 

in the steps of the solution, even when using computer software. Calculating the limit at infinity is 

much simpler and does not take much time compared to calculating the improper integrals. 

Indeed, for the systems (1) and (2), its exact solution is not known yet, and all the solutions given 

by the previous methods are approximate solutions whose accuracy varies from one method to another. 

On the other hand, literature doesn’t addresses the LRPST for solving systems of fractional DEs to the 

extent of our knowledge. Therefore, in this paper, we seek to apply the new approach, LRPST [35,50], in 

creating an accurate analytical series solution to another class of fractional DEs, the FMPS given in (1) 

and (2). In addition, we look to show the ease, speed, and efficiency of the proposed method to obtain 

accurate solutions by comparing it with the previous results obtained by other techniques, such as the 
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Homotopy analysis method and the RPST.  

The rest of the presented study is structured as follows: In Section 2, we offer some basic 

definitions and theorems related to fractional power series. Section 3 discusses the suggested method 

to construct a series solution to the FMPS. In Section 4, we offer two applications with numerical 

simulations of MPEs. We summarize and discuss the obtained results in the final section. 

2. Main concepts and theorems 

Various definitions of the fractional derivative were pointed out previously, such as Hadamard, 

Riemann Liouville, Caputo, Atangana-Baleanu, Caputo-Fabrizio, conformable, and Riesz definitions. 

Caputo’s view of the fractional derivative is still the most used among other points of view as it has a 

physical significance in various models and has diverse theorems concerning the expansion of the 

functions, which is absent from other definitions. Moreover, there is an agreement that Caputo’s 

definition satisfies the fractional derivative conditions. Consequently, during this work, we are 

interested in considering Caputo’s concept, which is defined as follows [51]: 

𝐷𝛼𝜌(𝜏) = {

1

Γ(𝜈−𝛼)
∫ (𝜏 − 𝜁)𝜐−𝛼−1𝜏

0
𝜌(𝜐)(𝜁)𝑑𝜁, 𝜐 − 1 < 𝛼 < 𝜐, 0 ≤ 𝜁 < 𝜏,

𝜌(𝜐)(𝜏), 𝛼 = 𝜐.
    (3) 

Next, we introduce some basic definitions, lemmas and facts essential to constructing the Laplace 

residual power series solution (LRPSS) for the FMPS.  

Some significant properties of the Caputo-fractional derivative are 𝐷𝛼(𝜅) = 0, 𝜅 is a constant, 

and 𝐷𝜏
𝛼(𝜏𝜂) =

Γ(𝜂+1)

Γ(𝜂+1−𝛼)
𝜏𝜂−𝛼, 𝜏 ≥ 0, 𝜂 > −1, 𝜐 − 1 < 𝛼 ≤ 𝜐, 𝑣 ∈ ℕ. For more details, the reader is 

advised to refer to [51].  

Definition 1. [49] Assume that a function 𝜌(𝜏) is specified for 𝜏 ≥ 0. The LT of 𝜌(𝜏) is designated 

and given by: 

𝛲(s) = ℓ[𝜌(𝜏)] = ∫ 𝑒−𝑠𝜏𝜌(𝜏)𝑑𝜏.
∞

0
       (4) 

Whereas, the inverse LT of 𝛲(𝑠) is encoded and defined as: 

𝜌(𝜏) = ℓ−1[𝛲(s)] = ∫ 𝑒𝑠𝜏𝛲(s)𝑑𝑠,
𝜇+𝑖∞

𝜇−𝑖∞
 𝜇 = 𝑅𝑒(𝑠).     (5) 

Lemma 1. [30] Let 𝜌(𝜏) be a function of exponential order 𝛽 and piecewise continuous function on 

[0, ∞). Then, 

i) lim
𝑠→∞

𝑠 𝛲(s) = 𝜌(0), 

ii) ℓ[𝐷𝛼𝜌(𝜏)] = 𝑠𝛼𝛲(s) − ∑ 𝑠𝛼−𝑛−1𝜌(𝑛)(0)𝜐
𝑛=0 , 𝜐 − 1 < 𝛼 < 𝜐, 

iii) ℓ[𝐷𝑘𝛼𝜌(𝜏)] = 𝑠𝑘𝛼𝛲(s) − ∑ 𝑠(𝑘−𝑛)𝛼−1𝐷𝜏
𝑛𝛼𝜌(𝜏)𝜐

𝑛=0 , 0 < 𝛼 < 1, 

where, 𝛲(𝑠) = ℓ[𝜌(𝜏)] and 𝐷𝑘𝛼 = 𝐷𝛼𝐷𝛼 … 𝐷𝛼 (𝑘-times). 

Theorem 1. [46] Assume that 𝜌(𝜏) can be expressed in fractional power series (FPS) of radius 𝑅 

around 𝜏 = 0 as: 

𝜌(𝜏) = ∑ 𝜎𝑛𝜏𝑛𝛼∞
𝑛=0 , 0 < 𝛼 ≤ 1, 0 ≤ 𝜏 < 𝑅.      (6) 

If 𝐷𝑛𝛼𝜌(𝜏) is continuous on (0, 𝑅), 𝑛 = 0,1,2, ⋯, then the coefficients 𝜎𝑛’s of the above series 

are provided by 

𝜎𝑛 =
𝐷𝑛𝛼𝜌(0)

Γ(𝑛𝛼+1)
, 𝑛 = 0,1,2, ⋯.          (7) 
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The next theorem describes the coefficients of the Laurent series expansion (LSE), which is the 

best tool for constructing the LRPS of a given fractional DE in the Laplace space. 

Theorem 2. [29] Assume that 𝜌(𝜏) can be stated in terms of the FPS, and assume that 𝐷𝑛𝛼𝜌(𝜏) is 

continuous on (0, 𝑅), 𝑛 = 0,1,2, ⋯. If  𝛲(𝑠) = ℓ[𝜌(𝜏)], then 𝛲(𝑠) has the following fractional LSE: 

𝛲(s) = ∑
𝐷𝑛𝛼𝜌(0)

𝑠𝑛𝛼+1
∞
𝑛=0 ,           (8) 

where 0 < 𝛼 ≤ 1, 𝑠 > 0, and 𝑛 = 0,1,2, ⋯. 
The ensuing theorem provides the essential convergence conditions of the LSE. 

Theorem 3.[29] Assume that 𝛲(𝑠) = ℓ[𝜌(𝜏)]  has a fractional LSE. If |𝑠ℓ[𝐷(𝑛+1)𝛼𝜌(𝜏)| ≤ 𝛾 , on 

0 < 𝑠 ≤ 𝛽 where 0 < 𝛼 ≤ 1, and 𝑛 ∈ ℕ, then the remainder of the fractional LSE (ℜ𝑛(𝑠)) satisfies 

|ℜ𝑛(𝑠)| ≤
𝛾

𝑠(𝑛+1)𝛼+1 , 0 < 𝑠 ≤ 𝛽.         (9) 

3. Construction of the LRPSS for the FMPS 

This section introduces the LRPST to construct a series solution to the FMPS. We present the 

method as a seven-step algorithm. Each step includes mathematical procedures and the facts that 

explain the process. 

Step 1. Operate the LT on each equation in (1) and use part (ii) of Lemma 1 to get 

𝑠𝛼𝑃𝑟(𝑠) − 𝑠𝛼−1𝜌𝑟(0) =  𝜎𝑟𝑃𝑟(𝑠) + ℓ [𝜑𝑟 (𝑠, ℓ−1 [𝑃𝑖(𝑠)],
1

𝛾𝑗
 ℓ−1 [𝑃𝑗 (

𝑠

𝛾𝑗
)])],   (10) 

for 𝑖, 𝑗 ∈ {1,2, … , 𝑚}, and 𝑟 = 1,2, … , 𝑚. 
Step 2. Use the conditions (2) with some simplification to rewrite (10) as follows: 

𝑃𝑟(𝑠) =
𝜔𝑟

𝑠
+

𝜎𝑟

𝑠𝛼 𝑃𝑟(𝑠) +
1

𝑠𝛼 ℓ [𝜑𝑟 (𝑠, ℓ−1 [𝑃𝑖(𝑠)],
1

𝛾𝑗
 ℓ−1 [𝑃𝑗 (

𝑠

𝛾𝑗
)])],   (11) 

Step 3. Assume that the LRPSS of (1) and (2) have the following LSE: 

𝑃𝑟(𝑠) =
𝜔𝑟

𝑠
+ ∑

ℎ𝑟,𝑛

𝑠𝑛𝛼+1
∞
𝑛=1 ,   𝑠 > 0,   𝑟 = 1, … , 𝑚.       (12) 

So, the 𝑘th truncated series of 𝑃𝑟(𝑠) will be as follows: 

𝑃𝑟,𝑘(𝑠) =
𝜔𝑟

𝑠
+ ∑

ℎ𝑟,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 ,   𝑠 > 0,   𝑟 = 1, … , 𝑚.      (13) 

Step 4. For every 𝑟 = 1,2, … , 𝑚, define the Laplace residual functions of (11) as: 

ℓ𝑅𝑒𝑠𝑟(𝑠) = 𝑃𝑟(𝑠) −
𝜔𝑟

𝑠
−

𝜎𝑟

𝑠𝛼 𝑃𝑟(𝑠) −
1

𝑠𝛼 ℓ [𝜑𝑟 (𝑠, ℓ−1 [𝑃𝑖(𝑠)],
1

𝛾𝑗
 ℓ−1 [𝑃𝑗 (

𝑠

𝛾𝑗
)])],   (14) 

and the 𝑘th Laplace residual functions as: 

ℓ𝑅𝑒𝑠𝑟,𝑘(𝑠) = 𝑃𝑟,𝑘(𝑠) −
𝜔𝑟

𝑠
−

𝜎𝑟

𝑠𝛼 𝑃𝑟,𝑘(𝑠) −
1

𝑠𝛼 ℓ [𝜑𝑟 (𝑠, ℓ−1 [𝑃𝑖,𝑘(𝑠)],
1

𝛾𝑗
 ℓ−1 [𝑃𝑗,𝑘 (

𝑠

𝛾𝑗
)])].  (15) 

In this regard, the following facts related to the Laplace residual functions and the 𝑘th Laplace 

residual functions must be mentioned, which are considered basic tools in determining the coefficients 

of the LSE in (12) [30]: 

• lim
𝑘→∞ 

ℓ𝑅𝑒𝑠𝑟,𝑘(𝑠) = ℓ𝑅𝑒𝑠𝑟(𝑠), for 𝑠 > 0, 𝑟 = 1,2, ⋯ , 𝑚. 
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• ℓ𝑅𝑒𝑠𝑟(𝑠) = 0, for 𝑠 > 0, 𝑟 = 1,2, ⋯ , 𝑚. 

• lim
𝑠→∞ 

𝑠𝑘𝛼+1 ℓ𝑅𝑒𝑠𝑟(𝑠) = 0, for 𝛼, 𝑠 > 0, 𝑟 = 1,2, ⋯ , 𝑚, 𝑘 = 0,1,2, ⋯.      (16) 

• lim
𝑠→∞ 

𝑠𝑘𝛼+1 ℓ𝑅𝑒𝑠𝑟,𝑘(𝑠) = 0, for 𝛼, 𝑠 > 0, 𝑟 = 1,2, ⋯ , 𝑚, 𝑘 = 0,1,2, ⋯. 

Step 5. To determine the value of the coefficient ℎ𝑟,𝑘 in the LSE (12) for 𝑟 = 1,2, … , 𝑚 and 𝑘 =
1,2, … , substitute the 𝑘 th truncated series, 𝑃𝑟,𝑘(𝑠) , into the 𝑘 th Laplace residual functions, 

ℓ𝑅𝑒𝑠𝑟,𝑛(𝑠) to obtain 

ℓ𝑅𝑒𝑠𝑟,𝑘(𝑠) = ∑
ℎ𝑟,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝜎𝑟

𝑠𝛼
𝑃𝑟,𝑘(𝑠) −

1

𝑠𝛼
ℓ [𝜑𝑟 (𝑠, ℓ−1  [

𝜔𝑖

𝑠
+ ∑

ℎ𝑖,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 ] ,

1

𝛾𝑗
ℓ−1 [

𝛾𝑗𝜔𝑗

𝑠
+

∑
ℎ𝑗,𝑛(𝛾𝑗)

𝑛𝛼+1

𝑠𝑛𝛼+1
𝑘
𝑛=1 ])].         (17) 

Step 6. Substitute (17) into fact (16) and solve the result equation iteratively for 𝑘 = 1,2, … and 𝑟 =
1,2, … , 𝑚. The solution of resultant equations gives the values of the coefficients of the LSE (12). 

Step 7. Substitute the obtained values of the coefficients, ℎ𝑟,𝑘, into the 𝑘th truncated series (13) and 

operate the inverse LT on the resultant truncated LSE to obtain the 𝑘th approximate LRPSS to the 

systems (1) and (2). 

In the next section, we apply the algorithm described above in detail in two applications. To ensure 

the accuracy of the obtained results, we use two kinds of errors, the residual error(𝐸𝑅𝑒𝑠𝑟,𝑘

𝛼 ), and the 

exact error (𝐸𝐸𝑥𝑡𝑟

𝛼 ), which are given, respectively, as follows: 

𝐸𝑅𝑒𝑠𝑟,𝑘

𝛼 = |𝐷𝛼𝜌𝑟,𝑘(𝜏) − 𝜎𝑟𝜌𝑟,𝑘(𝜏) − 𝜑𝑘 (𝜏, 𝜌𝑖,𝑚(𝜏), 𝜌𝑗,𝑚(𝛾𝑗𝜏))| , 𝑟 = 1,2, … , 𝑚, 𝑘 = 1,2, ….  (18) 

𝐸𝐸𝑥𝑡𝑟

𝛼 = |𝜌𝑟(𝜏) − 𝜌𝑟,𝑘(𝜏)|,   𝑟 = 1,2, … , 𝑚.       (19) 

4. Numerical applications 

In this section, we test the proposed method through two applications. The first is a 

nonhomogeneous FMPS, and the second is a homogeneous FMPS. 

Application 4.1. [35] Consider the following nonhomogeneous FMPS: 

𝐷𝛼𝜌1(𝜏) − 𝜌1(𝜏) + 𝜌2(𝜏) − 𝜌1 (
𝜏

2
) = 𝑒−𝜏𝛼

− 𝑒
𝜏𝛼

2 , 

𝐷𝛼𝜌2(𝜏) + 𝜌1(𝜏) + 𝜌2(𝜏) + 𝜌2 (
𝜏

2
) = 𝑒

−𝜏𝛼

2 + 𝑒𝜏𝛼
,     (20) 

subject to 

𝜌1(0) = 1, 𝜌2(0) = 1.         (21) 

Solution: To get the solution of (20) and (21) by LRPST, we first expand the exponential functions in (20) 

using the expansion of the standard exponential function  

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯. 

Thus, Eq (20) becomes 
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𝐷𝛼𝜌1(𝜏) − 𝜌1(𝜏) + 𝜌2(𝜏) − 𝜌1 (
𝜏

2
) + (

3𝜏𝛼

2
−

3𝜏2𝛼

8
+

3𝜏3𝛼

16
−

5𝜏4𝛼

128
+

11𝜏5𝛼

1280
−

7𝜏6𝛼

5120
) = 0, 

𝐷𝛼𝜌2(𝜏) + 𝜌1(𝜏) + 𝜌2(𝜏) + 𝜌2 (
𝜏

2
) − (2 +

𝜏𝛼

2
+

5𝜏2𝛼

8
+

7𝜏3𝛼

48
+

17𝜏4𝛼

384
+

31𝜏5𝛼

3840
+

13𝜏6𝛼

9216
) = 0.  (22) 

Now, applying LT to each equation in (22) and using the condition (21), we obtain 

𝑃1(𝑠) −
1

𝑠
−

𝑃1(𝑠)

𝑠𝛼
+

𝑃2(𝑠)

𝑠𝛼
−

2𝑃1(2𝑠)

𝑠𝛼
+

1

𝑠𝛼
(

3Γ(𝛼 + 1)

2 𝑠𝛼+1
−

3Γ(2𝛼 + 1)

8 𝑠2𝛼+1

+
3Γ(3𝛼 + 1)

16 𝑠3𝛼+1
 −

5Γ(4𝛼 + 1)

128 𝑠4𝛼+1
+

11Γ(5𝛼 + 1)

1280 𝑠5𝛼+1
−

7Γ(6𝛼 + 1)

5120 𝑠6𝛼+1
) = 0, 

𝑃2(𝑠) −
1

𝑠
+

𝑃1(𝑠)

𝑠𝛼 +
𝑃2(𝑠)

𝑠𝛼 +
2𝑃2(2𝑠)

𝑠𝛼 −
1

𝑠𝛼 (
2

𝑠
+

Γ(𝛼+1)

2𝑠𝛼+1 +
5Γ(2𝛼+1)

8 𝑠2𝛼+1 +
7Γ(3𝛼+1)

48 𝑠3𝛼+1 +
17Γ(4𝛼+1)

384 𝑠4𝛼+1 +
31Γ(5𝛼+1)

3840 𝑠5𝛼+1 +

13Γ(6𝛼+1)

9216 𝑠6𝛼+1) = 0.           (23) 

According to the previous section, the 𝑘th truncated series of the supposed series solution of the 

systems (20) and (21) is given as: 

𝑃1,𝑘(𝑠) =
1

𝑠
+ ∑

ℎ1,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 , 𝑃2,𝑘(𝑠) =

1

𝑠
+ ∑

ℎ2,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 .     (24) 

Consequently, the 𝑘th Laplace residual functions of (23) can be defined as: 

ℓ𝑅𝑒𝑠1,𝑘(𝑠) =  𝑃1,𝑘(𝑠) −
1

𝑠
−

𝑃1,𝑘(𝑠)

𝑠α
+

𝑃2,𝑘(𝑠)

𝑠α
−

2𝑃1,𝑘(2𝑠)

𝑠α

+
1

𝑠𝛼
(

3Γ(𝛼 + 1)

2 𝑠𝛼+1
−

3Γ(2𝛼 + 1)

8 𝑠2𝛼+1
+

3Γ(3𝛼 + 1)

16 𝑠3𝛼+1

−
5Γ(4𝛼 + 1)

128 𝑠4𝛼+1
+

11Γ(5𝛼 + 1)

1280 𝑠5𝛼+1
−

7Γ(6𝛼 + 1)

5120 𝑠6𝛼+1
), 

ℓ𝑅𝑒𝑠2,𝑘(𝑠) =  𝑃2,𝑘(𝑠) −
1

𝑠
+

𝑃1,𝑘(𝑠)

𝑠α
+

𝑃2,𝑘(𝑠)

𝑠α
+

2𝑃2,𝑘(2𝑠)

𝑠α
−

1

𝑠𝛼
(

2

𝑠
+

Γ(𝛼+1)

2𝑠𝛼+1
+

5Γ(2𝛼+1)

8 𝑠2𝛼+1
+

7Γ(3𝛼+1)

48 𝑠3𝛼+1
+

17Γ(4𝛼+1)

384 𝑠4𝛼+1 +
31Γ(5𝛼+1)

3840 𝑠5𝛼+1 +
13Γ(6𝛼+1)

9216 𝑠6𝛼+1).       (25) 

By substituting 𝑘 = 1 in (25), the first Laplace residual function will be as: 

ℓ𝑅𝑒𝑠1,1(𝑠) =
ℎ1,1

𝑠𝛼+1 
−

ℎ1,1

𝑠2𝛼+1 
+

ℎ2,1

𝑠2𝛼+1 
−

1

𝑠α+1
−

ℎ1,1

2𝛼𝑠2𝛼+1 
+

3Γ(𝛼 + 1)

2 𝑠2𝛼+1
−

3Γ(2𝛼 + 1)

8 𝑠3𝛼+1

+
3Γ(1 + 3𝛼)

16 𝑠4𝛼+1
−

5Γ(1 + 4𝛼)

128 𝑠5𝛼+1
+

11Γ(1 + 5𝛼)

1280 𝑠6𝛼+1
−

7Γ(1 + 6𝛼)

5120 𝑠7𝛼+1
, 
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ℓ𝑅𝑒𝑠2,1(𝑠) =
ℎ2,1

𝑠𝛼+1 
+

ℎ1,1

𝑠2𝛼+1 
+

ℎ2,1

𝑠2𝛼+1 
+

1

𝑠𝛼+1 +
ℎ2,1

2𝛼𝑠2𝛼+1 
−

Γ(𝛼+1)

2𝑠2𝛼+1 −
5Γ(2𝛼+1)

8 𝑠3𝛼+1 −
7Γ(1+3𝛼)

48 𝑠4𝛼+1 −
17Γ(1+4𝛼)

384 𝑠5𝛼+1 −

31Γ(5𝛼+1)

3840 𝑠6𝛼+1 −
13Γ(6𝛼+1)

9216 𝑠7𝛼+1.          (26) 

By multiplying each equation in (26) by 𝑠𝛼+1, we get the following new system: 

𝑠𝛼+1ℓ𝑅𝑒𝑠1,1(𝑠)

= ℎ1,1 − 1 −
ℎ1,1

𝑠𝛼 
+

ℎ2,1

𝑠𝛼  
−

ℎ1,1

2𝛼𝑠𝛼  
+

3Γ(𝛼 + 1)

2 𝑠𝛼
−

3Γ(2𝛼 + 1)

8 𝑠2𝛼
+

3Γ(3𝛼 + 1)

16 𝑠3𝛼

−
5Γ(4𝛼 + 1)

128 𝑠4𝛼
+

11Γ(5𝛼 + 1)

1280 𝑠5𝛼
−

7Γ(6𝛼 + 1)

5120 𝑠6𝛼
, 

𝑠𝛼+1ℓ𝑅𝑒𝑠2,1(𝑠) = ℎ2,1 + 1 +
ℎ1,1

𝑠𝛼 
+

ℎ2,1

𝑠𝛼 
+

ℎ2,1

2𝛼𝑠𝛼 
−

Γ(𝛼+1)

2𝑠𝛼 −
5Γ(2𝛼+1)

8 𝑠2𝛼 −
7Γ(3𝛼+1)

48 𝑠3𝛼 −
17Γ(4𝛼+1)

384 𝑠4𝛼 −

31Γ(5𝛼+1)

3840 𝑠5𝛼 −
13Γ(6𝛼+1)

9216 𝑠6𝛼 .         (27) 

Taking the limit as 𝑠 goes to infinity in (27) gives ℎ1,1 = 1 and ℎ2,1 = −1. 

By repeating the previous procedure for 𝑘 = 2,3,4,5, and 6, we can simply obtain the following 

coefficients: 

ℎ1,2 = (2 +
1

2𝛼 
−

3Γ(𝛼+1)

2
)  and   ℎ2,2 = (

1

2𝛼 +
Γ(𝛼+1)

2
).     (28) 

ℎ1,3 =
1

8𝛼+1
(8 + 2𝛼+4 + 23𝛼+4 − 2𝛼+2(3 + 4𝛼+1)Γ(𝛼 + 1) + 3(2)3𝛼Γ(1 + 2𝛼)), 

ℎ2,3 = −2 − 21−𝛼 − 2−3𝛼 + (1 − 2−2𝛼−1)Γ(𝛼 + 1) +
5

8
Γ(2𝛼 + 1),    (29) 

… 

ℎ1,6 = (8 + 21−14𝛼 + 21−11𝛼 + 321−10𝛼 + 22−9𝛼 + 521−7𝛼 + 21−6𝛼 + 3 (2)2−5𝛼 + 22−𝛼 + 2−15𝛼

+ 41−6𝛼 + 41−4𝛼 + 41−2𝛼 + 41−𝛼 + 81−𝛼 −
1

2
Γ(1 + 2𝛼)

− 2−4−9𝛼 (9 + 21+5𝛼 + 9(2)1+9𝛼 +
161+𝛼

3
) Γ(1 + 3𝛼) + 6Γ(1 + 𝛼)

− 32−1−14𝛼Γ(1 + 𝛼) − 21−12𝛼Γ(1 + 𝛼) − 21−10𝛼Γ(1 + 𝛼) − 22−9𝛼Γ(1 + 𝛼)

− 321−7𝛼Γ(1 + 𝛼) − 21−4𝛼Γ(1 + 𝛼) − 22−3𝛼Γ(1 + 𝛼) − 21−2𝛼Γ(1 + 𝛼)

− 2−11𝛼Γ(1 + 𝛼) − 2−8𝛼Γ(1 + 𝛼) + 2−6𝛼Γ(1 + 𝛼) − 72−5𝛼Γ(1 + 𝛼)

− 2−2−9𝛼 Γ(1 + 2𝛼) − 2−2−7𝛼 Γ(1 + 2𝛼) + 3 (2)−2−5𝛼Γ(1 + 2𝛼)

+  32−2−5𝛼Γ(1 + 2𝛼) + 2−8𝛼Γ(1 + 2𝛼) − 54−1−2𝛼Γ(1 + 2𝛼) + 38−1−4𝛼Γ(1 + 2𝛼)

−
1

192
Γ(1 + 4𝛼) + 52−7−5𝛼Γ(1 + 4𝛼) −

11Γ(1 + 5𝛼)

1280
), 
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ℎ2,6 = (
2−8−15𝛼

15
(3840 + 1529+2𝛼 + (15)211+7𝛼 − (15)29+8𝛼 − (15)210+13𝛼 + (15)45+6𝛼

+ (15)45+7𝛼 + (15)83+𝛼 + (15)322+𝛼 + (15)5121+𝛼 + (15)10241+𝛼

+ (15)27+𝛼(1 − 21+2𝛼 + 22+3𝛼 − 21+4𝛼 + 321+5𝛼 − (3)21+6𝛼 + 22+7𝛼 + (3)21+8𝛼

− 21+9𝛼 + 23+10𝛼 − 22+11𝛼 + 41+7𝛼 + 81+4𝛼)Γ(1 + 𝛼)

− (15)82+𝛼(5 + 21+4𝛼 + 521+7𝛼 + 21+9𝛼)𝛼Γ(2𝛼) + 1528+11𝛼𝛼Γ(3𝛼)

+ 10542+3𝛼𝛼Γ(3𝛼) − (15)321+2𝛼𝛼Γ(3𝛼) − 4526+11𝛼Γ(1 + 2𝛼)

− 1544+3𝛼Γ(1 + 2𝛼) − (15)83+5𝛼Γ(1 + 2𝛼) − (15)162+3𝛼Γ(1 + 2𝛼)

− 152561+𝛼Γ(1 + 2𝛼) + (35)321+3𝛼Γ(1 + 3𝛼) − 8521+10𝛼Γ(1 + 4𝛼)

− 582+5𝛼Γ(1 + 4𝛼) + 31215𝛼Γ(1 + 5𝛼)). 

Therefore, the fractional Laurent series solution of (23) can be expressed as 

𝑃1(𝑠) =
1

𝑠
+

1

𝑠𝛼+1 
+ (2 +

1

2𝛼  
−

3Γ(𝛼 + 1)

2
)

1

𝑠2𝛼+1 

+
1

8𝛼+1𝑠3𝛼+1
(8 + 2𝛼+4 + 23𝛼+4 − 2𝛼+2(3 + 4𝛼+1)Γ(𝛼 + 1) + 38𝛼Γ(1 + 2𝛼))

+ ⋯, 

𝑃2(𝑠) =
1

𝑠
−

1

𝑠𝛼+1 
+ (

1

2𝛼 +
Γ(𝛼+1)

2
)

1

𝑠2𝛼+1 
+

1

𝑠3𝛼+1
(−2 − 21−𝛼 − 2−3𝛼 + (1 − 2−2𝛼−1)Γ(1 + 𝛼) +

5

8
Γ(1 + 2𝛼)) + ⋯.          (30) 

To obtain  the series solution to the systems (20) and (21), we apply the inverse LT to (30), and then 

we get 

𝜌1(𝜏) = 1 + (2 +
1

2𝛼
−

3Γ(𝛼 + 1)

2
)

𝜏𝛼

Γ(𝛼 + 1)

+
1

8𝛼+1
(8 + 2𝛼+4 + 23𝛼+4 − 2𝛼+2(3 + 4𝛼+1 )Γ(𝛼 + 1)

+ 3(2)3𝛼Γ(2𝛼 + 1))
𝜏2𝛼

Γ(2𝛼 + 1)
+ ⋯, 

𝜌2(𝜏) = 1 + (
1

2𝛼
+

Γ(𝛼+1)

2
)

𝜏𝛼

Γ(𝛼+1)
− (2 +

1

2𝛼−1
+

1

23𝛼
− (1 −

1

22𝛼+1 
 ) Γ(𝛼 + 1) −

5

8
Γ(2𝛼 +

1))
𝜏2𝛼

Γ(2𝛼+1)
+ ⋯.          (31) 

Putting 𝛼 = 1 in (31) gives the solution of (20) and (21) in the following form: 

𝜌1(𝜏) = 1 + 𝜏 +
𝜏2

2
+

𝜏3

8
+ ⋯, 

𝜌2(𝜏) = 1 − 𝜏 +
𝜏2

2
−

𝜏3

8
+ ⋯, 

which are the expansions of the exact solutions 𝜌1(𝜏) = 𝑒𝜏, 𝜌2(𝜏) = 𝑒−𝜏. 

To verify the accuracy of the solution obtained in Eq (31) and to clarify the effect of changing 𝛼 

value on the behavior of the solution, some illustrations have been drawn in Figures 1–4. Figures 1(a) 

and 2(a). show comparisons between the 6th approximate solution given in (31) and the exact solution 
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of the systems (20) and (21) at 𝛼 = 1. The results indicate a great agreement between the two solutions 

in the period [0,3]. 

Figures 1(b) and 2(b) show the behavior of the systems (20) and (21) solution with different 

values of 𝛼, which are 0.5, 0.7 and 1. It can be seen from the figure that as the value of 𝛼 changes, 

the level of motion represented by the dependent variables in FMPS changes more or less.  

Since we have the exact solution for the systems (20) and (21) at 𝛼 = 1, we introduce in Figure 3 the 

exact error of the 6th approximation for the solution given in (31) and it appears to be mathematically 

acceptable.  

In Figure 4, we make a comparison between the solution obtained by LRPST and the solution 

obtained by HAM with the exact solution at 𝛼 = 1. It is evident from the figure that the LRPSS is 

more compatible with the exact solution than with the HAM solution. 

       

                       
(a)             (b) 

Figure 1. The graph of (a) the exact solution, 𝜌1(𝜏) = 𝑒𝜏 and the 6th approximate solution, 

𝜌1,6(𝜏) at 𝛼 = 1, (b) 𝜌1,6(𝜏) at α = 1, 0.7, 0.5. 

    

                    
(a)            (b) 

Figure 2. The graph of (a) the exact solution, 𝜌2(𝜏) = 𝑒−𝜏  and the 6th approximate 

solution, 𝜌2,6(𝜏) at 𝛼 = 1, (b) 𝜌2,6(𝜏) at α = 1, 0.7, 0.5. 
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(a)           (b) 

Figure 3. The exact error of (a) the 6th approximate solution, 𝜌1,6(𝜏)  (b) the 6th 

approximate solution, 𝜌2,6(𝜏) at 𝛼 = 1. 

 

(a)             (b) 

Figure 4. The graphs of the 6th approximate solution of the systems (20) and (21) when 

𝛼 = 1: Dotted Line: LRPST solution, Dashed Dotted Line: HAM (ℏ = −1) solution, Solid 

Line: Exact solution. (a) 𝜌1,6(𝜏), (b) 𝜌2,6(𝜏). 

For further analysis of the solution that we obtained in Application 4.1, we consider two types of 

errors, the exact errors, 𝐸Ext1

𝛼  and 𝐸Ext2

𝛼 , and the residual errors, 𝐸𝑅𝑒𝑠1

𝛼  and 𝐸𝑅𝑒𝑠2

𝛼  of the approximate 

solution in (31) which are defined, respectively, as: 

𝐸Ext1

𝛼 = |𝜌1(𝜏) − 𝜌1,𝑘(𝜏)|, 

𝐸Ext2

𝛼 = |𝜌2(𝜏) − 𝜌2,𝑘(𝜏)|, 

𝐸ℓ𝑅𝑒𝑠1

𝛼 = |𝐷𝛼𝜌1,𝑘(𝜏) − 𝜌1,𝑘(𝜏) + 𝜌2,𝑘(𝜏) − 𝜌1,𝑘 (
𝜏

2
) − ⅇ−𝜏 + ⅇ𝜏 2⁄ |, 

𝐸ℓ𝑅𝑒𝑠2

𝛼 = |𝐷𝛼𝜌2,𝑘(𝜏) + 𝜌1,𝑘(𝜏) + 𝜌2,𝑘(𝜏) + 𝜌2,𝑘 (
𝜏

2
) − ⅇ𝜏 − ⅇ−𝜏 2⁄ |. 
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Tables 1 and 2 confirm numerically the accuracy of the solution we obtained by calculating the 

exact and residual errors of the approximate solution in (31) at 𝛼 = 1 and 0.5. In addition, they 

present comparisons between the new solution and the previous solutions obtained by the RPST and 

HAM methods. The tables show the agreement between the results obtained from LRPST and RPST, 

which proves the proposed method’s  efficiency and that LRPST is much easier and faster to program 

and performs calculations. Moreover, we can see from the tables that LRPST is better than HAM: the 

solution obtained from LRPST converges faster to the exact solution, and the error is slightly smaller 

than the errors obtained using HAM. 

Table 1. The exact, 𝐸𝐸𝑥𝑡1

𝛼=1(𝜏) and the residual, 𝐸𝑅𝑒𝑠1

𝛼=0.5(𝜏) errors of 𝜌1,6(𝜏). 

Table 2. The exact, 𝐸𝐸𝑥𝑡2

𝛼=1(𝜏) and the residual, 𝐸𝑅𝑒𝑠2

𝛼=0.5(𝜏) errors of 𝜌2,6(𝜏). 

 𝐸𝐸𝑥𝑡2

𝛼=1(𝜏) 𝐸𝑅𝑒𝑠2

𝛼=0.5(𝜏) 

𝑡 LRPST HAM (ℏ = −1) RPST LRPST HAM (ℏ = −1) RPST 

0.0 0 0 0 0 0 0 

0.2 2.47757 × 10−9 3.62052 × 10−8 2.47757 × 10−9 8.88889 × 10−8 1.27079 × 10−6 8.88889 × 10−8 

0.4 3.09519 × 10−7 4.55603 × 10−6 3.09519 × 10−7 5.68889 × 10−6 8.01156 × 10−5 5.68889 × 10−6 

0.6 5.16391 × 10−6 7.66634 × 10−5 5.16391 × 10−6 6.47999 × 10−5 8.98412 × 10−4 6.47999 × 10−5 

0.8 3.77914 × 10−5 5.65864 × 10−4 3.77914 × 10−5 3.64089 × 10−4 4.96166 × 10−3 3.64089 × 10−4 

1.0 1.76114 × 10−4 2.65956 × 10−3 1.76114 × 10−4 1.38889 × 10−3 1.85716 × 10−2 1.38889 × 10−3 

Application 4.2. [35] Consider the following homogeneous FMPS: 

𝐷𝛼𝜌1(𝜏) + 𝜌1(𝜏) + 𝑒−𝜏𝛼
cos (

𝜏𝛼

2
) 𝜌2 (

𝜏

2
) + 2𝑒−

3𝜏𝛼

4 cos (
𝜏𝛼

2
) sin (

𝜏𝛼

4
) 𝜌1 (

𝜏

4
) = 0, 

𝐷𝛼𝜌2(𝜏) − 𝑒𝜏𝛼
𝜌1

2 (
𝜏

2
) + 𝜌2

2 (
𝜏

2
) = 0,        (32) 

subject to  

𝜌1(0) = 1, 𝜌2(0) = 0,        (33) 

which has an exact solution in the case of 𝛼 = 1 as follows: 

𝜌1(𝜏) = 𝑒−𝜏 cos 𝜏 , 𝜌2(𝜏) = sin 𝜏. 

 𝐸𝐸𝑥𝑡1
𝛼=1 (𝜏) 𝐸𝑅𝑒𝑠1

𝛼=0.5(𝜏) 

𝑡 LRPST HAM (ℏ = −1) RPST LRPST HAM (ℏ = −1) RPST 

0.0 0 0 0 0 0 0 

0.2 2.60461 × 10−9 2.91038 × 10−8 2.60461 × 10−9 8.88889 × 10−8 9.66713 × 10−7 8.88889 × 10−8 

0.4 3.42086 × 10−7 3.85358 × 10−6 3.42086 × 10−7 5.68889 × 10−6 5.94783 × 10−5 5.68889 × 10−6 

0.6 6.00039 × 10−6 6.75053 × 10−5 6.00039 × 10−6 6.47999 × 10−5 6.51337 × 10−4 6.47999 × 10−5 

0.8 4.61729 × 10−5 5.18636 × 10−4 4.61729 × 10−5 3.64089 × 10−4 3.51558 × 10−3 3.64089 × 10−4 

1.0 2.26273 × 10−4 253712 × 10−3 2.26273 × 10−4 1.38889 × 10−3 1.28713 × 10−2 1.38889 × 10−3 
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Solution: As in the previous application, apply LT to every equation in (32) to get 

𝑃1(𝑠) −
1

𝑠
+

𝑃1(𝑠)

𝑠𝛼
+

1

sα
ℓ [𝑒−𝜏𝛼

cos (
𝜏𝛼

2
) 2 ℓ−1[𝑃2(2s)]]

+
1

sα
ℓ [2𝑒−

3𝜏𝛼

4 cos (
𝜏𝛼

2
) sin (

𝜏𝛼

4
) 4 ℓ−1[𝑃1(4s)]] = 0, 

𝑃2(𝑠) −
1

sα ℓ[𝑒𝜏𝛼
(ℓ−1[2𝑃1(2s)])2] +

1

sα ℓ[(ℓ−1[2𝑃2(2s)])2] = 0.      (34) 

Depending on our approach taken in Section 3, assume that the 𝑘th approximate series solutions of (34) 

have the following expansions: 

𝑃1,𝑘(𝑠) =
1

𝑠
+ ∑

ℎ1,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 , 𝑃2,𝑘(𝑠) =

1

𝑠
+ ∑

ℎ2,𝑛

𝑠𝑛𝛼+1
𝑘
𝑛=1 .    (35) 

Therefore, the 𝑘th Laplace residual functions of (34) are as follows: 

ℓ𝑅𝑒𝑠1,𝑘(𝑠) =  𝑃1,𝑘(𝑠) −
1

𝑠
−

𝑃1,𝑘(𝑠)

𝑠α
+

1

sα
ℓ [𝑒−𝜏𝛼

cos (
𝜏𝛼

2
) 2 ℓ−1[𝑃2,𝑘(2s)]]

+
1

sα
ℓ [2𝑒−

3𝜏𝛼

4 cos (
𝜏𝛼

2
) sin (

𝜏𝛼

4
) 4 ℓ−1[𝑃1,𝑘(4s)]] = 0, 

ℓ𝑅𝑒𝑠2,𝑘(𝑠) =  𝑃2,𝑘(𝑠) −
1

sα ℓ [𝑒𝜏𝛼
(ℓ−1[2𝑃1,𝑘(2s)])

2
] +

1

sα ℓ [(ℓ−1[2𝑃2,𝑘(2s)])
2

] = 0.  (36) 

As in the previous example, recursively, we substitute 𝑘 = 1,2, … into (36), multiply each equation in 

it by 𝑠𝑘𝛼+1, and then take the limit as 𝑠 → ∞ to find the coefficients of series solution in (35) as follows: 

ℎ1,1 = −1, 

ℎ2,1 = 1, 

ℎ1,2 = (1 − 2−𝛼 − 2−1Γ(𝛼 + 1)), 

ℎ2,2 = (−21−𝛼 + Γ(𝛼 + 1)), 

ℎ1,3 =
1

8𝛼+1
(−1 + 21−3𝛼 + 2−𝛼 + (

1

2
− 2−2𝛼) Γ(1 + 𝛼) +

(1 + 21+𝛼)Γ (
1
2 + 𝛼)

2√𝜋
+

3

8
Γ(1 + 2𝛼)), 

ℎ2,3 =
1

2
Γ(1 + 2𝛼) + 8−𝛼 (−2 + 21+𝛼 −

21+4𝛼Γ (
1
2 + 𝛼)

√𝜋
− 2𝛼Γ(1 + 𝛼)), 



19963 

AIMS Mathematics  Volume 8, Issue 9, 19950–19970. 

ℎ1,4 = (1 + 21−6𝛼 − 21−5𝛼 − 21−3𝛼 − 2−𝛼 −
1

2
Γ(1 + 𝛼) −

8−𝛼

2
Γ(1 + 2𝛼)

−
2−1−2𝛼

√𝜋
(−4 + 21+3𝛼 + 4𝛼)Γ (

1

2
+ 𝛼) −

3

8
Γ(1 + 2𝛼) −

7

96
Γ(1 + 3𝛼)

+
4−1−3𝛼√𝜋 Γ(1 + 3𝛼)

Γ (
1
2 + 𝛼)

−
3(2)−3−2𝛼(1 + 2𝛼)Γ(1 + 3𝛼)

Γ(1 + α)

− 2−1−5𝛼(−1 + 2𝛼 + 41+𝛼)
Γ(1 + 3𝛼)

Γ(1 + 2𝛼)

+
2−5𝛼Γ(1 + 𝛼)((1 + 8𝛼)Γ(1 + 2𝛼) + 8𝛼Γ(1 + 3𝛼))

Γ(1 + 2𝛼)
), 

ℎ2,4 = (21−6𝛼(2 + 4𝛼 − 8𝛼) − 21−5𝛼Γ(1 + 𝛼) +
8−𝛼(1 + 21+𝛼)

√𝜋
Γ (

1

2
+ 𝛼) −

2−𝛼Γ(1 + 3𝛼)

Γ(1 + 𝛼)

+ 8−𝛼Γ(1 + 𝛼) + 3 (2)−2−3𝛼Γ(1 + 2𝛼) +
1

6
Γ(1 + 3𝛼) +

4−𝛼 Γ(1 + 3𝛼)

Γ2(1 + 𝛼)

− 8−𝛼(3 − 21+𝛼 + 2𝛼Γ(1 + 𝛼))
Γ(1 + 3𝛼)

Γ(1 + 2α)
−

21−4𝛼(−3 + 2𝛼)Γ(1 + 3𝛼)

Γ(1 + 𝛼)Γ(1 + 2𝛼)
). 

Thus, we can express the 5th approximate series solution of (34) as: 

𝑃1(𝑠) =
1

𝑠
−

1

𝑠𝛼+1 
+ (1 −

1

2𝛼
−

Γ(𝛼 + 1)

2
)

1

𝑠2𝛼+1 
+

ℎ1,3

𝑠3𝛼+1
+

ℎ1,4

𝑠4𝛼+1
, 

𝑃2(𝑠) =
1

𝑠𝛼+1 
− (21−𝛼 − Γ(𝛼 + 1))

1

𝑠2𝛼+1 
+

ℎ2,3

𝑠3𝛼+1
+

ℎ2,4

𝑠4𝛼+1
.     (37) 

To get the solution of the system (32) and (33) in the original space, we apply the inverse LT to (37) to get 

𝜌1(𝜏) = 1 −
𝜏𝛼

Γ(1 + 𝛼)
+ (1 −

1

2𝛼
−

Γ(𝛼 + 1)

2
)

𝜏2𝛼 

Γ(1 + 2𝛼)
+

ℎ1,3𝜏3𝛼 

Γ(1 + 3𝛼)
+

ℎ1,4𝜏4𝛼 

Γ(1 + 4𝛼)
, 

𝜌2(𝜏) =
𝜏𝛼

Γ(1+𝛼)
+ (−21−𝛼 + Γ(1 + 𝛼))

𝜏2𝛼 

Γ(1+2𝛼)
+

ℎ2,3𝜏3𝛼 

Γ(1+3𝛼)
+

ℎ2,4𝜏4𝛼 

Γ(1+4𝛼)
.    (38) 

We can verify that at 𝛼 = 1, the 5th approximate series solution in (38) becomes as follows: 

𝜌1
6(𝜏) = 1 − 𝜏 +

𝜏3

3
−

𝜏4

6
+

𝜏5

30
, 

𝜌2
6(𝜏) = 𝜏 −

𝜏3

6
+

𝜏5

120
,          (39) 
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that coincide with the first six terms of the expansion of the exact solutions. 

Likewise, in this application, the solution that we obtained was analyzed to verify its accuracy by 

reviewing some graphs and numerical tables. Figures 5(a ( and 6(a) show the high agreement between 

the approximate and exact solution when α = 1. Figures 5(b) and 6(b) present the solution in (38) at 

different values of 𝛼, which are 0.5, 0.7 and 1. The curves show that the movement of the particle  

changes by increasing or decreasing according to the change in the value of 𝛼. This confirms what we 

mentioned earlier: The value of 𝛼 affects the movement. Figure 7 shows the exact error of the fifth 

approximation for the solution given in (39) and it seems to be very acceptable mathematically in the 

period shown. 

   

                    
(a)           (b) 

Figure 5. The graphs of (a) the exact solution, 𝜌1(𝜏) and the 5th approximate solution, 

𝜌1,5(𝜏) at 𝛼 = 1, (b) the 5th approximate solution, 𝜌1,5(𝜏) at different values of 𝛼 (α =

1, 0.7, 0.5) using the LRPST. 

   

                   
(a)            (b) 

Figure 6. The graphs of (a) the exact solution, 𝜌2(𝜏) and the 5th approximate solution, 

𝜌2,5(𝜏) at 𝛼 = 1, (b) the 5th approximate solution, 𝜌2,5(𝜏) at different values of 𝛼 

(𝛼 = 1, 0.7, 0.5) using the LRPST. 
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(a)            (b) 

Figure 7. The exact error of (a) the 5th approximate solution, 𝜌1,5(𝜏) , (b) the 5th 

approximate solution, 𝜌2,5(𝜏) at α = 1. 

In the following two tables, Tables 3 and 4, we present two types of errors, exact and residual, 

related to Application 4.2 for the present approximation and previous approximations prepared by the 

RPST and HAM methods. 

Table 3. The exact, 𝐸𝐸𝑥𝑡1

𝛼=1(𝜏) and the residual, 𝐸𝑅𝑒𝑠1

𝛼=0.5(𝜏) errors of 𝜌1,6(𝜏). 

 𝑬𝑬𝒙𝒕𝟏

𝜶=𝟏 (𝝉) 𝑬𝑹𝒆𝒔𝟏

𝜶=𝟎.𝟓(𝝉) 

𝑡 LRPST HAM(ℏ = −1) RPST LRPST HAM(ℏ = −1) RPST 

0.0 0 0 0 0 0 0 

0.2 1.93 × 10−8  6.44 × 10−8 1.93 × 10−8 4.40 × 10−4 3.94 × 10−4 4.40 × 10−4 

0.4 2.35 × 10−6 3.79 × 10−6 2.35 × 10−6 5.40 × 10−3 3.72 × 10−3 5.40 × 10−3 

0.6 3.82 × 10−5 3.98 × 10−5 3.82 × 10−5 2.10 × 10−2 1.40 × 10−2 2.10 × 10−2 

0.8 2.72 × 10−4 2.07 × 10−4 2.72 × 10−4 3.60 × 10−2 3.59 × 10−2 3.60 × 10−2 

1.0 1.23 × 10−3 7.38 × 10−4 1.23 × 10−3 1.09 × 10−1 7.49 × 10−2 1.09 × 10−1 

Table 4. The exact, 𝐸𝐸𝑥𝑡2

𝛼=1(𝜏) and the residual, 𝐸𝑅𝑒𝑠2

𝛼=0.5(𝜏) errors of 𝜌2,6(𝜏). 

 𝐸𝐸𝑥𝑡2
𝛼=1 (𝜏) 𝐸𝑅𝑒𝑠2

𝛼=0.5(𝜏) 

𝑡 LRPST HAM(ℏ = −1) RPST LRPST HAM(ℏ = −1) RPST 

0.0 0 0 0 0 0 0 

0.2 2.53 × 10−9  7.97 × 10−10 2.53 × 10−9 2.35 × 10−3 3.96 × 10−3 2.35 × 10−3 

0.4 3.24 × 10−7 1.19 × 10−7 3.24 × 10−7 1.99 × 10−2 3.39 × 10−2 1.99 × 10−2 

0.6 5.52 × 10−6 2.40 × 10−6 5.52 × 10−6 6.90 × 10−2 1.20 × 10−1 6.90 × 10−2 

0.8 4.12 × 10−5 2.14 × 10−5 4.12 × 10−5 1.65 × 10−1 2.95 × 10−1 1.65 × 10−1 

1.0 1.95 × 10−4 1.22 × 10−4 1.95 × 10−4 3.26 × 10−1 5.94 × 10−1 3.26 × 10−1 

The residual errors, 𝐸ℓ𝑅𝑒𝑠1

𝛼  and 𝐸ℓ𝑅𝑒𝑠2

𝛼 , of the approximation in (38) are defined as: 

𝐸ℓ𝑅𝑒𝑠1

𝛼 = |𝐷𝛼𝜌1,𝑘(𝜏) + 𝜌1,𝑘(𝜏) + 𝑒−𝜏𝛼
cos (

𝜏𝛼

2
) 𝜌2,𝑘 (

𝜏

2
) + 2𝑒−

3𝜏𝛼

4 cos (
𝜏𝛼

2
) sin (

𝜏𝛼

4
) 𝜌1,𝑘 (

𝜏

4
)|, 

𝐸ℓ𝑅𝑒𝑠2

𝛼 = |𝐷𝛼𝜌2,𝑘(𝜏) − 𝑒𝜏𝛼
𝜌1,𝑘

2 (
𝜏

2
) + 𝜌2,𝑘

2 (
𝜏

2
)|. 
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The results in the two tables indicate a perfect match between the results of the methods LRPST 

and RPST, while the new results are much better than those obtained by the HAM method. Also, we 

can see from the tables that the LRPST solution converges faster to the exact solution. Although the 

solution resulting from the methods LRPST and RPST are identical, the steps of the solution using the 

LRPST are easier and faster to reach the required solution. 

5. Discussion and conclusions 

The main goal of this article is to test the applicability of LRPST to solve the FMPS and to 

determine its efficiency in creating an accurate solution for it. The results indicate the applicability of 

the proposed method and provide analytical series solutions for the FMPS that are compatible with the 

exact solutions. Comparisons of the obtained approximate solutions with those previously obtained by 

HAM or RPST confirm the efficiency of the presented method. Furthermore, the results we got are 

consistent with those of RPST. It is worth noting that the calculations used in the LRPST were faster 

and more straightforward compared to the RPST calculations. This is because it is easier to calculate 

the limit at infinity compared to calculating the Caputo-fractional derivative that we need many times 

in each step of the RPST. Accordingly, we conclude that LRPST is a powerful and effective method 

characterized by simplicity and high accuracy in creating analytical series solutions that converge with 

accurate FMPS solutions. On the other hand, it can be noted that the software (Mathematica 13) was 

used in calculating symbolic and numerical quantities in this work and that the time taken for the 

calculation was short compared to other methods. 

As is known, all approximate methods for solving differential equations, whether analytical or 

numerical, have limits and controls that prevent their application to all equations. The LRPST, like 

other analytical methods, has conditions when applied that can be summarized in the following points: 

• All of the theories related to LRPST are related to Caputo's definition. If it is used to solve 

fractional DEs with another fractional derivative concept, the theorems in Section 2 must be 

reformulated to conform to the new characterization. 

• All functions used in the DEs to be solved must meet the conditions of the Laplace transform. 

• The solution of the target equation plus all its terms must be expandable as a fractional power series. 

Therefore, if all these conditions are met in the DE, the LRPST can solve it. Otherwise, the method fails. 

Based on the foregoing statement, it can be said that there is a need for more research and work 

to develop the method used to meet the requirements of other types of differential and integral 

equations, whether they are fractional or integer orders such as nonlinear diffusion-convection 

fractional equation [32,52], Klien-Gordon equation, Volterra integral equations [53,54] and other 

equations [55]. 
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