We investigate Choquard equations in $ \mathbb R^N $ driven by a weighted $ N $-Laplace operator with polynomial kernel and zero mass. Since the setting is limiting for the Sobolev embedding, we work with nonlinearities which may grow up to the critical exponential. We establish the existence of a positive solution by variational methods, complementing the analysis in [
Citation: Giulio Romani. Choquard equations with critical exponential nonlinearities in the zero mass case[J]. AIMS Mathematics, 2024, 9(8): 21538-21556. doi: 10.3934/math.20241046
We investigate Choquard equations in $ \mathbb R^N $ driven by a weighted $ N $-Laplace operator with polynomial kernel and zero mass. Since the setting is limiting for the Sobolev embedding, we work with nonlinearities which may grow up to the critical exponential. We establish the existence of a positive solution by variational methods, complementing the analysis in [
[1] | F. S. B. Albuquerque, M. C. Ferreira, U. B. Severo, Ground state solutions for a nonlocal equation in $ \mathbb R^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263–294. https://doi.org/10.1007/s00032-021-00334-x doi: 10.1007/s00032-021-00334-x |
[2] | C. O. Alves, D. Cassani, C. Tarsi, M.Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $ \mathbb R^2$, J. Diff. Equ., 261 (2016), 1933–1972. https://doi.org/10.1016/j.jde.2016.04.021 doi: 10.1016/j.jde.2016.04.021 |
[3] | C. O. Alves, G. Figueiredo, Existence of positive solution for a planar Schrödinger-Poisson system with exponential growth, J. Math. Phys., 60 (2019), 011503. https://doi.org/10.1063/1.5039627 doi: 10.1063/1.5039627 |
[4] | C. O. Alves, M. A. S. Souto, M. Montenegro, Existence of solution for two classes of elliptic problems in $ \mathbb R^N$ with zero mass, J. Diff. Equ., 252 (2012), 5735–5750. https://doi.org/10.1016/j.jde.2012.01.041 doi: 10.1016/j.jde.2012.01.041 |
[5] | C. O. Alves, J. Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math., 86 (2018), 329–342. https://doi.org/10.1007/s00032-018-0289-x doi: 10.1007/s00032-018-0289-x |
[6] | A. Azzollini, A. Pomponio, On a "zero mass" nonlinear Schrödinger equation, Adv. Nonlinear Stud., 7 (2007), 599–627. |
[7] | M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach, London: Universitext Springer, 2011. |
[8] | V. Benci, D. Fortunato, Variational Methods in Nonlinear Field Equations, Berlin: Springer, 2014. |
[9] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations. Pt. 1, Arch. Rational Mech. Anal., 82 (1983), 313–345. |
[10] | F. Bernini, G. Romani, C. Tarsi, Nonlinear Schrödinger-Poisson systems in dimension two: the zero mass case, preprint paper, 2024. https://doi.org/10.48550/arXiv.2405.03871 |
[11] | C. D. Bucur, D. Cassani, C. Tarsi, Quasilinear logarithmic Choquard equations with exponential growth in $ \mathbb R^N$, J. Diff. Equ., 328 (2022), 261–294. https://doi.org/10.1016/j.jde.2022.05.002 doi: 10.1016/j.jde.2022.05.002 |
[12] | D. Cassani, L. Du, Z. Liu, Positive solutions to the planar Choquard equation via asymptotic approximation, Nonlinear Anal., 241 (2024), 113479. |
[13] | D. Cassani, Z. Liu, G. Romani, Nonlocal planar Schrödinger-Poisson systems in the fractional Sobolev limiting case, J. Diff. Equ., 383 (2024), 214–269. https://doi.org/10.1016/j.jde.2023.11.018 doi: 10.1016/j.jde.2023.11.018 |
[14] | D. Cassani, Z. Liu, G. Romani, Nonlocal Schrödinger-Poisson systems in $\mathbb R^N$: the fractional Sobolev limiting case, Rend. Istit. Mat. Univ. Trieste., preprint paper, 2023. https://doi.org/10.48550/arXiv.2311.13424 |
[15] | D. Cassani, C. Tarsi, Schrödinger-Newton equations in dimension two via a Pohozaev-Trudinger log-weighted inequality, Calc. Var., 60 (2021), 197. https://doi.org/10.1007/s00526-021-02071-w doi: 10.1007/s00526-021-02071-w |
[16] | D. Cassani, J. V. Schaftingen, J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proc. R. Soc. Edinb. Sect. A, 150 (2020), 1377–1400. https://doi.org/10.1017/prm.2018.135 doi: 10.1017/prm.2018.135 |
[17] | D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212. https://doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019 |
[18] | S. Chen, M. Shu, X. Tang, L. Wen, Planar Schrödinger-Poisson system with critical exponential growth in the zero mass case, J. Diff. Equ., 327 (2022), 448–480. https://doi.org/10.1016/j.jde.2022.04.022 doi: 10.1016/j.jde.2022.04.022 |
[19] | S. Cingolani, T. Weth, On the planar Schrödinger-Poisson system, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33 (2016), 169–197. |
[20] | F. Cirstea, D. Montreanu, V. D. Rădulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal., 43 (2001), 623–636. https://doi.org/10.1016/S0362-546X(99)00224-2 doi: 10.1016/S0362-546X(99)00224-2 |
[21] | J. C. de Albuquerque, J. L. Carvalho, Quasilinear equation with critical exponential growth in the zero mass case, Nonlinear Anal., 232 (2023), 113286. https://doi.org/10.1016/j.na.2023.113286 doi: 10.1016/j.na.2023.113286 |
[22] | D. de Figueiredo, O. Miyagaki, B. Ruf, Elliptic equations in $ \mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var., 4 (1996), 203. https://doi.org/10.1007/BF01189954 doi: 10.1007/BF01189954 |
[23] | N. Dunford, J. T. Schwartz, Linear Operators. I. General Theory, New York: John Wiley & Sons, 1988. |
[24] | G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2 Eds., New York: Springer Monographs in Mathematics, 2011. |
[25] | B. Gidas, Euclidean Yang-Mills and related equations, In: Bardos, C., Bessis, D. (eds) Bifurcation Phenomena in Mathematical Physics and Related Topics. NATO Advanced Study Institutes Series, Dordrecht: Springer, 1979. https://doi.org/10.1007/978-94-009-9004-3_15 |
[26] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence: American Mathematical Society, 2001. |
[27] | Z. Liu, V. D. Rădulescu, J. Zhang, A planar Schrödinger-Newton system with Trudinger-Moser critical growth, Calc.Var., 62 (2023), 122. https://doi.org/10.1007/s00526-023-02463-0 doi: 10.1007/s00526-023-02463-0 |
[28] | Z. Liu, V. D. Rădulescu, C. Tang, J. Zhang, Another look at planar Schrödinger-Newton systems, J. Diff. Equ., 328 (2022), 65–104. https://doi.org/10.1016/j.jde.2022.04.035 doi: 10.1016/j.jde.2022.04.035 |
[29] | V. Moroz, J. V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007 |
[30] | V. Moroz, J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773–813. https://doi.org/10.1007/s11784-016-0373-1 doi: 10.1007/s11784-016-0373-1 |
[31] | P. Pucci, J. Serrin, The strong maximum principle revisited, J. Diff. Equ., 196 (2004), 1–66. The strong maximum principle revisited |
[32] | G. Romani, Schrödinger-Poisson systems with zero mass in the Sobolev limiting case, Math. Nachr., 2024, 1–30. https://doi.org/10.1002/mana.202300514 |
[33] | J. Simon, Régularité de la solution d'une équation non linéaire dans $ \mathbb R^N$, Lect. Notes Math., 665 (1977), 205–227. |
[34] | Y. Su, Z. Liu, Semiclassical states to the nonlinear Choquard equation with critical growth, Israel J. Math., 255 (2023), 729–762. https://doi.org/10.1007/s11856-023-2485-9 doi: 10.1007/s11856-023-2485-9 |
[35] | Y. Su, Z. Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials, J. Diff. Equ., 250 (2011), 223–242. https://doi.org/10.1016/j.jde.2010.08.025 doi: 10.1016/j.jde.2010.08.025 |
[36] | L. Wen, S. Chen, V. D. Rădulescu, Axially symmetric solutions of the Schrödinger-Poisson system with zero mass potential in $ \mathbb R^2$, Appl. Math. Lett., 104 (2020), 106244. https://doi.org/10.1016/j.aml.2020.106244 doi: 10.1016/j.aml.2020.106244 |
[37] | Y. Yang, Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space, J. Funct. Anal., 262 (2012), 1679–1704. https://doi.org/10.1016/j.jfa.2011.11.018 doi: 10.1016/j.jfa.2011.11.018 |