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1. Introduction

In the opinion of Zadeh [45], fuzzy set theory, which was introduced in 1965, says that decision-
makers should take membership degree into account while settling ambiguous situations. It is a method
of conveying and presenting vague or ill-defined information. The concept of fuzzy sets has been
explored by several researchers (see, e.g., [9, 11, 38, 42, 46]). In mathematics, the concept of a fuzzy
set is a generalization of classical sets. There are various extensions of fuzzy sets, such as intuitionistic
fuzzy sets [4], Pythagorean fuzzy sets [44], Fermatean fuzzy sets [34], spherical fuzzy sets [3], picture
fuzzy sets [7], and linear Diophantine fuzzy sets [33], among others. In this research, we will review
the extensions of fuzzy sets relevant to this study, namely intuitionistic fuzzy sets, Pythagorean fuzzy
sets, and Fermatean fuzzy sets. In 1986, Atanassov [4] introduced the notion of intuitionistic fuzzy
sets as a generalization of fuzzy sets. These sets consist of an element’s degree of membership and
non-membership in a universe set, with the rule that sum of these degrees not be greater than one.
Currently, the concept of intuitionistic fuzzy sets is still being studied continuously [10, 22, 23, 41].
Subsequently, Yager [44] introduced the notion of Pythagorean fuzzy sets, where the sum of the squares
of membership and non-membership is constrained to the unit interval [0, 1]. This concept generalizes
both fuzzy sets and intuitionistic fuzzy sets. In addition, Senapati and Yager [34] first introduced the
concept of Fermatean fuzzy sets in 2019, defining them as the cube sum of their membership and non-
membership degrees in [0, 1]. The fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets are
all generalized by Fermatean fuzzy sets. For example, consider two real numbers, 0.7 and 0.8, in the
interval [0, 1]. We can observe that 0.7 + 0.8 > 1 and (0.7)2 + (0.8)2 > 1, but (0.7)3 + (0.8)3 < 1. This
means that the Fermatean fuzzy sets have a better information space than the intuitionistic fuzzy sets
and the Pythagorean fuzzy sets.

The concepts of various types of fuzzy set mentioned above are applied to the classes of algebras,
helping develop the basic properties of these algebras. The semigroup is an essential structure in
abstract algebra and has applications in automata theory, numerical theory, functional analysis,
and optimization, among other mathematical and theoretical fields. The study of the regularity
of semigroups is an important and trending area of research. This article will briefly review the
classification of semigroups using various types of fuzzy sets. Kehayopulu and Tsingelis [18] used
fuzzy quasi-ideals and fuzzy left (resp., right) ideals to characterize regular ordered semigroups. Xie
and Tang [43] later developed fuzzy left (resp., right) ideals, fuzzy (resp., generalized) bi-ideals,
and fuzzy quasi-ideals that characterized the classes of regular and intra-regular ordered semigroups.
Further characterizations of regular, intra-regular, and left weakly regular ordered semigroups were
then provided by Khan and Shabir [19], using their intuitionistic fuzzy left (resp., right) ideals.
Subsequently, Hussain et al. [13] introduced the concept of rough Pythagorean fuzzy ideals in
semigroups, which extends to the lower and upper approximations of bi-ideals, interior ideals, (1, 2)-
ideals, and Pythagorean fuzzy left (resp., right) ideals of semigroups. Afterwards, the concepts of
Pythagorean fuzzy prime ideals and semi-prime ideals of ordered semigroups, together with some of
the essential features of Pythagorean fuzzy regular and intra-regular ordered semigroup ideals, were
examined by Adak et al. [2]. A review of relations is provided for the family of Fermatean fuzzy
regular ideals of ordered semigroups, and Adak et al. [2] determined the concept of Fermatean fuzzy
semi-prime (resp., prime) ideals. For using different types of fuzzy sets to classify the regularity of
semigroups, see [5, 17, 20, 21, 36].
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As a generalization to ordinary algebraic structures, Marty [24] gave algebraic hyperstructures
in 1934. In an algebraic hyperstructure, the composition of two elements is a nonempty set, but
in an ordinary algebraic structure, the composition of two elements is an element. The notion of a
semigroup is generalized to form a semihypergroup. Several authors have investigated various facets
of semihypergroups; for instance, see [8, 12, 31, 32]. Fuzzy set theory gives a novel field of study
called fuzzy hyperstructures. In 2014, Hila and Abdullah [16] characterized various classes of Γ-
semihypergroups using intuitionistic fuzzy left (resp., right, two-sided) Γ-hyperideals and intuitionistic
bi-Γ-hyperideals. Afterwards, the characteristics of fuzzy quasi-Γ-hyperideals were used by Tang et
al. [39] in 2017 to study characterizations of regular and intra-regular ordered Γ-semihypergroups.
Additional characterizations of regular semihypergroups and intra-regular semihypergroups were given
by Shabir et al. [35], based on the properties of their (∈, ∈ ∨q)-bipolar fuzzy hyperideals and
(∈, ∈ ∨q)-bipolar fuzzy bi-hyperideals. Furthermore, Masmali [25] used Pythagorean picture fuzzy
sets hyperideals to characterize the class of regular semihypergroups. More recently, Nakkhasen [28]
introduced Fermatean fuzzy subsemihypergroups, Fermatean fuzzy (resp., left, right) hyperideals, and
Fermatean fuzzy (resp., generalized) bi-hyperideals of semihypergroups in 2023. Additionally, some
characterizations of regular semihypergroups were made using their corresponding types of Fermatean
fuzzy hyperideals. Further, Nakkhasen has also studied the characterizations of different types of
regularities in algebraic structures involving semigroups using the concept of generalized fuzzy sets,
such as picture fuzzy sets, spherical fuzzy sets, and Pythagorean fuzzy sets, which can be found in the
following references [26, 27, 29, 30].

As previously mentioned, there are various types of regularities in algebra that are related
to semigroups, such as regular, intra-regular, completely regular, left regular, right regular, and
generalized regular. However, the most popular are the regular and intra-regular types. It is known
that the algebraic structure of semihypergroups is an extension of semigroups and ordered semigroups.
The objective of this research is to classify the regularity of semihypergroups using the properties
of Fermatean fuzzy set theory. For usage in the following section, we review the fundamental ideas
and features of Fermatean fuzzy sets in semihypergroups in Section 2. In Section 3, which is the
main section of our paper, we characterize intra-regular semihypergroups by Fermatean fuzzy left
(resp., right) hyperideals, and Fermatean (resp., generalized) bi-hyperideals. Additionally, the notion
of Fermatean fuzzy interior hyperideals of semihypergroups is defined, and the class of intra-regular
semihypergroups is characterized by Fermatean fuzzy interior hyperideals. Finally, Section 4 delves
into the features of Fermatean fuzzy left (resp., right) hyperideals and Fermatean (resp., generalized)
bi-hyperideals of semihypergroups, which are used to characterize both regular and intra-regular
semihypergroups.

2. Preliminaries

A map ◦ : X × X → P∗(X) is called a hyperoperation (see [24]) on a nonempty set X where P∗(X)
is the set of all nonempty subsets of X. The pair (X, ◦) is called a hypergroupoid. Let X be a nonempty
set and let A, B ∈ P∗(X) and x ∈ X. Then, we denote

A ◦ B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B.

A hypergroupoid (S , ◦) is said to be a semihypergroup (see [6]) if for every x, y, z ∈ S , (x ◦ y) ◦ z =
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x ◦ (y ◦ z), which means that
⋃

u∈x◦y

u ◦ z =
⋃
v∈y◦z

x ◦ v. For simplicity, we represent a semihypergroup as

S instead of a semihypergroup (S , ◦), AB represents A ◦ B, for all nonempty subsets A and B of S , and
xy represents x ◦ y, for all x, y ∈ S .

Now, we will review the notions of various types of hyperideals in semihypergroups, taken from [14]
and [37]. A nonempty subset A of a semihypergroup S is called:

(i) a subsemihypergroup of S if AA ⊆ A;
(ii) a left hyperideal of S if S A ⊆ A;

(iii) a right hyperideal of S if AS ⊆ A;
(iv) a hyperideal of S if it is both a left and a right hyperideal of S ;
(v) a bi-hyperideal of S if AA ⊆ A and AS A ⊆ A;

(vi) a generalized bi-hyperideal of S if AS A ⊆ A;
(vii) an interior hyperideal of S if AA ⊆ A and S AS ⊆ A.

A map f : X → [0, 1] from a nonempty set X into the unit interval is called a fuzzy set [45]. Let
f and g be any two fuzzy sets of a nonempty set X. The notions f ∩ g and f ∪ g are defined by
( f ∩ g)(x) = min{ f (x), g(x)} and ( f ∪ g)(x) = max{ f (x), g(x)}, for all x ∈ X, respectively.

A Fermatean fuzzy set [34] (briefly, FFS) on a nonempty set X is defined as:

A := {⟨x, µA(x), λA(x)⟩ | x ∈ X},

where µA : X → [0, 1] and λA : X → [0, 1] represent the degree of membership and non-
membership of each x ∈ X to the set A, respectively, with satisfy 0 ≤ (µA(x))3 + (λA(x))3 ≤ 1,
for all x ∈ X. Throughout this paper, we will use the symbol A = (µA, λA) instead of the FFS
A = {⟨x, µA(x), λA(x)⟩ | x ∈ X}.

In 2023, Nakkhasen [28] defined the concepts of many types of Fermatean fuzzy hyperideals in
semihypergroups as follows. Let S be a semihypergroup, andA = (µA, λA) be an FFS on S . Then:

(i) A is called a Fermatean fuzzy subsemihypergroup (briefly, FFSub) of S if for every x, y ∈ S ,

inf
z∈xy
µA(z) ≥ min{µA(x), µA(y)} and sup

z∈xy
λA(z) ≤ max{λA(x), λA(y)};

(ii) A is called a Fermatean fuzzy left hyperideal (briefly, FFL) of S if for every x, y ∈ S ,

inf
z∈xy
µA(z) ≥ µA(y) and sup

z∈xy
λA(z) ≤ λA(y);

(iii) A is called a Fermatean fuzzy right hyperideal (briefly, FFR) of S if for every x, y ∈ S ,

inf
z∈xy
µA(z) ≥ µA(x) and sup

z∈xy
λA(z) ≤ λA(x);

(iv) A is called a Fermatean fuzzy hyperideal (briefly, FFH) of S if it is both an FFL and an FFR of
S ;

(v) an FFSub A of S is called a Fermatean fuzzy bi-hyperideal (briefly, FFB) of S if for every
w, x, y ∈ S ,

inf
z∈xwy
µA(z) ≥ min{µA(x), µA(y)} and sup

z∈xwy
λA(z) ≤ max{λA(x), λA(y)};
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(vi) a FFS A of S is called a Fermatean fuzzy generalized bi-hyperideal (briefly, FFGB) of S if for
every w, x, y ∈ S ,

inf
z∈xwy
µA(z) ≥ min{µA(x), µA(y)} and sup

z∈xwy
λA(z) ≤ max{λA(x), λA(y)}.

For any FFSsA = (µA, λA) and B = (µB, λB) on a nonempty set X, we denote:

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and λA(x) ≥ λB(x), for all x ∈ X;
(ii) A = B if and only ifA ⊆ B and B ⊆ A;

(iii) A∩B := {⟨x, (µA ∩ µB)(x), (λA ∪ λB)(x)⟩ | x ∈ X};
(iv) A∪B := {⟨x, (µA ∪ µB)(x), (λA ∩ λB)(x)⟩ | x ∈ X}.

We observe thatA∩B andA∪B are FFSs of X ifA and B are FFSs on X.
LetA = (µA, λA) and B = (µB, λB) be any FFSs of a semihypergroup S . Then, the Fermatean fuzzy

product ofA and B is defined as

A ◦ B := {⟨x, (µA ◦ µB)(x), (λA ◦ λB)(x)⟩ | x ∈ S },

where

(µA ◦ µB)(x) =

sup
x∈ab

[min{µA(a), µB(b)}] if x ∈ S 2,

0 otherwise,

(λA ◦ λB)(x) =

 inf
x∈ab

[max{λA(a), λB(b)}] if x ∈ S 2,

1 otherwise.

For any semihypergroup S , we determine the FFSs S := {⟨x, 1, 0⟩ | x ∈ S } and O := {⟨x, 0, 1⟩ |
x ∈ S } on S . This obtains that A ⊆ S and O ⊆ A, for all FFS A = (µA, λA) on S . The
Fermatean characteristic function of a subset A of a semihypergroup S , as an FFS on S , defined
by CA = {⟨x, µCA(x), λCA(x)⟩ | x ∈ S }, where

µCA(x) =

1 if x ∈ A,

0 otherwise,
and λCA(x) =

0 if x ∈ A,

1 otherwise.

We note that if for each subset A of S such that A = S (resp., A = ∅), then CA = S (resp., CA = O).
All the above-mentioned notions are presented in [28].

Lemma 2.1. [28] Let CA = (µCA , λCA) and CB = (µCB , λCB) be FFSs of a semihypergroup S with respect
to nonempty subsets A and B of S , respectively. Then the following axioms hold:

(i) CA∩B = CA ∩ CB;
(ii) CAB = CA ◦ CB.

Lemma 2.2. [28] Let A = (µA, λA), B = (µB, λB), C = (µC, λC) and D = (µD, λD) be any FFSs of a
semihypergroup S . IfA ⊆ B and C ⊆ D, thenA ◦ C ⊆ B ◦ D.

Lemma 2.3. [28] Let A = (µA, λA) be an FFS on a semihypergroup S . The following conditions
hold:
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(i) A is an FFSub of S if and only ifA ◦A ⊆ A;
(ii) A is an FFL of S if and only if S ◦ A ⊆ A;

(iii) A is an FFR of S if and only ifA ◦ S ⊆ A;
(iv) A is an FFGB of S if and only ifA ◦ S ◦ A ⊆ A;
(v) A is an FFB of S if and only ifA ◦A ⊆ A andA ◦ S ◦ A ⊆ A.

Lemma 2.4. [28] For any nonempty subset A of a semihypergroup S , the following statements hold:

(i) A is a subsemihypergroup of S if and only if CA = (µCA , λCA) is an FFSub of S ;
(ii) A is a left hyperideal of S if and only if CA = (µCA , λCA) is an FFL of S ;

(iii) A is a right hyperideal of S if and only if CA = (µCA , λCA) is an FFR of S ;
(iv) A is a hyperideal of S if and only if CA = (µCA , λCA) is an FFH of S ;
(v) A is a generalized bi-hyperideal of S if and only if CA = (µCA , λCA) is an FFGB of S ;

(vi) A is a bi-hyperideal of S if and only if CA = (µCA , λCA) is an FFB of S .

A semihypergroup S is called regular (see [15]) if for every element a in S , there exists x ∈ S such
that a ∈ axa. Equivalently, a ∈ aS a, for all a ∈ S or A ⊆ AS A, for any A ⊆ S . A semihypergroup
S is called intra-regular (see [35]) if, for any element a in S , there exist x, y ∈ S such that a ∈ xa2y.
Equivalently, a ∈ S a2S , for all a ∈ S or A ⊆ S A2S , for each A ⊆ S .

Example 2.5. Let N denote the set of all natural numbers. Define a hyperoperation ◦ on N by a ◦ b :=
{x ∈ N | x ≤ ab}, for all a, b ∈ N. Next, we claim that the hyperoperation ◦ on N is consistent with
the associative property. Let a, b ∈ N and x ∈ (a ◦ b) ◦ c. Then, x ∈ u ◦ c, for some u ∈ a ◦ b. So,
x ≤ uc and u ≤ ab. It follows that x ≤ uc ≤ (ab)c = a(bc). Also, x ∈ a ◦ (bc) ⊆ a ◦ (b ◦ c), since
bc ∈ b ◦ c. Thus, (a ◦ b) ◦ c ⊆ a ◦ (b ◦ c). Similarly, we can prove that a ◦ (b ◦ c) ⊆ (a ◦ b) ◦ c. Hence,
(a ◦ b) ◦ c = a ◦ (b ◦ c). Therefore, (N, ◦) is a semihypergroup. Now, for every a ∈ N, we have a ≤ axa
and a ≤ ya2z, for some x, y, z ∈ N. This implies that a ∈ a ◦ x ◦ a and a ∈ y ◦ a ◦ a ◦ z. It turns out that
(N, ◦) is a regular and intra-reular semihypergroup.

Lemma 2.6. [28] Let S be a semihypergroup. Then, S is regular if and only if R∩L = R◦L, for any
FFR R = (µR, λR) and any FFL L = (µL, λL) of S .

Lemma 2.7. [35] Let S be a semihypergroup. Then, S is intra-regular if and only if L ∩ R ⊆ LR, for
every left hyperideal L and every right hyperideal R of S .

3. Intra-regular semihypergroups

In this section, we present results about the characterizations of intra-regular semihypergroups by
properties of FFLs, FFRs, FFBs, and FFGBs of semihypergroups.

Theorem 3.1. Let S be a semihypergroup. Then, S is intra-regular if and only if L ∩ R ⊆ L ◦ R, for
every FFL L = (µL, λL) and every FFR R = (µR, λR) of S .

Proof. Assume that S is intra-regular. Let L = (µL, λL) and R = (µR, λR) be an FFL and an FFR of S ,
respectively. For any a ∈ S , there exist x, y ∈ S such that a ∈ xa2y. Then, we have

(µL ◦ µR)(a) = sup
a∈pq

[
min{µL(p), µR(q)}

]
AIMS Mathematics Volume 9, Issue 12, 35800–35822.



35806

≥ min
{

inf
p∈xa
µL(p), inf

q∈ay
µR(q)

}
≥ min{µL(a), µR(a)}
= (µL ∩ µR)(a),

and

(λL ◦ λR)(a) = inf
a∈pq

[
max{λL(p), λR(q)}

]
≤ max

{
sup
p∈xa
λL(p), sup

q∈ay
λR(q)

}
≤ max{λL(a), λR(a)}
= (λL ∪ λR)(a).

Hence, L ∩ R ⊆ L ◦ R.
Conversely, let L and R be any left hyperideal and any right hyperideal of S , respectively. By

Lemma 2.4, we have CL = (µCL , λCL) and CR = (µCR , λCR) are an FFL and an FFR of S , respectively.
By the given assumption and Lemma 2.1, we get

CL∩R = CL ∩ CR ⊆ CL ◦ CR = CLR.

Now, let a ∈ L ∩ R. Thus, we have µCLR(a) ≥ µCL∩R(a) = 1. Also, µCLR(a) = 1; that is, a ∈ LR. This
implies that L ∩ R ⊆ LR. By Lemma 2.7, we conclude that S is intra-regular. □

Theorem 3.2. Let S be a semihypergroup. Then the following statements are equivalent:

(i) S is intra-regular;
(ii) L ∩ G ⊆ L ◦ G ◦ S, for each FFL L = (µL, λL) and each FFGB G = (µG, λG) of S ;

(iii) L ∩ B ⊆ L ◦ B ◦ S, for each FFL L = (µL, λL) and each FFB B = (µB, λB) of S .

Proof. (i)⇒(ii) Assume that S is intra-regular. Let L = (µL, λL) and G = (µG, λG) be an FFL and an
FFGB of S , respectively. Let a ∈ S . Then, there exist x, y ∈ S such that a ∈ xa2y. It follows that
a ∈ (x2a)(ayay). Thus, we have

(µL ◦ µG ◦ µS)(a) = sup
a∈pq

[
min{µL(p), (µG ◦ µS)(q)}

]
= sup

a∈pq

[
min
{
µL(p), sup

q∈mn

[
min{µG(m), µS(n)}

]}]
≥ min

{
inf

p∈x2a
µL(p),min

{
inf

m∈aya
µG(m), µS(y)

}}
≥ min{µL(a),min{µG(a), µG(a)}}
= min{µL(a), µG(a)}
= (µL ∩ µG)(a),

and

(λL ◦ λG ◦ λS)(a) = inf
a∈pq

[
max{λL(p), (λG ◦ λS)(q)}

]
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= inf
a∈pq

[
max
{
λL(p), inf

q∈mn

[
max{λG(m), λS(n)}

]}]
≤ max

 sup
p∈x2a
λL(p),max

{
sup

m∈aya
λG(m), λS(y)

}
≤ max{λL(a),max{λG(a), λG(a)}}
= max{λL(a), λG(a)}
= (λL ∪ λG)(a).

This means that L ∩ G ⊆ L ◦ G ◦ S.
(ii)⇒(iii) Since every FFB is also an FFGB of S , it follows that (iii) holds.
(iii)⇒(i) Let L = (µL, λL) and R = (µR, λR) be an FFL and an FFR of S , respectively. We obtain

that R is also an FFB of S . By assumption, we have L∩R ⊆ L ◦ (R ◦ S) ⊆ L ◦ R. By Theorem 3.1, it
turns out that S is intra-regular. □

Theorem 3.3. Let S be a semihypergroup. Then the following statements are equivalent:

(i) S is intra-regular;
(ii) G ∩ R ⊆ S ◦ G ◦ R, for each FFR R = (µR, λR) and each FFGB G = (µG, λG) of S ;

(iii) B ∩ R ⊆ S ◦ B ◦ R, for each FFR R = (µR, λR) and each FFB B = (µB, λB) of S .

Proof. (i)⇒(ii) Assume that S is intra-regular. Let a ∈ S . Then, there exist x, y ∈ S such that a ∈
(xaxa)(ay2). Hence, we have

(µS ◦ µG ◦ µR)(a) = sup
a∈pq

[
min{(µS ◦ µG)(p), µR(q)}

]
= sup

a∈pq

[
min
{

sup
p∈mn

[
min{µS(m), µG(n)}

]
, µR(q)

}]
≥ min

{
min
{
µS(x), inf

n∈axa
µG(n)

}
, inf

q∈ay2
µR(q)

}
≥ min{min{µG(a), µG(a)}, µR(a)}
= min{µG(a), µR(a)}
= (µR ∩ µG)(a),

and

(λS ◦ λG ◦ λR)(a) = inf
a∈pq

[
max{(λS ◦ λG)(p), λR(q)}

]
= inf

a∈pq

[
max
{

inf
p∈mn

[
max{λS(m), λG(n)}

]
, λR(q)

}]
≤ max

max
{
λS(x), sup

n∈axa
λG(n)

}
, sup

q∈ay2
λR(q)


≤ max{max{λG(a), λG(a)}, λR(a)}
= max{λG(a), λR(a)}
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= (λR ∪ λG)(a).

This shows that R ∩ G ⊆ S ◦ G ◦ R.
(ii)⇒(iii) Since every FFB is also an FFGB of S , it is well done.
(iii)⇒(i) Let L = (µL, λL) and R = (µR, λR) be an FFL and an FFR of S , respectively. Then, L is

also an FFB of S . By the hypothesis, we have L ∩ R ⊆ (L ◦ S) ◦ R ⊆ L ◦ R. By Theorem 3.1, we
obtain that S is intra-regular. □

Theorem 3.4. The following statements are equivalent in a semihypergroup S :

(i) S is intra-regular;
(ii) G1 ∩ G2 ⊆ S ◦ G1 ◦ G2 ◦ S, for any FFGBs G1 = (µG1 , λG1) and G2 = (µG2 , λG2) of S ;

(iii) B1 ∩ B2 ⊆ S ◦ B1 ◦ B2 ◦ S, for any FFBs B1 = (µB1 , λB1) and B2 = (µB2 , λB2) of S .

Proof. (i)⇒(ii) Let a ∈ S . Then, there exist x, y ∈ S such that a ∈ xa2y. Thus, we have

(µS ◦ µG1 ◦ µG2 ◦ µS)(a) = sup
a∈pq

[
min{(µS ◦ µG1)(p), (µG2 ◦ µS)(q)}

]
= sup

a∈pq

[
min
{

sup
p∈mn

[
min{µS(m), µG1(n)}

]
, sup

q∈kl

[
min{µG2(k), µS(l)}

]}]
≥ min{min{µS(x), µG1(a)},min{µG2(a), µS(y)}}
= min{µG1(a), µG2(a)}
= (µG1 ∩ µG2)(a),

and

(λS ◦ λG1 ◦ λG2 ◦ λS)(a) = inf
a∈pq

[
max{(λS ◦ λG1)(p), (λG2 ◦ λS)(q)}

]
= inf

a∈pq

[
max
{

inf
p∈mn

[
max{λS(m), λG1(n)}

]
, inf

q∈kl

[
max{λG2(k), λS(l)}

]}]
≤ max{max{λS(x), λG1(a)},max{λG2(a), λS(y)}}
= max{λG1(a), λG2(a)}
= (λG1 ∪ λG2)(a).

This implies that G1 ∩ G2 ⊆ S ◦ G1 ◦ G2 ◦ S.
(ii)⇒(iii) It is obvious.
(iii)⇒(i) Let L = (µL, λL) be any FFL of S , and R = (µR, λR) be any FFR of S . Then, L and R are

also FFBs of S . By the hypothesis, we have L ∩ R ⊆ (S ◦ L) ◦ (R ◦ S) ⊆ L ◦ R. By Theorem 3.1, it
follows that S is intra-regular. □

Corollary 3.5. Let S be a semihypergroup. Then, the following conditions are equivalent:

(i) S is intra-regular;
(ii) G ⊆ S ◦ G ◦ G ◦ S, for any FFGB G = (µG, λG) of S ;

(iii) B ⊆ S ◦ B ◦ B ◦ S, for any FFB B = (µB, λB) of S .
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Proof. (i)⇒(ii) It follows by Theorem 3.4.
(ii)⇒(iii) It is clear.
(iii)⇒(i) Let L = (µL, λL) and R = (µR, λR) be an FFL and an FFR of S , respectively. It is

not difficult to see that L ∩ R is also an FFB of S . By the given assumption, we have L ∩ R ⊆
S ◦ (L ∩ R) ◦ (L ∩ R) ◦ S ⊆ (S ◦ L) ◦ (R ◦ S) ⊆ L ◦ R. By Theorem 3.1, we conclude S is
intra-regular. □

The following corollary is obtained by Corollary 3.5.

Corollary 3.6. Let S be a semihypergroup. Then, S is intra-regular if and only if B ∩ G ⊆ (S ◦ B ◦
B ◦ S) ∩ (S ◦ G ◦ G ◦ S), for every FFB B = (µB, λB) and every FFGB G = (µG, λG) of S .

Theorem 3.7. If S is an intra-regular semihypergroup, then A ∩ B = A ◦ B, for each FFHs A =
(µA, λA) and B = (µB, λB) of S .

Proof. Assume that S is an intra-regular semihypergroup. LetA = (µA, λA) and B = (µB, λB) be FFHs
of S . Then, A ◦ B ⊆ A ◦ S ⊆ A and A ◦ B ⊆ S ◦ B ⊆ B, it follows that A ◦ B ⊆ A ∩ B. Next, let
a ∈ S . By assumption, there exist x, y ∈ S such that a ∈ xa2y = (xa)(ay); that is, a ∈ pq, for some
p ∈ xa and q ∈ ay. Thus, we have

(µA ◦ µB)(a) = sup
a∈pq

[
min{µA(p), µB(q)}

]
≥ min

{
inf
p∈xa
µA(p), inf

q∈ay
µB(q)

}
≥ min{µA(a), µB(a)}
= (µA ∩ µB)(a),

and

(λA ◦ λB)(a) = inf
a∈pq

[
max{λA(p), λB(q)}

]
≤ max

{
sup
p∈xa
λA(p), sup

q∈ay
λB(q)

}
≤ max{λA(a), λB(a)}
= (λA ∪ λB)(a).

Hence,A∩B ⊆ A ◦ B. Therefore,A∩B = A ◦ B. □

Theorem 3.8. Let S be a semihypergroup. Then the following properties are equivalent:

(i) S is intra-regular;
(ii) L ∩ G ∩ R ⊆ L ◦ G ◦ R, for every FFL L = (µL, λL), every FFR R = (µR, λR) and every FFGB
G = (µG, λG) of S ;

(iii) L ∩ B ∩ R ⊆ L ◦ B ◦ R, for every FFL L = (µL, λL), every FFR R = (µR, λR) and every FFB
B = (µB, λB) of S .
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Proof. (i)⇒(ii) Assume that S is intra-regular. Let a ∈ S . Then, there exist x, y ∈ S such that a ∈ xa2y,
which implies that a ∈ (x2a)(ayxaxa)(ay3). Thus, a ∈ uvq, for some u ∈ x2a, v ∈ ayxaxa and q ∈ ay3.
Also, there exists p ∈ S such that p ∈ uv, and so a ∈ pq. So, we have

(µL ◦ µG ◦ µR)(a) = sup
a∈pq

[
min{(µL ◦ µG)(p), µR(q)}

]
= sup

a∈pq

[
min
{

sup
p∈uv

[
min{µL(u), µG(v)}

]
, µR(q)

}]
≥ min

{
min
{

inf
u∈x2a
µL(u), inf

v∈ayxaxa
µG(v)

}
, inf

q∈ay3
µR(q)

}
≥ min{min{µL(a),min{µG(a), µG(a)}}, µR(a)}
= min{µL(a), µG(a), µR(a)}
= (µL ∩ µG ∩ µR)(a),

and

(λL ◦ λG ◦ λR)(a) = inf
a∈pq

[
max{(λL ◦ λG)(p), λR(q)}

]
= inf

a∈pq

[
max
{

inf
p∈uv

[
max{λL(u), λG(v)}

]
, λR(q)

}]
≤ max

max
{

sup
u∈x2a
λL(u), sup

v∈ayxaxa
λG(v)

}
, sup

q∈ay3
λR(q)


≤ max{max{λL(a),max{λG(a), λG(a)}}, λR(a)}
= max{λL(a), λG(a), λR(a)}
= (λL ∪ λG ∪ λR)(a).

This shows that L ∩ G ∩ R ⊆ L ◦ G ◦ R.
(ii)⇒(iii) It is clear.
(iii)⇒(i) Let L = (µL, λL) and R = (µR, λR) be any FFL and any FFR of S , respectively. Then, R is

also an FFB of S . By the given assumption, we have L ∩ R = L ∩ R ∩ R ⊆ L ◦ R ◦ R ⊆ L ◦ R. By
Theorem 3.1, we get that S is intra-regular. □

Now, we introduce the notion of Fermatean fuzzy interior hyperideals in semihypergroups and
investigate some properties of this notion. Moreover, we use the properties of Fermatean fuzzy interior
hyperideals to study the characterizations of intra-regular semihypergroups.

Definition 3.9. An FFsub A = (µA, λA) is said to be a Fermatean fuzzy interior hyperideal (briefly,
FFInt) of a semihypergroup S if for every w, x, y ∈ S , inf

z∈wxy
µA(z) ≥ µA(x) and sup

z∈wxy
λA(z) ≤ λA(x).

Theorem 3.10. Let S be a semihypergroup, and A = (µA, λA) be an FFS of S . Then, A is an FFInt
of S if and only ifA ◦A ⊆ A and S ◦ A ◦ S ⊆ A.

Proof. Assume thatA is an FFInt of S . Then,A is an FFSub of S . By Lemma 2.3, we haveA◦A ⊆ A.
Now, let a ∈ S . If a < bcd, for all b, c, d ∈ S , then S◦A◦S ⊆ A. Suppose that there exist p, q, x, y ∈ S
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such that a ∈ xy and x ∈ pq. It follows that a ∈ pqy. Thus, we have

(µS ◦ µA ◦ µS)(a) = sup
a∈xy

[
min{(µS ◦ µA)(x), µS(y)}

]
= sup

a∈xy

[
(µS ◦ µA)(x)

]
= sup

a∈xy

[
sup
x∈pq

[
min{µS(p), µA(q)}

]]
= sup

a∈xy

[
sup
x∈pq

[
µA(q)

]]
≤ µA(a),

and

(λS ◦ λA ◦ λS)(a) = inf
a∈xy

[
max{(λS ◦ λA)(x), λS(y)}

]
= inf

a∈xy
[(λS ◦ λA)(x)]

= inf
a∈xy

[
inf
x∈pq

[
max{λS(p), λA(q)}

]]
= inf

a∈xy

[
inf
x∈pq

[
λA(q)

]]
≥ λA(a).

Hence, S ◦ A ◦ S ⊆ A. Conversely, let x, y, z ∈ S , and let w ∈ xyz. Then, there exists u ∈ xy such that
w ∈ uz. By assumption, we have

µA(w) ≥ (µS ◦ µA ◦ µS) = sup
w∈pq

[
min{(µS ◦ µA)(p), µS(q)}

]
≥ {(µS ◦ µA)(u), µS(z)}
= sup

u∈st

[
min{µS(s), µA(t)}

]
≥ min{µS(x), µA(y)} = µA(y),

and

λA(w) ≤ (λS ◦ λA ◦ λS) = inf
w∈pq

[
max{(λS ◦ λA)(p), λS(q)}

]
≤ {(λS ◦ λA)(u), λS(z)}
= inf

u∈st
[max{λS(s), λA(t)}]

≤ max{λS(x), λA(y)} = λA(y).

This shows that µA(w) ≥ µA(y) and λA(w) ≤ λA(y), for all w ∈ xyz. It follows that inf
w∈xyz
µA(z) ≥ µA(y)

and sup
w∈xyz
λA(z) ≤ λA(y). Therefore,A is an FFInt of S . □
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Theorem 3.11. Let S be a semihypergroup, and A be a nonempty subset of S . Then, A is an interior
hyperideal of S if and only if CA = (µCA , λCA) is an FFInt of S .

Proof. Assume that A is an interior hyperideal of S . Then A is a subsemihypergroup of S . By Lemma
2.4, we have CA is an FFSub of S . Now, let x, y, z ∈ S . If y < A, then infw∈xyz µCA(w) ≥ 0 = µCA(y) and
supw∈xyz λCA(w) ≤ 1 = λCA(y). On the other hand, suppose that y ∈ A. Thus, xyz ⊆ A, which implies
that for every w ∈ xyz, we have µCA(w) = 1 and λCA(w) = 0. This means that µCA(w) ≥ µCA(y) and
λCA(w) ≤ λCA(y), for all w ∈ xyz. That is, infw∈xyz µCA(w) ≥ µCA(y) and supw∈xyz λCA(w) ≤ λCA(y). Hence,
CA is an FFInt of S .

Conversely, assume that CA = (µCA , λCA) is an FFInt of S . Then, CA is an FFSub of S . By Lemma
2.4, we have that A is a subsemihypergroup of S . Let x, z ∈ S and y ∈ A. By assumption, we get
infw∈xyz µCA(w) ≥ µCA(y) = 1 and supw∈xyz λCA(w) ≤ λCA(y) = 0. This implies that µCA(w) ≥ 1 and
λCA(w) ≤ 0, for all w ∈ xyz. Otherwise, µCA(w) ≤ 1 and λCA(w) ≥ 0. So, µCA(w) = 1 and λCA(w) = 0, for
all w ∈ xyz. It turns out that w ∈ A. This shows that S AS ⊆ A. Therefore, A is an interior hyperideal
of S . □

Example 3.12. Let S = {a, b, c, d} be a set with the hyperoperation ◦ on S defined by the following
table:

◦ a b c d
a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a} {a, b}
d {a} {a} {a, b} {a, b, c}

It follows that (S , ◦) is a semihypergroup, [40]. We see that A = {a, c} is an interior hyperideal of S .
After that, the FFSA = (µA, λA) of S defined by

µA(x) =

1 if x ∈ A,

0 otherwise,
and λA(x) =

0 if x ∈ A,

1 otherwise,

for all x ∈ S . Applying Theorem 3.11, we haveA = (µA, λA) is a FFInt of S .

Proposition 3.13. Every FFH of a semihypergroup S is also an FFInt of S .

Proof. LetA = (µA, λA) be an FFH of a semihypergroup S . By Lemma 2.3, we haveA◦A ⊆ A◦S ⊆
A and S◦A◦S = (S◦A)◦S ⊆ A◦S ⊆ A. By Theorem 3.10, it follows thatA is an FFInt of S . □

Example 3.14. Let S = {a, b, c, d} such that (S , ◦) is a semihypergroup, as defined in Example 3.12.
In the next step, we define an FFSA = (µA, λA) on S as follows:

A

S
a b c d

µA 0.9 0.6 0.8 0.5
λA 0.5 0.8 0.7 0.9

Upon careful inspection, we obtain that the FFSA is an FFInt of S . However, the FFIntA of S is not
a FFL of S , because
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inf
z∈d◦c
µA(z) = µA(b) < µA(c) and sup

z∈d◦c
λA(z) = λA(b) > λA(c).

Furthermore, the FFIntA of S is not an FFR of S either, since

inf
z∈c◦d
µA(z) = µA(b) < µA(c) and sup

z∈c◦d
λA(z) = λA(b) > λA(c).

It can be concluded that the FFInt of S does not have to be an FFH of S .

Theorem 3.15. In an intra-regular semihypergroup S , every FFInt of S is also an FFH of S .

Proof. Let A = (µA, λA) be an FFInt of S , and let a, b ∈ S . Then, there exist x, y ∈ S such that
a ∈ xa2y. So, ab ⊆ (xa2y)b = (xa)a(yb). Thus, for every z ∈ ab, there exist u ∈ xa and v ∈ yb such that
z ∈ uav, which implies that µA(z) ≥ infz∈uav µA(z) ≥ µA(a) and λA(z) ≤ supz∈uav λA(z) ≤ λA(a). We
obtain that infz∈ab µA(z) ≥ µA(a) and supz∈ab λA(a). Hence, A is an FFR of S . Similarly, we can show
thatA is an FFL of S . Therefore,A is an FFH of S . □

Theorem 3.16. Let S be a semihypergroup. Then the following results are equivalent:

(i) S is intra-regular;
(ii) I ∩ G ∩ L ⊆ L ◦ G ◦ I, for each FFL L = (µL, λL), each FFInt I = (µI, λI) and each FFGB
G = (µG, λG) of S ;

(iii) I ∩ B ∩ L ⊆ L ◦ B ◦ I, for each FFL L = (µL, λL), each FFInt I = (µI, λI) and each FFB
B = (µB, λB) of S .

Proof. (i)⇒(ii) Assume that S is intra-regular. Let a ∈ S . Then, there exist x, y ∈ S such that a ∈ xa2y,
and so a ∈ (x2a)a(yay). Thus, a ∈ waq, for some w ∈ x2a and q ∈ yay, and then a ∈ pq, for some
p ∈ wa. So, we have

(µL ◦ µG ◦ µI)(a) = sup
a∈pq

[
min{(µL ◦ µG)(p), µI(q)}

]
= sup

a∈pq

[
min
{

sup
p∈wa

[
min{µL(w), µG(a)}

]
, µI(q)

}]
≥ min

{
min
{

inf
w∈x2a
µL(w), µG(a)

}
, inf

q∈yay
µI(q)

}
≥ min

{
min
{
µL(a), µG(a)

}
, µI(a)

}
= min{µL(a), µG(a), µI(a)}
= (µL ∩ µG ∩ µI)(a),

and

(λL ◦ λG ◦ λI)(a) = inf
a∈pq

[
max{(λL ◦ λG)(p), λI(q)}

]
= inf

a∈pq

[
max
{

inf
p∈wa

[
max{λL(w), λG(a)}

]
, λI(q)

}]
≤ max

{
max
{

sup
w∈x2a
λL(w), λG(a)

}
, sup

q∈yay
λI(q)

}
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≤ max
{
max
{
λL(a), λG(a)

}
, λI(a)

}
= max{λL(a), λG(a), λI(a)}
= (λL ∪ λG ∪ λI)(a).

Therefore, I ∩ G ∩ L ⊆ L ◦ G ◦ I.
(ii)⇒(iii) Since every FFB of S is an FFGB of S , it follows that (iii) is obtained.
(iii)⇒(i) Let L = (µL, λL) and R = (µR, λR) be an FFL and an FFR of S , respectively. Then, R is

also an FFB of S . By assumption, we have L∩R = S ∩L∩R ⊆ L ◦ (R ◦ S) ⊆ L ◦ R. Consequently,
S is intra-regular by Theorem 3.1. □

Theorem 3.17. Let S be a semihypergroup. Then the following results are equivalent:

(i) S is intra-regular;
(ii) I ∩ G ∩ R ⊆ I ◦ G ◦ R, for each FFR R = (µR, λR), each FFInt I = (µI, λI) and each FFGB
G = (µG, λG) of S ;

(iii) I ∩ B ∩ R ⊆ I ◦ B ◦ R, for each FFR R = (µR, λR), each FFInt I = (µI, λI) and each FFB
B = (µB, λB) of S .

Proof. (i)⇒(ii) Assume that S is intra-regular. Let a ∈ S . Then, there exist x, y ∈ S such that a ∈ xa2y.
This implies that a ∈ (xax)a(ay2). Thus, a ∈ paw, for some p ∈ xax and w ∈ ay2, and so a ∈ pq, for
some q ∈ aw. So, we have

(µI ◦ µG ◦ µR)(a) = sup
a∈pq

[
min{µI(p), (µG ◦ µR)(q)}

]
= sup

a∈pq

[
min
{
µI(p), sup

q∈aw

[
min{µG(a), µR(w)}

]}]
≥ min

{
inf

p∈xax
µI(p),min

{
µG(a), inf

w∈ay2
µR(w)

}}
≥ min{µI(a),min{µG(a), µR(a)}}
= min{µI(a), µG(a), µR(a)}
= (µI ∩ µG ∩ µR)(a),

and

(λI ◦ λG ◦ λR)(a) = inf
a∈pq

[
max{λI(p), (λG ◦ λR)(q)}

]
= inf

a∈pq

[
max
{
λI(p), inf

q∈aw

[
max{λG(a), λR(w)}

]}]
≤ max

 sup
p∈xax
λI(p),max

λG(a), sup
w∈ay2
λR(w)




≤ max{λI(a),max{λG(a), λR(a)}}
= max{λI(a), λG(a), λR(a)}
= (λI ∪ λG ∪ λR)(a).
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It turns out that I ∩ G ∩ R ⊆ I ◦ G ◦ R.
(ii)⇒(iii) It is obvious.
(iii)⇒(i) Let L = (µL, λL) and R = (µR, λR) be an FFL and an FFR of S , respectively. Then, R is

also an FFB of S. By assumption, we have L ∩ R = S ∩ L ∩ R ⊆ (S ◦ L) ◦ R ⊆ L ◦ R. By Theorem
3.1, we obtain that S is intra-regular. □

4. Regular and intra-regular semihypergroups

In this section, we characterize both regular and intra-regular semihypergroups in terms of different
types of Fermatean fuzzy hyperideals of semihypergroups.

Lemma 4.1. [35] Let S be a semihypergroup. Then, S is both regular and intra-regular if and only if
B = BB, for every bi-hyperideal B of S .

Theorem 4.2. Let S be a semihypergroup. Then the following statements are equivalent:

(i) S is both regular and intra-regular;
(ii) B = B ◦ B, for any FFB B = (µB, λB) of S ;

(iii) G ∩H ⊆ G ◦ H , for all FFGBs G = (µG, λG) andH = (µH , λH ) of S ;
(iv) A∩B ⊆ A ◦ B, for all FFBsA = (µA, λA) and B = (µB, λB) of S .

Proof. (i)⇒(iii) Let G = (µG, λG) and H = (µH , λH ) be FFGBs of S . By assumption, there exist
x, y, z ∈ S such that a ∈ axa and a ∈ ya2z. Also, a ∈ (axya)(azxa), which implies that a ∈ pq, for some
p ∈ axya and q ∈ azxa. Thus, we have

(µG ◦ µH )(a) = sup
a∈pq

[
min{µG(p), µH (q)}

]
≥ min

{
inf

p∈axya
µG(p), inf

q∈azxa
µH (q)

}
≥ min{min{µG(a), µG(a)},min{µH (a), µH (a)}}
= min{µG(a), µH (a)}
= (µG ∩ µH )(a),

and

(λG ◦ λH )(a) = inf
a∈pq

[
max{λG(p), λH (q)}

]
≤ max

{
sup

p∈axya
λG(p), sup

q∈azxa
λH (q)

}
≤ max{max{λG(a), λG(a)},max{λH (a), λH (a)}}
= max{λG(a), λH (a)}
= (λG ∪ λH )(a).

Therefore, G ∩H ⊆ G ◦ H .
(iii)⇒(iv) Since every FFB is also an FFGB of S , it follows that (iv) holds.
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(iv)⇒(ii) Let B = (µB, λB) be any FFB of S . By the hypothesis, we have B = B ∩ B ⊆ B ◦ B.
Otherwise, B ◦ B ⊆ B always. Hence, B = B ◦ B.

(ii)⇒(i) Let B be any bi-hyperideal of S . By Lemma 2.4, we have CB = (µCB , λCB) is an FFB of S .
By the given assumption and Lemma 2.1, it follows that CB = CB ◦ CB = CBB. For every a ∈ B, we
have µCBB(a) = µCB(a) = 1. This means that a ∈ BB. It turns out that B ⊆ BB. On the other hand,
BB ⊆ B. Hence, B = BB. By Lemma 4.1, we obtain that S is both regular and intra-regular. □

The next theorem follows by Theorem 4.2.

Theorem 4.3. The following properties are equivalent in a semihypergroup S :

(i) S is both regular and intra-regular;
(ii) B ∩ G ⊆ B ◦ G, for each FFB B = (µB, λB) and each FFGB G = (µG, λG) of S ;

(iii) B ∩ G ⊆ G ◦ B, for each FFB B = (µB, λB) and each FFGB G = (µG, λG) of S .

Moreover, the following corollary obtained by Theorems 4.2 and 4.3.

Corollary 4.4. For a semihypergroup S , the following conditions are equivalent:

(i) S is both regular and intra-regular;
(ii) G ∩H ⊆ (G ◦ H) ∩ (H ◦ G), for all FFGBs G = (µG, λG) andH = (µH , λH ) of S ;

(iii) A∩B ⊆ (A ◦ B) ∩ (B ◦ A), for all FFBsA = (µA, λA) and B = (µB, λB) of S ;
(iv) B ∩ G ⊆ (B ◦ G) ∩ (G ◦ B), for any FFB B = (µB, λB) and any FFGB G = (µG, λG) of S .

By Lemma 2.6 and Theorem 3.1, we receive the following theorem.

Theorem 4.5. Let S be a semihypergroup. Then, S is both regular and intra-regular if and only if
L ∩ R ⊆ (L ◦ R) ∩ (R ◦ L), for every FFL L = (µL, λL) and every FFR R = (µR, λR) of S .

The following theorem can be proved by Corollary 4.4 and Theorem 4.5.

Theorem 4.6. In a semihypergroup S , the following statements are equivalent:

(i) S is both regular and intra-regular;
(ii) G ∩ L ⊆ (G ◦ L) ∩ (L ◦ G), for any FFL L = (µL, λL) and any FFGB G = (µG, λG) of S ;

(iii) B ∩ L ⊆ (B ◦ L) ∩ (L ◦ B), for any FFL L = (µL, λL) and any FFB B = (µB, λB) of S ;
(iv) R ∩ G ⊆ (G ◦ R) ∩ (R ◦ G), for every FFR R = (µR, λR) and any FFGB G = (µG, λG) of S ;
(v) R ∩ B ⊆ (B ◦ R) ∩ (R ◦ B), for every FFR R = (µR, λR) and any FFB B = (µB, λB) of S .

Theorem 4.7. The following properties are equivalent on a semihypergroup S :

(i) S is both regular and intra-regular;
(ii) L ∩ G ⊆ G ◦ L ◦ G, for each FFL L = (µL, λL) and each FFGB G = (µG, λG) of S ;

(iii) L ∩ B ⊆ B ◦ L ◦ B, for each FFL L = (µL, λL) and each FFB B = (µB, λB) of S ;
(iv) R ∩ G ⊆ G ◦ R ◦ G, for each FFR R = (µR, λR) and each FFGB G = (µG, λG) of S ;
(v) R ∩ B ⊆ B ◦ R ◦ B, for each FFR R = (µR, λR) and each FFB B = (µB, λB) of S .

Proof. (i)⇒(ii) Let L = (µL, λL) and G = (µG, λG) be an FFL and an FFGB of S , respectively.
Let a ∈ S . Then, there exist x, y, z ∈ S such that a ∈ axa and a ∈ ya2z. This implies that

AIMS Mathematics Volume 9, Issue 12, 35800–35822.



35817

a ∈ (axya)(azxya)(azxa); that is, a ∈ pq, for some p ∈ axya and q ∈ uv, where u ∈ azxya and
v ∈ azxa. Thus, we have

(µG ◦ µL ◦ µG)(a) = sup
a∈pq

[
min{µG(p), (µL ◦ µG)(q)}

]
= sup

a∈pq

[
min
{
µG(p), sup

q∈uv

[
min{µL(u), µG(v)}

]}]
≥ min

{
inf

p∈axya
µG(p),min

{
inf

u∈azxya
µL(u), inf

v∈azxa
µG(v)

}}
≥ min{min{µG(a), µG(a)},min{µL(a),min{µG(a), µG(a)}}}
= min{µL(a), µG(a)}
= (µL ∩ µG)(a),

and

(λG ◦ λL ◦ λG)(a) = inf
a∈pq

[
max{λG(p), (λL ◦ λG)(q)}

]
= inf

a∈pq

[
max
{
λG(p), inf

q∈uv

[
max{λL(u), λG(v)}

]}]
≤ max

{
sup

p∈axya
λG(p),max

{
sup

u∈azxya
λL(u), sup

v∈azxa
λG(v)

}}
≤ max{max{λG(a), λG(a)},max{λL(a),max{λG(a), λG(a)}}}
= max{λL(a), λG(a)}
= (λL ∪ λG)(a).

We obtain that L ∩ G ⊆ G ◦ L ◦ G.
(ii)⇒(iii) It follows by the fact that every FFB is also an FFGB of S .
(iii)⇒(i) Let a ∈ S . It is easy to verify that a ∪ S a and a ∪ aa ∪ aS a are a left hyperideal and a

bi-hyperideal of S with containing a, respectively. Then, Ca∪S a and Ca∪aa∪aS a are an FFL and an FFB
of S , respectively. By the given hypothesis and Lemma 2.1, we obtain:

C(a∪S a)∩(a∪aa∪aS a) = Ca∪S a ∩ Ca∪aa∪aS a

⊆ Ca∪aa∪aS a ◦ Ca∪S a ◦ Ca∪aa∪aS a

= C(a∪aa∪aS a)(a∪S a)(a∪aa∪aS a).

This means that µC(a∪aa∪aS a)(a∪S a)(a∪aa∪aS a)(a) ≥ µC(a∪S a)∩(a∪aa∪aS a)(a) = 1. Also, a ∈ (a ∪ aa ∪ aS a)(a ∪ S a)(a ∪
aa ∪ aS a). It turns out that a ∈ (aS a) ∩ (S a2S ). Consequently, S is both regular and intra-regular.

Similarly, we can prove that (i)⇒(iv)⇒(v)⇒(i) obtain. □

Theorem 4.8. Let S be a semihypergroup. Then the following statements are equivalent:

(i) S is both regular and intra-regular;
(ii) L ∩ R ∩ G ⊆ G ◦ R ◦ L, for every FFL L = (µL, λL), every FFR R = (µR, λR) and every FFGB
G = (µG, λG) of S ;
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(iii) L ∩ R ∩ B ⊆ B ◦ R ◦ L, for every FFL L = (µL, λL), every FFR R = (µR, λR) and every FFB
B = (µB, λB) of S .

Proof. (i)⇒(ii) Let L = (µL, λL), R = (µR, λR) and G = (µG, λG) be an FFL, FFR, and FFGB of
S , respectively. Then, for any a ∈ S , there exist x, y, z ∈ S such that a ∈ axa and a ∈ ya2z. So,
a ∈ (axya)(az)(xa). Also, a ∈ pq, for some p ∈ axya and q ∈ uv, where u ∈ az and v ∈ xa. Thus, we
have

(µG ◦ µR ◦ µL)(a) = sup
a∈pq

[
min{µG(p), (µR ◦ µL)(q)}

]
= sup

a∈pq

[
min
{
µG(p), sup

q∈uv

[
min{µR(u), µL(v)}

]}]
≥ min

{
inf

p∈axya
µG(p),min

{
inf
u∈az
µR(u), inf

v∈xa
µL(v)

}}
≥ min{min{µG(a), µG(a)},min{µR(a), µL(a)}}
= min{µG(a), µR(a), µL(a)}
= (µG ∩ µR ∩ µL)(a),

and

(λG ◦ λR ◦ λL)(a) = inf
a∈pq

[
max{λG(p), (λR ◦ λL)(q)}

]
= inf

a∈pq

[
max
{
λG(p), inf

q∈uv

[
max{λR(u), λL(v)}

]}]
≤ max

{
sup

p∈axya
λG(p),max

{
sup
u∈az
λR(u), sup

v∈xa
λL(v)

}}
≤ max{max{λG(a), λG(a)},max{λR(a), λL(a)}}
= max{λG(a), λR(a), λL(a)}
= (λG ∪ λR ∪ λL)(a).

It follows that L ∩ R ∩ G ⊆ G ◦ R ◦ L.
(ii)⇒(iii) It is obvious.
(iii)⇒(i) Let s ∈ S . It is not difficult to show that the sets a ∪ S a, a ∪ aS , and a ∪ aa ∪ aS a are a

left hyperideal, a right hyperideal, and a bi-hyperideal of S with containing a, respectively. By Lemma
2.4, we have Ca∪S a, Ca∪aS , and Ca∪aa∪aS a are an FFL, an FFR, and an FFB of S , respectively. Using the
assumption and Lemma 2.1, we have

C(a∪S a)∩(a∪aS )∩(a∪aa∪aS a) = Ca∪S a ∩ Ca∪aS ∩ Ca∪aa∪aS a

⊆ Ca∪aa∪aS a ◦ Ca∪aS ◦ Ca∪S a

= C(a∪aa∪aS a)(a∪aS )(a∪S a).

It turns out that µC(a∪aa∪aS a)(a∪aS )(a∪S a)(a) ≥ µC(a∪S a)∩(a∪aS )∩(a∪aa∪aS a)(a) = 1; that is, a ∈ (a∪aa∪aS a)(a∪aS )(a∪
S a). Thus, a ∈ (aS a) ∩ (S a2S ). Therefore, S is both regular and intra-regular. □
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5. Conclusions

In 2023, Nakkhasen [28] applied the concept of Fermatean fuzzy sets to characterize the
class of regular semihypergroups. In this research, we discussed the characterizations of intra-
regular semihypergroups using the properties of Fermatean fuzzy left hyperideals, Fermatean
fuzzy right hyperideals, Fermatean fuzzy generalized bi-hyperideals, and Fermatean fuzzy bi-
hyperideals of semihypergroups, which are shown in Section 3. In addition, we introduced the
concept of Fermatean fuzzy interior hyperideals of semihypergroups and used this concept to
characterize intra-regular semihypergroups and proved that Fermatean fuzzy interior hyperideals and
Fermatean fuzzy hyperideals coincide in intra-regular semihypergroups. Furthermore, in Section 4, the
characterizations of both regular and intra-regular semihypergroups by many types of their Fermatean
fuzzy hyperideals are presented. In our next paper, we will investigate the characterization of weakly
regular semihypergroups using different types of Fermatean fuzzy hyperideals of semihypergroups.
Additionally, we will use the attributes of Fermatean fuzzy sets to describe various regularities (e.g.,
left regular, right regular, and completely regular) in semihypergroups.
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