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Abstract: In this study, using the ideas of subordination and the quantum-difference operator, we
established a new subclass S∗ (δ, σ, q) of q-starlike functions and the subclass S∗

Σ
(δ, σ, q) of q-starlike

bi-univalent functions associated with the vertical strip domain. We examined sharp bounds for the first
two Taylor-Maclaurin coefficients, sharp Fekete-Szegö type problems, and coefficient inequalities for
the function h that belong to S∗ (δ, σ, q), as well as sharp bounds for the inverse function h that belong
to S∗ (δ, σ, q). We also investigated some results for the class of bi-univalent functions S∗

Σ
(δ, σ, q) and

well-known corollaries were also highlighted to show connections between previous results and the
findings of this paper.
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1. Introduction and definitions

Let A be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1} and have the
series of the form

h(z) = z +
∞∑

n=2

anzn, (1.1)

and normalized by the conditions

h (0) = 0 and h′ (0) = 1.
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Consider S as the class of functions inA that are univalent inU. Let a function h ∈ S of the form (1.1)
have an inverse h−1 defined by

h−1 (h(z)) = z, z ∈ U,

and

h
(
h−1(w)

)
= w

(
|w| < r; r ≥

1
4

)
,

where
g(w) = h−1(w) = w − a2w2 +

(
2a2

2 − a3

)
w3 −

(
5a2

2 − 5a2a3 + a4

)
w4 + ... (1.2)

Let the class P be defined as

P = {p ∈ A : p(0) = 1 and Re (p(z)) > 0, z ∈ U} .

A function h ∈ A is said to be bi-univalent inU if both h and h−1 are univalent inU. Let the symbol Σ
denote the class of bi-univalent functions in the open unit disk U. Several scholars have recently
examined the bounds of the coefficients of analytic and bi-univalent functions. We recommend [1–11]
for more current research on this subject.

When Bieberbach [12] examined the coefficient hypothesis in 1916, scholars first started studying
the theory of functions, which was first recognized as a promising field of study in 1851. De
Branges [13] confirmed the Bieberbach theory in 1985, despite the fact that a huge number of well-
known researchers attempted to either confirm or disprove it between 1916 and 1985. Understanding
the theory of analytic and univalent functions, as well as how these ideas assess the expansion of
functions within their designated domains, is essential. This is made up of an arrangement of the
Taylor series, function coefficients, and associated functional inequalities. Fekete and Szegö [14]
made the important and useful discovery of the Fekete-Szegö inequality in 1933. The Fekete and
Szegö inequality, connected to the Bieberbach conjecture, is a mathematical inequality that deals with
the coefficients of univalent analytic functions. The maximizing of the nonlinear functional

∣∣∣a3 − µa2
2

∣∣∣
has been proven to have a number of impacts. This kind of problem, known as a sharp Fekete-Szegö
problem, is presented as follows:

∣∣∣a3 − µa2
2

∣∣∣ ≤


3 − 4µ, if µ ≤ 0,
1 + 2 exp

(
2µ
µ−1

)
, if 0 ≤ µ < 1,

4µ − 3, if µ ≥ 1.


The subordination form of two analytic functions h1 and h2 is

h1(z) ≺ h2(z), z ∈ U. (1.3)

If a Schwarz function ω that is analytic in U exists and satisfies the requirements ω(0) = 0 and
|ω(z)| < 1, then h1(z) = h2(ω(z)), z ∈ U. If h2 is univalent inU, then (see [15])

h1(0) = h2(0) and h1(U) ⊂ h2(U). (1.4)

Remark 1.1. Let h1(z) and h2(z) be analytic inU. If h2 is univalent inU, then the subordination (1.3)
is equivalent to the condition (1.4).
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The well-known class of starlike (S∗) functions is defined as

h ∈ S∗ ⇔ Re
(
zh
′

(z)
h(z)

)
> 0, z ∈ U,

and it can be written in terms of subordination as

S∗ =

{
h ∈ A :

zh
′

(z)
h(z)

≺
1 + z
1 − z

}
.

For 0 ≤ δ < 1, a function h ∈ A is said to be starlike of order δ if it satisfies the condition

Re
(
zh
′

(z)
h(z)

)
> δ, z ∈ U,

and it is denoted by S∗ (δ). Additionally, we define M(σ) as the subclass of A of functions h(z) that
satisfies the following inequality:

Re
(
zh
′

(z)
h(z)

)
< σ, for σ > 1.

Moreover, the subclass S∗ (δ, σ) ⊂ A consists of functions, that satisfy the following inequality:

δ < Re
(
zh
′

(z)
h(z)

)
< σ (0 ≤ δ < 1 < σ, z ∈ U).

We note that Kuroki and Owa [15] and Uralegaddi et al. [16] were the first to explore the functional
classes M(σ) and S∗ (δ, σ), respectively.

The class of normalized analytic functions K (λ, δ, σ) satisfying the two-sided inequality

δ < Re
(
zh
′

(z)
h(z)

+ λ
z2h

′′

(z)
h(z).

)
< σ (0 ≤ δ < 1 < σ, z ∈ U)

was studied by Sun et al. [17] in 2015.
Recently, Sun et al. [18] studied the applications of the vertical strip domain for the class of

starlike functions and investigated integral representations, convolutions, and coefficient inequalities
for functions belonging to this class. Furthermore, they considered radius problems and inclusion
relations involving certain classes of strongly starlike functions, parabolic starlike functions, and other
types of starlike functions. Later on, Bulut [19] studied the uses of the vertical strip domain for the
class of close-to-convex functions.

Several analytic function subclasses have been developed using the concept of subordination based
on the geometrical interpretation of their image domains, including the right half plane, circular disc,
oval and petal type domains, conic domain, leaf-like domain, and generalized conic domains, which
have all been defined and studied (see, for details, [20–25]). In this article, we define two new
subclasses of q-satrlike functions associated with the vertical strip domain.

In [15], Kuroki and Owa defined an analytic function fδ,σ : U → C as

fδ,σ(z) = 1 +
σ − δ

π
i log

1 − ze2πi 1−δ
σ−δ

1 − z

 (0 ≤ δ < 1 < σ, z ∈ U) (1.5)
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with
fδ,σ(0) = 1.

They proved that fδ,σ mapsU onto the vertical strip domain (see Figure 1):

Ωδ,σ = {ω ∈ C : δ < Re (ω) < σ} (1.6)

conformally and the function fδ,σ is a convex univalent function inU having the form

fδ,σ(z) = 1 +
∞∑

n=1

Tnzn, (1.7)

where
Tn =

σ − δ

nπ
i
(
1 − e2nπi 1−δ

σ−δ

)
, n ∈ N, (1.8)

and
T1 =

σ − δ

π
i
(
1 − e2πi( 1−δ

σ−δ )
)
, T2 =

σ − δ

2π
i
(
1 − e4πi( 1−δ

σ−δ )
)
. (1.9)

Figure 1. The image ofU under the function fδ,σ(τ) for δ=0.5; σ=2.

A great number of scholars have been attracted and motivated by the exploration of q-calculus (or
quantum calculus) because of its use in a variety of quantitative sciences. The research on the q-
derivative has inspired scholars to use it in geometric function theory and other fields of mathematics
and mathematical sciences. Jackson [26, 27] was one of the main contributors to the introduction and
development of the q-calculus theory. Just as q-calculus was applied in other mathematical sciences,
its formulations are frequently used to investigate the existence of different function theory structures.
Ismail et al. [28] was the first who established a connection between the geometric nature of the
analytic functions and the q-derivative operator. The first characteristics of the q-difference operator
are described by Kanas and Răducanu [29]. They used the q-difference operator, applied the idea of
convolution, and defined the q-analogue of the Ruscheweyh differential operator, while the authors
of [30] present the class of q-starlike functions associated with the q-analogue of the Ruscheweyh
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differential operator. Zang et al. [31] used the idea of q-calculus notations and the technique of
subordinations to define a generalized conic domain, then considered this domain to investigate the
class of q-starlike functions. A number of authors recently published research on the classes of q-
starlike functions; see [32–38]. For studying a new subclasses of analytic and bi-univalent functions,
we first need the definition of the q-difference operator.

Definition 1.1. [26, 27] For h ∈ A, the q-difference operator can be defined as follows:

Dqh(z) =
h(qz) − h(z)

z(q − 1)
, z ∈ U, q ∈ (0, 1) , n ∈ N. (1.10)

Combining (1.1) and (1.10), we have

Dqh(z) = 1 +
∞∑

n=1

[n]qanzn−1

and

Dq(zn) = [n]qzn−1, Dq

 ∞∑
n=1

anzn

 = ∞∑
n=1

[n]qanzn−1,

where
[n]q =

1 − qn

1 − q
.

We consider the above q-difference operator and define a new subclass of the q-starlike functions
related to the vertical strip domain.

Definition 1.2. An analytic function for h ∈ S∗ (δ, σ, q), if h satisfies the following inequality:

δ < Re
(
zDqh(z)

h(z)

)
< σ, z ∈ U, (1.11)

where q ∈ (0, 1), 0 ≤ δ < 1 < σ.

Remark 1.2. For q→ 1−, in Definition 1.2, then S∗ (δ, σ, q) = S∗ (δ, σ) are investigated in [15].

Definition 1.3. For q ∈ (0, 1), 0 ≤ δ < 1 < σ, we denote by S∗
Σ

(δ, σ, q) the class of bi-univalent
functions consisting of the functions such that

h ∈ S∗ (δ, σ, q) and h−1 ∈ S∗ (δ, σ, q) ,

where h−1 is the inverse function of h.

The study of q-calculus is among the most challenging subjects in mathematics. It has been studied
for 300 years since Euler. Today, research in the subject of q-calculus advances quickly because of its
use in many fields, including physics and mathematics. There are several applications in combinatorics
for the working history of q-analysis, quantum physics, theta functions, hypergeometric functions,
analytic number theory, finite difference theory, mock theta functions, Bernoulli and Euler polynomials,
and gamma function theory. In addition, thermodynamics makes use of the q-difference operator. It has
been shown that the thermodynamics of the q-deformed algebra may be realized via the formalization
of the q-calculus. It has been discovered that the complete structure of thermodynamics is preserved
if an appropriate Jackson derivative [26, 27] is employed in place of the standard thermodynamic
derivative [39]. In this article, we use q-calculus notations associated with the vertical strip domain,
define two new subclasses of q-starlike functions, and investigate some useful properties of the
functions h belonging to these classes.
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2. A set of lemmas

To demonstrate our findings, we shall employ the following lemmas:

Lemma 2.1. Let h ∈ A and 0 ≤ δ < 1 < σ, then h ∈ S∗ (δ, σ, q) if and only if

zDqh(z)
h(z)

≺ fδ,σ(z), z ∈ U, (2.1)

where fδ,σ(z) is given by (1.7).

Proof. Let us consider the function fδ,σ(z) by

fδ,σ(z) = 1 +
σ − δ

π
i log

1 − ze2πi 1−δ
σ−δ

1 − z

 , z ∈ U,

with 0 ≤ δ < 1 < σ. The function fδ,σ(z) is, therefore, clearly analytic and univalent in U with
fδ,σ(0) = 1. Moreover, we have

1 +
σ − δ

π
i log

1 − ze2πi 1−δ
σ−δ

1 − z

 = σ + δ2
+
σ − δ

π
i log

 ie−πi
1−δ
σ−δ − zieπi

1−δ
σ−δ

1 − z

 .
We can see that fδ,σ(z) maps U onto the strip domain ω with δ < Re (ω) < σ. As a result, it follows
from Remark 1.1 that the subordination (2.1) is equivalent to the inequality (1.11), which proves the
assertion of Lemma 2.1.

Lemma 2.2. [40] Let

p(z) =
∞∑

n=1

Cnzn

be analytic and univalent inU and suppose that p(z) mapsU onto a convex domain. Let

K(z) =
∞∑

n=1

anzn

be analytic inU and satisfy the subordination

K(z) ≺ p(z),

then
|an| < |C1| , n ≥ 1.

Lemma 2.3. [41] Let p(z) = 1 +
∞∑

n=1
cnzn be a function with a positive real part inU, then,

∣∣∣c2 − µc2
1

∣∣∣ ≤ 2 max {1, |1 − 2µ|} , µ ∈ C.
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3. Main results

The following theorem provides sharp coefficient estimates for the function h ∈ S∗ (δ, σ, q).

Theorem 3.1. Let h be of the form (1.1) and h ∈ S∗ (δ, σ, q), then,

|a2| ≤
|T1|

[2]q − 1
,

|a3| ≤
|T1|

[3]q − 1
max

{
1,

∣∣∣∣∣∣T2

T1
+

T1

[2]q − 1

∣∣∣∣∣∣
}
,

where T1 and T2 are given by (1.9). The results are sharp for the functions given in (3.8) and (3.9).

Proof. Let h ∈ S∗ (δ, σ, q), and let ω(z) = zDqh(z)
h(z) , then the subordination (2.1) can be written as follows:

zDqh(z)
h(z)

≺ fδ,σ(z). (3.1)

Note that the function fδ,σ(z) defined by (1.5) is convex inU and of the form

fδ,σ(z) = 1 +
∞∑

n=1

Tnzn, z ∈ U,

where Tn is given by (1.8).
Let

p (z) =
1 + f −1

δ,σ(ω(z))

1 − f −1
δ,σ(ω(z)))

= 1 + c1z + c2z2 + ...,

or

ω(z) = fδ,σ

(
p (z) − 1
p (z) + 1

)
.

Using ω(z) = zDqh(z)
h(z) , we have

zDqh(z)
h(z)

= fδ,σ

(
p (z) − 1
p (z) + 1

)
. (3.2)

We know that

p (z) − 1
p (z) + 1

=
c1z + c2z2 + c3z3 + ...

2 + c1z + c2z2 + ...

=
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2 + ...

Taking the right hand side of (3.2), we get

fδ,σ

(
p (z) − 1
p (z) + 1

)
=

1
2

T1c1z +
(
1
2

T1c2 +
1
4

(T2 − T1) c2
1

)
z2 + ... (3.3)

Taking the left hand side of (3.2), we get

zDqh(z)
h(z)

= 1 +
(
[2]q − 1

)
a2z +

{(
[3]q − 1

)
a3 −

(
[2]q − 1

)
a2

2

}
z2 + ... (3.4)
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Equating the coefficients from (3.3) and (3.4), we get

a2 =
T1c1

2
(
[2]q − 1

) . (3.5)

Applying modulus, and using |cn| ≤ 2, we have

|a2| ≤
|T1|

[2]q − 1
. (3.6)

Equating the coefficients from (3.3) and (3.4), after some simple calculation, we get

a3 =
T1

2
(
[3]q − 1

)
c2 +

1
2

(
T2 − T1

T1

)
+

T1

2
(
[2]q − 1

) c2
1

 . (3.7)

Taking a modulus on both sides, we have

|a3| =
|T1|

2
(
[3]q − 1

) ∣∣∣∣∣∣c2 −
1
2

((
1 −

T2

T1

)
−

T1

[2]q − 1

)
c2

1

∣∣∣∣∣∣ .
Applying Lemma 2.3, we get

|a3| ≤
|T1|

[3]q − 1
max

{
1,

∣∣∣∣∣∣T2

T1
+

T1

[2]q − 1

∣∣∣∣∣∣
}
.

For sharpness, consider the function h1 : U →C such that

zDqh1(z)
h1(z)

= fδ,σ(z),

where
h1(z) = z +

T1

[2]q − 1
z2 + ... (3.8)

For sharpness, consider the function h2 : U →C such that

zDqh2(z)
h2(z)

= fδ,σ(z2)

where
h2(z) = z +

T1

[3]q − 1
z3 + ... (3.9)

Theorem 3.2. Let an analytic function h be of the form (1.1) belonging to the class S∗ (δ, σ, q), then,

∣∣∣a3 − µa2
2

∣∣∣ ≤ |T1|

[3]q − 1
max

1,
∣∣∣∣∣∣∣∣T2

T1
−

µ
(
[3]q − 1

)
−

(
[2]q − 1

)
(
[2]q − 1

)2

 T1

∣∣∣∣∣∣∣∣
 ,

where µ ∈ C, T1 and T2 are given by (1.9). The result is sharp for the function h2 given by (3.9).
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Proof. Using (3.5) and (3.7) in
∣∣∣a3 − µa2

2

∣∣∣ and after some simple calculation, we get

∣∣∣a3 − µa2
2

∣∣∣ = |T1|

2
(
[3]q − 1

) ∣∣∣c2 − Va2
2

∣∣∣ ,
where

V =
1
2

µT1

(
[3]q − 1

)
(
[2]q − 1

)2 +

(
1 −

T2

T1
−

T1

[2]q − 1

) .
Using Lemma 2.3, we have

∣∣∣a3 − µa2
2

∣∣∣ ≤ |T1|

[3]q − 1
max

1,
T2

T1
−

µ
(
[3]q − 1

)
−

(
[2]q − 1

)
(
[2]q − 1

)2

 T1


 .

Hence, the result is proved.
Initial bounds for inverse functions:

Theorem 3.3. Let h ∈ S∗ (δ, σ, q) and h−1 be the inverse function of h. If

g = h−1(w) = w +
∞∑

n=2

bnwn (|w| < r, r ≥
1
4

), (3.10)

then,

|b2| ≤
|T1|

[2]q − 1

and

|b3| ≤
|T1|

[3]q − 1
max

1,
∣∣∣∣∣∣∣∣T2

T1
−

2 [3]q − [2]q − 1(
[2]q − 1

)2

 T1

∣∣∣∣∣∣∣∣
 ,

where T1 and T2 are given by (1.9). The results are sharp for the function given in (3.11) and (3.12).

Proof. The relations (1.2) and (3.10) yield

b2 = −a2 and b3 = 2a2
2 − a3.

Thus, in view of (3.6) and the identity |b2| = |a2| ≤
T1

[2]q−1 . Hence,

|b2| ≤
|T1|

[2]q − 1
.

Furthermore, for b3, we apply Theorem 3.2 with µ = 2 and we get

|b3| =
∣∣∣a3 − 2a2

2

∣∣∣ ≤ T1

[3]q − 1
max

1,
T2

T1
−

2 [3]q − [2]q − 1(
[2]q − 1

)2

 T1


 .
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Results are sharp for the functions

h1(w) = w −
T1

[2]q − 1
w2 + ... (3.11)

and
h2(w) = w +

T1

[3]q − 1
w3 + ... (3.12)

Theorem 3.4. Let h ∈ A, be defined in (1.1). If h ∈ S∗ (δ, σ, q), then,

|a2| ≤
|T1|

[2]q − 1

and

|an| ≤
|T1|

[n]q − 1

n−1∏
k=2

(
1 +

|T1|

[k]q − 1

)
, for n ≥ 3, (3.13)

where T1 is given in (1.9).

Proof. Let

K(z) =
zDqh(z)

h(z)
(3.14)

and the function fδ,σ(z) be given by (1.7), then, the subordination (2.1) can be written as follows:

K(z) ≺ fδ,σ(z). (3.15)

Note that the function fδ,σ(z) defined by (1.7) is convex inU and has the form

fδ,σ(z) = 1 +
∞∑

n=2

Tnzn,

where Tn is given by (1.8). If we let

K(z) = 1 +
∞∑

n=2

Anzn,

then from Lemma 2.2, we see that the subordination (3.15) implies

|An| ≤ |T1| , n = 1, 2, ..., (3.16)

where T1 is given by (1.9). Now, (3.14) implies that

zDqh(z) = K(z)h(z).

Then, by comparing the coefficients of zn on both sides, we see that(
[n]q − 1

)
an = An−1 + An−2a2 + ... + A1an−1.

After some simple calculation and using the inequality (3.16) yields that(
[n]q − 1

)
|an| = |An−1 + An−2a2 + ... + A1an−1| ,

AIMS Mathematics Volume 9, Issue 5, 11789–11804.



11799

|an| ≤
1

[n]q − 1
(|An−1| + |a2| |An−2| + |a3| |An−3| + ... + |an−1| |A1|)

≤
|T1|

[n]q − 1
(1 + |a2| + |a3| + ... + |an−1|)

=
|T1|

[n]q − 1

n−1∑
k=1

|ak| , a1 = 1,

where T1 is given in (1.9) and |T1| =
2(σ−δ)
π

sin π(1−δ)
σ−δ

. Hence, we have

|a2| ≤
|T1|

[2]q − 1
.

To prove the remaining part of the theorem, we need to show that

|T1|

[n]q − 1

n−1∑
k=1

|ak| ≤
|T1|

[n]q − 1

n−1∏
k=2

(
1 +

|T1|

[k]q − 1

)
, (3.17)

for n = 3, 4, 5, ... We use induction to prove (3.17). The case n = 3 is clear. Next, assume that the
inequality (3.17) holds for n = t, then a straightforward calculation gives

|at+1| ≤
|T1|

[t + 1]q − 1

t∑
k=1

|ak|

=
|T1|

[t + 1]q − 1

 t−1∑
k=1

|ak| + |at|


≤

|T1|

[t + 1]q − 1

t−1∏
k=2

(
1 +

|T1|

[k]q − 1

)

+
|T1|

[t + 1]q − 1

 |T1|

[t]q − 1

t−1∏
k=2

(
1 +

|T1|

[k]q − 1

)
=

|T1|

[t + 1]q − 1

t∏
k=2

(
1 +

|T1|

[k]q − 1

)
,

which implies that the inequality (3.17) holds for n = t + 1. Hence, the desired estimate for |at|

(n = 3, 4, 5, ...) follows, as asserted in (3.13).
This completes the proof of Theorem 3.4.
Taking q→ 1− in Theorem 3.4, we get the known Corollary 3.2, proved in [17].

Corollary 3.1. [17] For an analytic function h defined by (1.1) and h ∈ S∗ (δ, σ), we have

|an| ≤

n∏
k=2

(
k − 2 + |T1|

k − 1

)
, for n ≥ 2,

where T1 is given by (1.9).
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Theorem 3.5. Let h ∈ S∗
Σ

(δ, σ, q), then,

|a2| ≤
|T1|
√
|T1|√∣∣∣∣T 2

1

(
[3]q − [2]q

)
+ (T2 − T1)

(
[2]q − 1

)2∣∣∣∣ (3.18)

and
|a3| ≤

|T1| + |T2 − T1|

[3]q − [2]q
. (3.19)

Proof. If h ∈ S∗
Σ

(δ, σ, q), then h ∈ S∗ (δ, σ, q) and g = h−1 ∈ S∗ (δ, σ, q). Hence,

M(z) =
zDqh(z)

h(z)
≺ fδ,σ(z)

and
L(w) =

zDqg(w)
g(w)

≺ fδ,σ(w),

where fδ,σ(z) is given by (1.7). Let

t(z) = 1 + t1z + t2z2 + ...

and
k(w) = 1 + k1w + k2w2 + ...

Thus, t and k are analytic, have a positive real part inU, and satisfy the well-known estimates

|tn| ≤ 2 and |kn| ≤ 2, n ∈ N. (3.20)

Therefore, we have

M(z) = p
(
t(z) − 1
t(z) + 1

)
and

L(w) = p
(
k(w) − 1
k(w) + 1

)
.

By comparing the coefficients, we get (
[2]q − 1

)
a2 =

1
2

T1t1, (3.21)

(
[3]q − 1

)
a3 −

(
[2]q − 1

)
a2

2 =
1
2

T1t2 +
1
4

(T2 − T1) t2
1, (3.22)

−
(
[2]q − 1

)
a2 =

1
2

T1k1, (3.23)

−
(
[3]q − 1

)
a3 +

(
2 [3]q − [2]q − 1

)
a2

2 =
1
2

T1k2 +
1
4

(T2 − T1) k2
1, (3.24)

where T1 and T2 are given by (1.9). From (3.21) and (3.23), we obtain

t1 = −k1. (3.25)
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Adding (3.22) and (3.24), and using (3.21) and (3.25), we get

a2
2 =

T 3
1 (t2 + k2)

4
(
T 2

1

(
[3]q − [2]q

)
+ (T2 − T1)

(
[2]q − 1

)2
) .

Subtracting (3.22), (3.24) and (3.25), we get

a3 =
T1

[(
2[3]q − [2]q − 1

)
t2 +

(
[2]q − 1

)
k2

]
+

(
[3]q − 1

)
(T2 − T1) t2

1

4
(
[3]q − 1

) (
[3]q − [2]q

) .

These equations, together with (3.20), give the bounds on |a2| and |a3| as asserted in (3.18) and (3.19).
This completes the proof of Theorem 3.5.

We get the known corollary proved in [17] by setting q→ 1−.

Corollary 3.2. [17] Let h ∈ S∗
Σ

(δ, σ), then,

|a2| ≤
|T1|
√
|T1|√∣∣∣T 2

1 + T2 − T1

∣∣∣
and

|a3| ≤ |T1| + |T2 − T1| ,

where T1 and T2 are given by (1.9).

4. Conclusions

In this research, we studied and explored a novel family of normalized holomorphic and bi-univalent
functions associated with the vertical strip domain and quantum calculus. This article is divided
into three sections. Section 1 provided a brief overview and common terminology. This part also
introduced two new subclasses of analytic and bi-univalent functions related to the q-calculus operator
theory. In Section 2, a number of common lemmas are provided. In Section 3, we investigated some
interesting problems involving function h that belong to the subclasses of analytic and bi-univalent
functions. These included the first two initial coefficient bounds, estimates for the Fekete-Szego type
functional, and results for a class of bi-univalent functions. Similar findings were obtained from further
investigation of the inverse functions. The Fekete-Szegö problem and the initial bounds have been
shown to be sharp in this article. We hope that this study will inspire future scholars to expand on this
concept for a different subclass of analytic functions, such as bi-univalent, multivalent, meromorphic,
and others.
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