Let $ D $ be a division ring such that either char$ (D)\neq 2, 3 $ or $ D $ is not a field and char$ (D)\neq 2 $. Let $ R = M_n(D) $ be the matrix ring over $ D $, where $ n > 1 $. Let $ m, k $ be fixed invertible elements in $ R $. The main purpose of the paper is to give a description of a bijective additive map $ f $: $ R\rightarrow R $, satisfying the identity $ f(x)f(y) = m $ for every $ x, y\in R $ with $ xy = k $, which gives a correct version of a result due to Catalano et al. in 2019.
Citation: Lan Lu, Yu Wang. A note on maps preserving products of matrices[J]. AIMS Mathematics, 2024, 9(7): 17039-17062. doi: 10.3934/math.2024827
Let $ D $ be a division ring such that either char$ (D)\neq 2, 3 $ or $ D $ is not a field and char$ (D)\neq 2 $. Let $ R = M_n(D) $ be the matrix ring over $ D $, where $ n > 1 $. Let $ m, k $ be fixed invertible elements in $ R $. The main purpose of the paper is to give a description of a bijective additive map $ f $: $ R\rightarrow R $, satisfying the identity $ f(x)f(y) = m $ for every $ x, y\in R $ with $ xy = k $, which gives a correct version of a result due to Catalano et al. in 2019.
[1] | H. Essannouni, A. Kaidi, Le th$\acute{e}$or$\grave{e}$me Hua pour les alg$\grave{e}$bres artiniennes simples, Linear Algebra Appl., 297 (1999), 9–22. https://doi.org/10.1016/S0024-3795(99)00081-6 doi: 10.1016/S0024-3795(99)00081-6 |
[2] | L. K. Hua, On the automorphisms of sfield, Proc. Nat. Acad. Sci. USA, 35 (1949), 386–389. https://doi.org/10.1073/pnas.35.7.386 doi: 10.1073/pnas.35.7.386 |
[3] | M. A. Chebotar, W. F. Ke, P. H. Lee, L. S. Shiao, On maps preserving products, Canad. Math. Bull., 48 (2005), 355–369. https://doi.org/10.4153/CMB-2005-033-8 doi: 10.4153/CMB-2005-033-8 |
[4] | Y. F. Lin, T. L. Wong, A note on $2$-local maps, Proc. Edinb. Math. Soc., 49 (2006), 701–708. https://doi.org/10.1017/S0013091504001142 doi: 10.1017/S0013091504001142 |
[5] | L. Catalano, On maps characterized by action on equal products, J. Algebra, 511 (2018), 148–154. https://doi.org/10.1016/j.jalgebra.2018.06.022 doi: 10.1016/j.jalgebra.2018.06.022 |
[6] | L. Catalano, S. Hsu, R. Kapalko, On maps preserving products of matrices, Linear Algebra Appl., 563 (2019), 193–206. https://doi.org/10.1016/j.laa.2018.10.029 doi: 10.1016/j.laa.2018.10.029 |
[7] | L. Catalano, On maps preserving products equal to a rank-one idempotent, Linear Multilinear Algebra, 69 (2019), 673–680. https://doi.org/10.1080/03081087.2019.1614518 doi: 10.1080/03081087.2019.1614518 |
[8] | L. Catalano, H. Julius, On maps preserving products equal to a diagonalizable, Commun. Algebra, 49 (2021), 4339–4349. https://doi.org/10.1080/00927872.2021.1919133 doi: 10.1080/00927872.2021.1919133 |
[9] | L. Catalano, T. Merchán, On rational functional identities, Commun. Algebra, 32 (2024), 717–722. https://doi.org/10.1080/00927872.2023.2247488 doi: 10.1080/00927872.2023.2247488 |
[10] | C. Costara, Linear bijective maps preserving fixed values of products of matrices at fixed vectors, Commun. Algebra, 50 (2022), 920–926. https://doi.org/10.1080/00927872.2021.1976202 doi: 10.1080/00927872.2021.1976202 |
[11] | H. J. Huang, M. C. Tsai, Maps preserving trace of products of matrices, Linear Multilinear Algebra, 71 (2023), 2963–2985. https://doi.org/10.1080/03081087.2022.2129556 doi: 10.1080/03081087.2022.2129556 |
[12] | M. Brešar, Introduction to noncommutative algebra, Springer, 2014. https://doi.org/10.1007/978-3-319-08693-4 |
[13] | M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84 (1957), 426–429. https://doi.org/10.2307/1992823 doi: 10.2307/1992823 |