Research article

A note on maps preserving products of matrices

  • Received: 20 February 2024 Revised: 23 April 2024 Accepted: 26 April 2024 Published: 16 May 2024
  • MSC : 16R60, 15A04, 16W10

  • Let $ D $ be a division ring such that either char$ (D)\neq 2, 3 $ or $ D $ is not a field and char$ (D)\neq 2 $. Let $ R = M_n(D) $ be the matrix ring over $ D $, where $ n > 1 $. Let $ m, k $ be fixed invertible elements in $ R $. The main purpose of the paper is to give a description of a bijective additive map $ f $: $ R\rightarrow R $, satisfying the identity $ f(x)f(y) = m $ for every $ x, y\in R $ with $ xy = k $, which gives a correct version of a result due to Catalano et al. in 2019.

    Citation: Lan Lu, Yu Wang. A note on maps preserving products of matrices[J]. AIMS Mathematics, 2024, 9(7): 17039-17062. doi: 10.3934/math.2024827

    Related Papers:

  • Let $ D $ be a division ring such that either char$ (D)\neq 2, 3 $ or $ D $ is not a field and char$ (D)\neq 2 $. Let $ R = M_n(D) $ be the matrix ring over $ D $, where $ n > 1 $. Let $ m, k $ be fixed invertible elements in $ R $. The main purpose of the paper is to give a description of a bijective additive map $ f $: $ R\rightarrow R $, satisfying the identity $ f(x)f(y) = m $ for every $ x, y\in R $ with $ xy = k $, which gives a correct version of a result due to Catalano et al. in 2019.



    加载中


    [1] H. Essannouni, A. Kaidi, Le th$\acute{e}$or$\grave{e}$me Hua pour les alg$\grave{e}$bres artiniennes simples, Linear Algebra Appl., 297 (1999), 9–22. https://doi.org/10.1016/S0024-3795(99)00081-6 doi: 10.1016/S0024-3795(99)00081-6
    [2] L. K. Hua, On the automorphisms of sfield, Proc. Nat. Acad. Sci. USA, 35 (1949), 386–389. https://doi.org/10.1073/pnas.35.7.386 doi: 10.1073/pnas.35.7.386
    [3] M. A. Chebotar, W. F. Ke, P. H. Lee, L. S. Shiao, On maps preserving products, Canad. Math. Bull., 48 (2005), 355–369. https://doi.org/10.4153/CMB-2005-033-8 doi: 10.4153/CMB-2005-033-8
    [4] Y. F. Lin, T. L. Wong, A note on $2$-local maps, Proc. Edinb. Math. Soc., 49 (2006), 701–708. https://doi.org/10.1017/S0013091504001142 doi: 10.1017/S0013091504001142
    [5] L. Catalano, On maps characterized by action on equal products, J. Algebra, 511 (2018), 148–154. https://doi.org/10.1016/j.jalgebra.2018.06.022 doi: 10.1016/j.jalgebra.2018.06.022
    [6] L. Catalano, S. Hsu, R. Kapalko, On maps preserving products of matrices, Linear Algebra Appl., 563 (2019), 193–206. https://doi.org/10.1016/j.laa.2018.10.029 doi: 10.1016/j.laa.2018.10.029
    [7] L. Catalano, On maps preserving products equal to a rank-one idempotent, Linear Multilinear Algebra, 69 (2019), 673–680. https://doi.org/10.1080/03081087.2019.1614518 doi: 10.1080/03081087.2019.1614518
    [8] L. Catalano, H. Julius, On maps preserving products equal to a diagonalizable, Commun. Algebra, 49 (2021), 4339–4349. https://doi.org/10.1080/00927872.2021.1919133 doi: 10.1080/00927872.2021.1919133
    [9] L. Catalano, T. Merchán, On rational functional identities, Commun. Algebra, 32 (2024), 717–722. https://doi.org/10.1080/00927872.2023.2247488 doi: 10.1080/00927872.2023.2247488
    [10] C. Costara, Linear bijective maps preserving fixed values of products of matrices at fixed vectors, Commun. Algebra, 50 (2022), 920–926. https://doi.org/10.1080/00927872.2021.1976202 doi: 10.1080/00927872.2021.1976202
    [11] H. J. Huang, M. C. Tsai, Maps preserving trace of products of matrices, Linear Multilinear Algebra, 71 (2023), 2963–2985. https://doi.org/10.1080/03081087.2022.2129556 doi: 10.1080/03081087.2022.2129556
    [12] M. Brešar, Introduction to noncommutative algebra, Springer, 2014. https://doi.org/10.1007/978-3-319-08693-4
    [13] M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84 (1957), 426–429. https://doi.org/10.2307/1992823 doi: 10.2307/1992823
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(641) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog