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1. Introduction

Let R be an associative ring. Throughout the paper we will denote by R×, the set of all invertible
elements of R. For x, y ∈ R, we set

x ◦ y = xy + yx.

A map f : R→ R is said to be additive if

f (x + y) = f (x) + f (y)

for all x, y ∈ R.
In 1999, Essannouni and Kaidi [1] obtained the following result, which generalized a well-known

result due to Hua [2].

Theorem 1.1. [1, Theorem A] Let D be a division ring with D , F2, the field of two elements. Let
R = Mn(D) be the ring of n×n matrices with n ≥ 2. Let f : R→ R be a bijective additive map satisfying
the identity

f (x−1) = f (x)−1

for every x ∈ R×. Then, f is either an automorphism or an antiautomorphism.
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In 2005, Chebotar et al. [3] proved that a bijective additive map f on a division ring D that satisfies

f (x−1) f (x) = f (y−1) f (y)

for all x, y ∈ D× must have the form
f (x) = f (1)φ(x),

where φ is an automorphism or antiautomorphism, and f (1) is a central element of D. In 2006, Lin
and Wong [4] generalized this result to matrix rings.

In 2018, Catalano [5] initiated the study of maps preserving products of division rings. More
precisely, she proved the following result.

Theorem 1.2. [5, Theorem 5] Let D be a division ring with characteristic different from 2. Let Z be
the center of R. With m, k ∈ D×, let f : D→ D be a bijective additive map satisfying the identity

f (x) f (y) = m

for every x, y ∈ D× such that xy = k. Then,

f (x) = f (1)φ(x)

for all x ∈ D, where φ: D → D is either an automorphism or an antiautomorphism. Moreover, we
have the following:

(1) If φ is an automorphism, then f (1) ∈ Z.
(2) If φ is an antiautomorphism, then f (1) = f (k)−1m and f (k) ∈ Z.

In 2019, Catalano et al. [6] initiated the study of maps preserving products of matrices. More
precisely, they proved the following result.

Theorem 1.3. [6, Theorem 1] Let D be a division ring with characteristic different from 2. Let
R = Mn(D) be the ring of n × n matrices with n ≥ 2, and let Z be the center of R. With m, k ∈ R×, let f :
R→ R be a bijective additive map satisfying the identity

f (x) f (y) = m

for every x, y ∈ R× such that xy = k. Then,

f (x) = f (1)φ(x)

for all x ∈ R, where φ: R→ R is either an automorphism or an antiautomorphism. Moreover, we have
the following:

(1) If φ is an automorphism, then f (1) ∈ Z.
(2) If φ is an antiautomorphism, then f (1) = f (k)−1m and f (k) ∈ Z.

The study of maps preserving products of matrices is an active topic. For recent results on maps
preserving products of matrices, we refer the reader to [7–11].
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We point out that the proof of Theorem 1.3 is wrong. Indeed, they used the following identity due
to Hua:

a − aba = (a−1 + (b−1 − a)−1)−1, (1.1)

where a, b, b−1 − a ∈ R×. By taking a = 1 and b = x ∈ R∗ in (1.1), they obtained that

φ(x−1) = φ(x)−1

for all x ∈ R×, where
f = f (1)φ.

By using Theorem 1.1 they got that φ is an automorphism or an antiautomorphism. However, the
condition of x−1 − 1 ∈ R× (equivalently, 1 − x ∈ R×) should be added in the use of (1.1). Thus, they
cannot obtain that

φ(x−1) = φ(x)−1

for all x ∈ R×, where f = f (1)φ. In fact, they can obtain that

φ(x−1) = φ(x)−1

for all x ∈ R× with 1 − x ∈ R×, which cannot use Theorem 1.1 to get that φ is an automorphism or an
antiautomorphism.

In the present paper we shall give the following result:

Theorem 1.4. Let D be a division ring such that either char(D) , 2, 3 or D is not a field and char(D) ,
2. Let R = Mn(D) be the ring of n× n matrices with n ≥ 2, and let Z be the center of R. With m, k ∈ R×,
let f , g: R→ R be bijective additive maps satisfying the identity

f (x)g(y) = m

for every x, y ∈ R× such that xy = k. Then,

f (x) = f (1)φ(x) and g(x) = φ(xk−1)g(k)

for all x ∈ R, where φ: R→ R is either an automorphism or an antiautomorphism. Moreover, we have
the following:

(1) If φ is an automorphism, then g(x) = φ(x)g(1) for all x ∈ R.
(2) If φ is an antiautomorphism, then g(x) = f (k)−1 f (x)g(k) for all x ∈ R.

As a consequence of Theorem 1.4 we shall give the following result, which gives a correct version
of Theorem 1.3.

Theorem 1.5. Let D be a division ring such that either char(D) , 2, 3 or D is not a field and char(D) ,
2. Let R = Mn(D) be the ring of n× n matrices with n ≥ 2, and let Z be the center of R. With m, k ∈ R×,
let f : R→ R be a bijective additive map satisfying the identity

f (x) f (y) = m

for every x, y ∈ R× such that xy = k. Then,

f (x) = f (1)φ(x)

for all x ∈ R, where φ: R→ R is either an automorphism or an antiautomorphism. Moreover, we have
the following:
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(1) If φ is an automorphism, then f (1) ∈ Z.
(2) If φ is an antiautomorphism, then f (1) = f (k)−1m and f (k) ∈ Z.

We organize the paper as follows: In Section 2 we shall give the proof of Theorem 1.4. In Section 3
we shall give the proof of Theorem 1.5.

We remark that the method in the proof of Theorem 3 is different from that in the proof of
Theorem 2. We believe that the method will play a certain role in the study of maps preserving
products of matrices.

2. Preliminaries

Throughout this section, let D be a division ring and let R = Mn(D) with n > 1. By Z we denote
the center of D. We identify Z with the center of R canonically. For A ∈ R, we denote by |A| the
determinant of A.

We begin with the following technical result, which will be used in the proof of our main result.

Lemma 2.1. Let D be a division ring with char(D) , 2, 3. Let R = Mn(D) with n > 1. For any α, β ∈ D
and 1 ≤ i, j, k, l ≤ n, we set

T = αei j + βekl.

We claim that either there exists γ ∈ {1, 2, 3} such that

γ + T, γ + T + 1 ∈ R×

or there exist γ1, γ2 ∈ R× such that

γi + 1, γi + T, γi + T + 1, γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for all i = 1, 2.

Proof. We prove the result by way of the following several cases:
Case 1. Suppose that i = j = k = l. We set

γ =

3, if α + β = −1,−2;
1, otherwise.

It is clear that γ + T, γ + 1 + T ∈ R×.
Case 2. Suppose that i = j, k = l, and i , k. We set

γ =

3, if α, β = −1,−2;
1, otherwise.

It is clear that γ + T, γ + 1 + T ∈ R×.
Case 3. Suppose that i = j and k , l. We set

γ =

3, if α = −1,−2;
1, otherwise.

AIMS Mathematics Volume 9, Issue 7, 17039–17062.
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It is clear that γ + T, γ + 1 + T ∈ R×.
Case 4. Suppose that i , j and k = l. We set

γ =

3, if β = −1,−2;
1, otherwise.

It is clear that γ + T, γ + 1 + T ∈ R×.
Case 5. Suppose that i , j, k , l, and (i, j) , (l, k). It is easy to check that

|γ + T | = γn

for all γ ∈ D. We set γ = 1.
It is clear that

γ + T, γ + T + 1 ∈ R×.

Case 6. Suppose that i , j, k , l, and (i, j) = (l, k). We may assume that i < j. The case of i > j
can be discussed analogously. It is easy to check that∣∣∣∣∣∣∣

n∑
s=1

aieii + T

∣∣∣∣∣∣∣ = a1 · · · an − a1 · · · ai−1αai+1 · · · a j−1βa j+1 · · · an

for all ai ∈ D, i = 1, · · · , n. Suppose first that αβ , 1, 4. We set γ = 1. It follows that

γ + T = 1 + αei j + βe ji;
γ + T + 1 = 2 + αei j + βe ji.

This implies that
|γ + T | = 1 − αβ , 0

and
|γ + T + 1| = 2n − 2n−2αβ = 2n−2(4 − αβ) , 0.

This implies that
γ + T, γ + T + 1 ∈ R×.

Suppose next that αβ = 1 or 4. We first discuss the case of αβ = 1. We set γ = 2. It follows that

γ + T = 2 + αei j + βe ji;
γ + T + 1 = 3 + αei j + βe ji.

This implies that
|γ + T | = 2n − 2n−2αβ = 2n−2 × 3 , 0

and
|γ + T + 1| = 3n − 3n−2αβ = 3n−2 × 23 , 0.

We get that
γ + T, γ + T + 1 ∈ R×.
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We now assume that αβ = 4. We set

γ1 =
∑

1≤s≤n
s, j

ess + 2e j j;

γ2 =
∑

1≤s≤n
s, j

3ess + e j j.

It is clear that γ1, γ2 ∈ R×. Note that

γ1 + 1 =
∑

1≤s≤n
s, j

2ess + 3e j j;

γ2 + 1 =
∑

1≤s≤n
s, j

4ess + 2e j j.

It is clear that
γ1 + 1, γ2 + 1 ∈ R×.

Note that

γ1 − γ2 =
∑

1≤s≤n
s, j

(−2)ess + e j j;

γ1 − γ2 + 1 =
∑

1≤s≤n
s, j

(−1)ess + 2e j j.

It is clear that
γ1 − γ2, γ1 − γ2 + 1 ∈ R×.

Note that

γ1 + T =
∑

1≤s≤n
s, j

ess + 2e j j + αei j + βe ji;

γ1 + T + 1 =
∑

1≤s≤n
s, j

2ess + 3e j j + αei j + βe ji;

γ2 + T =
∑

1≤s≤n
s, j

3ess + e j j + αei j + βe ji;

γ2 + T + 1 =
∑

1≤s≤n
s, j

4ess + 2e j j + αei j + βe ji;

γ1 − γ2 + T =
∑

1≤s≤n
s, j

(−2)ess + e j j + αei j + βe ji;

γ1 − γ2 + T + 1 =
∑

1≤s≤n
s, j

(−1)ess + 2e j j + αei j + βe ji.
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It implies that

|γ1 + T | = 2 − αβ = −2 , 0;
|γ1 + T + 1| = 2n−1 × 3 − 2n−2αβ = 2n−1 , 0;
|γ2 + T | = 3n−1 − 3n−2αβ = −3n−2 , 0;

|γ2 + T + 1| = 4n−1 × 2 − 4n−2αβ = 4n−1 , 0;
|γ1 − γ2 + T | = (−2)n−1 − (−2)n−2αβ = (−2)n−2 × (−6) , 0;

|γ1 − γ2 + T + 1| = (−1)n−1 × 2 − (−1)n−2αβ = (−1)n−2 × (−6) , 0.

This implies that
γi + T, γi + T + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for i = 1, 2. The proof of the result is complete. □

The following technical result will be used in the proof of our main result.

Lemma 2.2. Let D be a division ring, which is not a field. Suppose that char(D) , 2. Let R = Mn(D)
with n > 1. For any α, β ∈ D and 1 ≤ i, j, k, l ≤ n, we set T = αei j + βekl. We claim that either there
exists γ ∈ {1, 2, 3} such that

γ + T, γ + T + 1 ∈ R×

or there exist γ1, γ2 ∈ R× such that

γi + 1, γi + T, γi + T + 1, γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for i = 1, 2.

Proof. In view of Lemma 2.1, we may assume that char(D) = 3. It is clear that D is a central division
algebra over Z. It is well known that the dimension of a finite dimensional central division algebra is a
perfect square (see [12, Corollary 1.37]). This implies that dimZ(D) ≥ 4. We now prove the result by
way of the following two cases:

Case 1. Suppose first that α, β, 1 are linearly independent over Z. We get that there exists γ ∈ D
such that γ, α, β, 1 are linearly independent over Z. We now discuss the following six subcases:

Subcase 1.1. Suppose that i = j = k = l. We set

γ1 = γ and γ2 = γ − α.

It is clear that
γi, γi + 1, γi + (α + β), γi + (α + β) + 1 ∈ D×

for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that
γ1 − γ2 = α.

It is clear that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + (α + β), γ1 − γ2 + (α + β) + 1 ∈ D×.
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This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 1.2. Suppose that i = j, k = l, and i , k. We set

γ1 = γ and γ2 = γ1 − α − β.

It is clear that
γi, γi + 1, γi + α, γi + α + 1, γi + β, γi + β + 1 ∈ D×

for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that
γ1 − γ2 = α + β.

It is clear that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + α, γ1 − γ2 + α + 1, γ1 − γ2 + β, γ1 − γ2 + β + 1 ∈ D×.

This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 1.3. Suppose that i = j and k , l. We set

γ1 = γ and γ2 = γ1 − β.

It is clear that
γi, γi + 1, γi + α, γi + α + 1 ∈ D×

for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that
γ1 − γ2 = β.

It is clear that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + α, γ1 − γ2 + α + 1 ∈ D×.

This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 1.4. Suppose that i , j and k = l. We set

γ1 = γ and γ2 = γ − α.

It is clear that
γi, γi + 1, γi + β, γi + β + 1 ∈ D×
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for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that γ1 − γ2 = α. It is clear that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + β, γ1 − γ2 + β + 1 ∈ D×.

This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 1.5. Suppose that i , j, k , l, and (i, j) , (l, k). It is easy to check that∣∣∣∣∣∣∣

n∑
s=1

aieii + T

∣∣∣∣∣∣∣ = a1 · · · an

for all ai ∈ D, i = 1, · · · , n. We set

γ1 = γ and γ2 = γ − α.

This implies that

|γi| = γ
n
i , 0;

|γi + 1| = (γi + 1)n , 0;
|γi + T | = γn

i , 0;
|γi + T + 1| = (γi + 1)n , 0;
|γ1 − γ2| = α

n , 0;
|γ1 − γ2 + 1| = (α + 1)n , 0;
|γ1 − γ2 + T | = αn , 0;

|γ1 − γ2 + T + 1| = (α + 1)n , 0

for i = 1, 2. It follows that

γi, γi + 1, γi + T, γi + T + 1, γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for i = 1, 2, as desired.
Subcase 1.6. Suppose that i , j, k , l, and (i, j) = (l, k). We may assume that i < j. The case of

i > j can be discussed analogously. It is easy to check that∣∣∣∣∣∣∣
n∑

s=1

aieii + T

∣∣∣∣∣∣∣ = a1 · · · an − a1 · · · ai−1αai+1 · · · a j−1βa j+1 · · · an

for all ai ∈ D, i = 1, · · · , n. We set

γ1 =
∑

1≤s≤n
s, j

(γ + α)ess + (γ + β + 2)e j j + 2αei j;

γ2 = γ + 2αei j.
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It is clear that

|γ1| = (γ + α) j−1(γ + β + 2)(γ + α)n− j , 0;
|γ1 + 1| = (γ + α + 1) j−1(γ + β)(γ + α + 1)n− j , 0;
|γ2| = γ

n , 0;
|γ2 + 1| = (γ + 1)n , 0.

This implies that
γ1, γ1 + 1, γ2, γ2 + 1 ∈ R×.

Since char(D) = 3 we get that

γ1 + T =
∑

1≤s≤n
s, j

(γ + α)ess + (γ + β + 2)e j j + βe ji;

γ1 + T + 1 =
∑

1≤s≤n
s, j

(γ + α + 1)ess + (γ + β)e j j + βe ji;

γ2 + T = γ + βe ji;
γ2 + T + 1 = γ + 1 + βe ji.

It is easy to check that

|γ1 + T | = (γ + α) j−1(γ + β + 2)(γ + α)n− j , 0;
|γ1 + T + 1| = (γ + α + 1) j−1(γ + β)(γ + α + 1)n− j , 0;
|γ2 + T | = γn , 0;

|γ2 + T + 1| = (γ + 1)n , 0.

This implies that
γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2 =
∑

1≤s≤n
s, j

αess + (β + 2)e j j;

γ1 − γ2 + 1 =
∑

1≤s≤n
s, j

(α + 1)ess + βe j j.

We get that

|γ1 − γ2| = α
j−1(β + 2)αn− j , 0;

|γ1 − γ2 + 1| = (α + 1) j−1β(α + 1)n− j , 0.

This implies that
γ1 + γ2, γ1 + γ2 + 1 ∈ R×.
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Note that

γ1 − γ2 + T =
∑

1≤s≤n
s, j

αess + (β + 2)e j j + αei j + βe ji;

γ1 − γ2 + T + 1 =
∑

1≤s≤n
s, j

(α + 1)ess + βe j j + αei j + βe ji.

We get that

|γ1 − γ2 + T | = α j−1(β + 2)αn− j − α j−1βαn− j

= 2αn−1

, 0

and

|γ1 − γ2 + T + 1| = (α + 1) j−1β(α + 1)n− j − (α + 1)i−1α(α + 1) j−i−1β(α + 1)n− j

= (α + 1) j−1β(α + 1)n− j − (α + 1) j−2αβ(α + 1)n− j

= (α + 1) j−2(α + 1 − α)β(α + 1)n− j

= (α + 1) j−2β(α + 1)n− j

, 0.

This implies that
γ1 + γ2 + T, γ1 + γ2 + T + 1 ∈ R×,

as desired.
Case 2. Suppose next that α, β, 1 are linearly dependent over Z. Note that dimZD ≥ 4. We get that

there exists γ′1 ∈ D such that γ′1 < L(1, α, β), where L(1, α, β) is a subspace of D generalized by 1, α, β.
It is clear that

dimZ(L(1, α, β, γ′1)) ≤ 3,

where L(1, α, β, γ1) is a subspace of D generalized by 1, α, β, γ′1. We get that there exists γ′2 ∈ D such
that γ′2 < L(1, α, β, γ′1). We now discuss the following six subcases.

Subcase 2.1. Suppose that i = j = k = l. We set γ1 = γ
′
1 and γ2 = γ

′
2. It is clear that

γi, γi + 1, γi + (α + β), γi + (α + β) + 1 ∈ D×

for i = 1, 2. This implies that
γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + (α + β), γ1 − γ2 + (α + β) + 1 ∈ D×.

This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
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Subcase 2.2. Suppose that i = j, k = l, and i , k. We set γ1 = γ
′
1 and γ2 = γ

′
2. It is clear that

γi, γi + 1, γi + α, γi + α + 1, γi + β, γi + β + 1 ∈ D×

for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + α, γ1 − γ2 + α + 1, γ1 − γ2 + β, γ1 − γ2 + β + 1 ∈ D×.

This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 2.3. Suppose that i = j and k , l. We set γ1 = γ

′
1 and γ2 = γ

′
2. It is clear that

γi, γi + 1, γi + α, γi + α + 1 ∈ D×

for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + α, γ1 − γ2 + α + 1 ∈ D×.

This implies that
γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 2.4. Suppose that i , j and k = l. We set γ1 = γ

′
1 and γ2 = γ

′
2. It is clear that

γi, γi + 1, γi + β, γi + β + 1 ∈ D×

for i = 1, 2. This implies that
γi, γi + 1, γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + β, γ1 − γ2 + β + 1 ∈ D×.

This implies that
γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired.
Subcase 2.5. Suppose that i , j, k , l and (i, j) , (l, k). We set γ1 = γ

′
1 and γ2 = γ

′
2. It is easy to

check that ∣∣∣∣∣∣∣
n∑

s=1

aieii + T

∣∣∣∣∣∣∣ = a1 · · · an
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for all ai ∈ D, i = 1, · · · , n. It is clear that

γi, γi + 1, γ1 − γ2, γ1 − γ2 + 1 ∈ D×

for i = 1, 2. We get that

γi, γi + 1, γ1 − γ2, γ1 − γ2 + 1 ∈ D×

for i = 1, 2. Note that

|γi + T | = γn
i , 0;

|γi + T + 1| = (γi + 1)n , 0;
|γ1 − γ2 + T | = (γ1 − γ2)n , 0;

|γ1 − γ2 + T + 1| = (γ1 − γ2 + 1)n , 0

for i = 1, 2. It follows that

γi + T, γi + T + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for i = 1, 2, as desired.
Subcase 2.6. Suppose that i , j, k , l, and (i, j) = (l, k). We may assume that i < j. The case of

i > j can be discussed analogously. It is easy to check that∣∣∣∣∣∣∣
n∑

s=1

aieii + T

∣∣∣∣∣∣∣ = a1 · · · an − a1 · · · ai−1αai+1 · · · a j−1βa j+1 · · · an

for all ai ∈ D, i = 1, · · · , n. Suppose first that αβ ∈ Z. We set

γ1 =
∑

1≤s≤n
s, j

(γ′1 + 1)ess + γ
′
1e j j + 2αei j;

γ2 =
∑

1≤s≤n
s, j

γ′1ess + γ
′
2e j j + 2αei j.

It is clear that

|γ1| = (γ′1 + 1) j−1γ′1(γ′1 + 1)n− j , 0;
|γ1 + 1| = (γ′1 + 2) j−1(γ′1 + 1)(γ′1 + 2)n− j , 0;
|γ2| = (γ′1) j−1γ′2(γ′1)n− j , 0;

|γ2 + 1| = (γ′1 + 1) j−1(γ′2 + 1)(γ′1 + 1)n− j , 0.

This implies that

γ1, γ1 + 1, γ2, γ2 + 1 ∈ R×.
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Since char(D) = 3 we get that

γ1 + T =
∑

1≤s≤n
s, j

(γ′1 + 1)ess + γ
′
1e j j + βe ji;

γ1 + T + 1 =
∑

1≤s≤n
s, j

(γ′1 + 2)ess + (γ′1 + 1)e j j + βe ji;

γ2 + T =
∑

1≤s≤n
s, j

γ′1ess + γ
′
2e j j + βei j;

γ2 + T + 1 =
∑

1≤s≤n
s, j

(γ′1 + 1)ess + (γ′2 + 1)e j j + βei j.

It is easy to check that

|γ1 + T | = (γ′1 + 1) j−1γ′1(γ′1 + 1)n− j , 0;
|γ1 + T + 1| = (γ′1 + 2) j−1(γ′1 + 1)(γ′1 + 2)n− j , 0;
|γ2 + T | = (γ′1) j−1γ′2(γ′1)n− j , 0;

|γ2 + T + 1| = (γ′1 + 1) j−1(γ′2 + 1)(γ′1 + 1)n− j , 0.

This implies that
γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2 =
∑

1≤s≤n
s, j

ess + (γ′1 − γ
′
2)e j j;

γ1 − γ2 + 1 =
∑

1≤s≤n
s, j

2ess + (γ′1 − γ
′
2 + 1)e j j.

We get that

|γ1 − γ2| = γ
′
1 − γ

′
2 , 0;

|γ1 − γ2 + 1| = 2n−1(γ′1 − γ
′
2 + 1) , 0.

This implies that
γ1 − γ2, γ1 − γ2 + 1 ∈ R×.

Note that

γ1 − γ2 + T =
∑

1≤s≤n
s, j

ess + (γ′1 − γ
′
2)e j j + αei j + βe ji;

γ1 − γ2 + T + 1 =
∑

1≤s≤n
s, j

2ess + (γ′1 − γ
′
2 + 1)e j j + αei j + βe ji.
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Since αβ ∈ Z, we get that
|γ1 − γ2 + T | = γ′1 − γ

′
2 − αβ , 0

and
|γ1 − γ2 + T + 1| = 2n−1(γ′1 − γ

′
2 + 1) − 2n−2αβ

= 2n−2(2γ′1 − 2γ′2 + 2 − αβ)
, 0.

This implies that
γ1 + γ2 + T, γ1 + γ2 + T + 1 ∈ R×,

as desired.
Suppose next that αβ < Z. We set

γ1 =
∑

1≤s≤n
s, j

(γ′1 + 1)ess + αβe j j + 2αei j;

γ2 =
∑

1≤s≤n
s, j

γ′1ess + e j j + 2αei j.

It is clear that
|γ1| = (γ′1 + 1) j−1αβ(γ′1 + 1)n− j , 0;

|γ1 + 1| = (γ′1 + 2) j−1(αβ + 1)(γ′1 + 2)n− j , 0;
|γ2| = (γ′1)n−1 , 0;

|γ2 + 1| = 2(γ′1 + 1)n−1 , 0.

This implies that
γ1, γ1 + 1, γ2, γ2 + 1 ∈ R×.

Since char(D) = 3 we get that

γ1 + T =
∑

1≤s≤n
s, j

(γ′1 + 1)ess + αβe j j + βe ji;

γ1 + T + 1 =
∑

1≤s≤n
s, j

(γ′1 + 2)ess + (αβ + 1)e j j + βe ji;

γ2 + T =
∑

1≤s≤n
s, j

γ′1ess + e j j + βei j;

γ2 + T + 1 =
∑

1≤s≤n
s, j

(γ′1 + 1)ess + 2e j j + βei j.

It is easy to check that

|γ1 + T | = (γ′1 + 1) j−1αβ(γ′1 + 1)n− j , 0;
|γ1 + T + 1| = (γ′1 + 2) j−1(αβ + 1)(γ′1 + 2)n− j , 0;
|γ2 + T | = (γ′1)n−1 , 0;

|γ2 + T + 1| = 2(γ′1 + 1)n−1 , 0.
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This implies that
γi + T, γi + T + 1 ∈ R×

for i = 1, 2. Note that

γ1 − γ2 =
∑

1≤s≤n
s, j

ess + (αβ − 1)e j j;

γ1 − γ2 + 1 =
∑

1≤s≤n
s, j

2ess + αβe j j.

Since αβ < Z we get that

|γ1 − γ2| = αβ − 1 , 0;
|γ1 − γ2 + 1| = 2n−1αβ , 0.

This implies that
γ1 − γ2, γ1 − γ2 + 1 ∈ R×.

Note that

γ1 − γ2 + T =
∑

1≤s≤n
s, j

ess + (αβ − 1)e j j + αei j + βe ji;

γ1 − γ2 + T + 1 =
∑

1≤s≤n
s, j

2ess + αβe j j + αei j + βe ji.

Since αβ < Z, we get that
|γ1 − γ2 + T | = αβ − 1 − αβ = −1 , 0

and
|γ1 − γ2 + T + 1| = 2n−1αβ − 2n−2αβ = 2n−2αβ , 0.

This implies that
γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×,

as desired. The proof of the result is complete. □

3. The proof of Theorem 1.4

The following result will be used in the proof of our main result, which is of some independent
interests.

Proposition 3.1. Let D be a division ring such that either char(D) , 2, 3 or D is not a field and
char(D) , 2. Let R = Mn(D), where n > 1. Let φ: R → R be a bijective additive map such that
φ(1) = 1 and

φ(x2) = φ(x)2

for all x ∈ R× with x + 1 ∈ R×. Then, φ is either an automorphism or an antiautomorphism.
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Proof. We first claim that φ is a Jordan automorphism by way of the following three steps:
Step 1. We claim that

φ((αei j + βekl)2) = φ(αei j + βekl)2 (3.1)

for all 1 ≤ i, j, k, l ≤ n and α, β ∈ D. In particular, we have

φ((αei j)2) = φ(αei j)2 (3.2)

for all 1 ≤ i, j ≤ n and α ∈ D. We set
T = αei j + βekl.

In view of both Lemmas 2.1 and 2.2 we note that either there exists γ ∈ {1, 2, 3} such that

γ + T, γ + T + 1 ∈ R×

or there exist γ1, γ2 ∈ R× such that

γi + 1, γi + T, γi + T + 1, γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for all i = 1, 2. Suppose first that there exists γ ∈ {1, 2, 3} such that

γ + T, γ + T + 1 ∈ R×.

By our hypothesis we have
φ((γ + T )2) = φ(γ + T )2.

Note that
φ(γ) = γ and φ(γT ) = γφ(T ).

Expanding the last relation we get

γ2 + 2γφ(T ) + φ(T 2) = γ2 + 2γφ(T ) + φ(T )2,

which implies that φ(T 2) = φ(T )2, as desired.
Suppose next that there exist γ1, γ2 ∈ R× such that

γi + 1, γi + T, γi + T + 1, γ1 − γ2, γ1 − γ2 + 1, γ1 − γ2 + T, γ1 − γ2 + T + 1 ∈ R×

for all i = 1, 2. By our hypothesis we have that

φ(γ2
1) = φ(γ1)2; (3.3)

φ((γ1 + T )2) = φ(γ1 + T )2. (3.4)

Expanding (3.4) we get

φ(γ2
1) + φ(γ1 ◦ T ) + φ(T 2) = φ(γ1)2 + φ(γ1) ◦ φ(T ) + φ(T )2. (3.5)

Using (3.3) we get from (3.5) that

φ(γ1 ◦ T ) + φ(T 2) = φ(γ1) ◦ φ(T ) + φ(T )2. (3.6)
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By our hypothesis we have that

φ(γ2
2) = φ(γ2)2; (3.7)

φ((γ2 + T )2) = φ(γ2 + T )2. (3.8)

Expanding (3.8) we get

φ(γ2
2) + φ(γ2 ◦ T ) + φ(T 2) = φ(γ2)2 + φ(γ2) ◦ φ(T ) + φ(T )2. (3.9)

Using (3.7) we get from (3.9) that

φ(γ2 ◦ T ) + φ(T 2) = φ(γ2) ◦ φ(T ) + φ(T )2. (3.10)

By our hypothesis we have that

φ((γ1 − γ2)2) = φ((γ1 − γ2)2; (3.11)
φ(((γ1 − γ2 + T )2) = φ(γ1 − γ2 + T )2. (3.12)

Expanding (3.12) we get

φ((γ1 − γ2)2) + φ((γ1 − γ2) ◦ T ) + φ(T 2) = φ(γ1 − γ2)2 + φ(γ1 − γ2) ◦ φ(T ) + φ(T )2. (3.13)

Using (3.11) we get from (3.13) that

φ((γ1 − γ2) ◦ T ) + φ(T 2) = φ(γ1 − γ2) ◦ φ(T ) + φ(T )2. (3.14)

Subtracting (3.6) from (3.10) we get

φ((γ1 − γ2) ◦ T ) = φ(γ1 − γ2) ◦ φ(T ). (3.15)

It follows from both (3.14) and (3.15) that

φ(T 2) = φ(T )2,

as desired.
Step 2. We claim that

φ(αei j ◦ βekl) = φ(αei j) ◦ φ(βei j) (3.16)

for all α, β ∈ D and 1 ≤ i, j, k, l ≤ n.
On one hand, we get from (3.2) that

φ((αei j + βekl)2) = φ((αei j)2 + αei j ◦ βekl + (βekl)2)
= φ((αei j)2) + φ(αei j ◦ βekl) + φ((βekl)2)
= φ(αei j)2 + φ(αei j ◦ βekl) + φ(βekl)2.

(3.17)

On the other hand, we get from (3.1) that

φ((αei j + βekl)2) = φ(αei j + βekl)2

= (φ(αei j) + φ(βekl))2

= φ(αei j)2 + φ(αei j) ◦ φ(βekl) + φ(βekl)2.

(3.18)
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Combining (3.17) with (3.18) we get

φ(αei j ◦ βekl) = φ(αei j) ◦ φ(βei j)

for all α, β ∈ D and 1 ≤ i, j, k, l ≤ n, as desired.
Step 3. We claim that φ(x2) = φ(x)2 for all x ∈ R.
For any

x =
∑

1≤i, j≤n

αi jei j ∈ R,

we get from both (3.2) and (3.16) that

φ(x2) = φ


 ∑

1≤i, j≤n

αi jei j


2

= φ


∑

1≤i, j≤n

(αi jei j)2 +
∑

1≤i, j,k,l≤n
(i, j)<(k,l)

αi jei j ◦ αklekl


=
∑

1≤i, j≤n

φ((αi jei j)2) +
∑

1≤i, j,k,l≤n
(i, j)<(k,l)

φ(αi jei j ◦ αklekl)

=
∑

1≤i, j≤n

φ(αi jei j)2 +
∑

1≤i, j,k,l≤n
(i, j)<(k,l)

φ(αi jei j) ◦ φ(αklekl)

=

 ∑
1≤i, j≤n

φ(αi jei j)


2

= φ

 ∑
1≤i, j≤n

αi jei j


2

= φ(x)2.

In view of Step 3, we get that φ is a Jordan automorphism. Since char(D) , 2, we get from [13,
Theorem 1] that φ is an automorphism or antiautomorphism. This proves the result. □

The following simple result will be used in the proof of our main result:

Lemma 3.1. Let D be a division ring such that either char(D) , 2, 3 or D is not a field and char(D) ,
2. Let R = Mn(D), where n > 1. Let f : R → R be an additive map such that f (x) = 0 for all x ∈ R×

with x + 1 ∈ R×. Then f = 0.

Proof. For any α ∈ D and 1 ≤ i, j ≤ n, In view of both Lemmas 2.1 and 2.2 we get that there exists
γ ∈ R× such that

γ + 1 ∈ R×;
γ + αei j ∈ R×;
γ + αei j + 1 ∈ R×.
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By our hypothesis we have
f (γ) = 0 and f (γ + αei j) = 0.

Since f is additive, we get that f (αei j) = 0. For any

x =
∑

1≤i, j≤n

αi jei j ∈ R,

we get that f (x) = 0, as desired. □

We are in a position to give the proof of our main result.

Proof of Theorem 1.4. For x ∈ R× with x + 1 ∈ R×, we note that

(x−1 − (x + 1)−1)−1 = x(x + 1).

We set
y = x(x + 1).

Since
y(y−1k) = k,

we have that
f (y)g(y−1k) = m.

It follows that

m = f (y)g(y−1k)
= f (x(x + 1))g((x−1 − (x + 1)−1)k)
= ( f (x2) + f (x))(g(x−1k) − g((x + 1)−1k))
= f (x2)g(x−1k) − f (x2)g((x + 1)−1k) + f (x)g(x−1k) − f (x)g((x + 1)−1k).

(3.19)

Note that
f (x)g(x−1k) = m.

It follows from (3.19) that

0 = f (x2)g(x−1k) − f (x2)g((x + 1)−1k) − f (x)g((x + 1)−1k). (3.20)

For any z ∈ R×, we note that z(z−1k) = k. This implies that

f (z)g(z−1k) = m

and so
g(z−1k) = f (z)−1m.

We get from (3.20) that

0 = f (x2) f (x)−1m − f (x2) f (x + 1)−1m − f (x) f (x + 1)−1m. (3.21)
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Multiplying (3.21) by m−1 f (x + 1) on the right hand side, we get

0 = f (x2) f (x)−1 f (x + 1) − f (x2) − f (x)
= f (x2) f (x)−1 f (x) + f (x2) f (x)−1 f (1) − f (x2) − f (x)
= f (x2) + f (x2) f (x)−1 f (1) − f (x2) − f (x)
= f (x2) f (x)−1 f (1) − f (x),

which implies that
f (x2) = f (x) f (1)−1 f (x) (3.22)

for all x ∈ R× with x + 1 ∈ R×. It follows from (3.22) that

f (1)−1 f (x2) = f (1)−1 f (x) f (1)−1 f (x) (3.23)

for all x ∈ R× with x + 1 ∈ R×. We define

φ(x) = f (1)−1 f (x)

for all x ∈ R. Then,
f (x) = f (1)φ(x)

for all x ∈ R. It is clear that φ(1) = 1. The additivity of f immediately yields the additivity of φ. It
follows from (3.23) that

φ(x2) = φ(x)2

for all x ∈ R× with x + 1 ∈ R×. In view of Proposition 3.1, we can conclude that φ is an automorphism
or antiautomorphism.

For any x ∈ R×, since
(kx−1)x = k

we get that
f (kx−1)g(x) = m.

This implies that

g(x) = f (kx−1)−1m

= ( f (1)φ(kx−1))−1m

= φ(kx−1)−1 f (1)−1 f (1)g(k)
= φ(kx−1)−1g(k)
= φ(xk−1)g(k)

for all x ∈ R×. In view of Lemma 3.1, we get that

g(x) = φ(xk−1)g(k) (3.24)
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for all x ∈ R. Suppose first that φ is an automorphism. We get from (3.24) that

g(x) = φ(xk−1)g(k)
= φ(x)φ(k−1)g(k)
= φ(x)φ(k)−1g(k)
= φ(x)( f (1)−1 f (k))−1g(k)
= φ(x) f (k)−1 f (1)g(k)
= φ(x) f (k)−1m

= φ(x) f (k)−1 f (k)g(1)
= φ(x)g(1)

for all x ∈ R. In particular, if f = g, we have that

f (1)φ(x) = φ(x) f (1)

for all x ∈ R. This implies that f (1) ∈ Z. Suppose next that φ is an antiautomorphism. We get
from (3.24) that

g(x) = φ(xk−1)g(k)
= φ(k−1)φ(x)g(k)
= φ(k)−1φ(x)g(k)
= ( f (1)−1 f (k))−1 f (1)−1 f (x)g(k)
= f (k)−1 f (x)g(k)

for all x ∈ R. In particular, if f = g, we get that

f (x) = f (k)−1 f (x) f (k)

for all x ∈ R. This implies that
f (k) f (x) = f (x) f (k)

for all x ∈ R. Since f is a bijective map we obtain that f (k) ∈ Z. Note that f (k) f (1) = m, and so
f (1) = f (k)−1m. The proof of the result is complete. □

4. The proof of Theorem 1.5

As a consequence of Theorem 1.4 we give the proof of Theorem 1.5 as follows:

Proof of Theorem 1.5. In view of Theorem 1.4, we have that

f (x) = f (1)φ(x)

for all x ∈ R, where φ: R→ R is either an automorphism or an antiautomorphism. Moreover, we have
the following:

(1) If φ is an automorphism, then f (x) = φ(x) f (1) for all x ∈ R.
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(2) If φ is an antiautomorphism, then f (x) = f (k)−1 f (x) f (k) for all x ∈ R.

Suppose first that φ is an automorphism. Since

f (x) = φ(x) f (1)

for all x ∈ R, we get that
f (1)φ(x) = f (x) = φ(x) f (1)

for all x ∈ R. Since φ is an automorphism, we get that f (1) ∈ Z, as desired.
Suppose next that φ is an antiautomorphism. Since

f (x) = f (k)−1 f (x) f (k)

for all x ∈ R, we get that
f (k) f (x) = f (x) f (k)

for all x ∈ R. Recall that f is a bijective map. We get from the last relation that f (k) ∈ Z. Since k1 = k,
we have that

f (k) f (1) = m.

This implies that
f (1) = f (k)−1m,

as desired. The proof of the result is complete. □

5. Conclusions

We give a complete description of maps preserving products of matrices over a division D such that
either char(D) , 2, 3 or D is not a field and char(D) , 2, which gives a correct version of Theorem 1.3.
The future study of this field is to give a complete description of maps preserving products of matrices
over a division D with char(D) , 2.
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