This research focuses on a mathematical examination of a path to sliding period doubling and chaotic behaviour for a novel limited discontinuous systems of dimension three separated by a nonlinear hypersurface. The switching system is composed of dissipative subsystems, one of which is a linear systems, and the other is not linked with equilibria. The non-linear sliding surface is designed to improve transient response for these subsystems. A Poincaré return map is created that accounts for the existence of the hypersurface, completely describing each individual sliding period-doubling orbits that route to the sliding chaotic attractor. Through a rigorous analysis, we show that the presence of a nonlinear sliding surface and a set of such hidden trajectories leads to novel bifurcation scenarios. The proposed system exhibits period-$ m $ orbits as well as chaos, including partially hidden and sliding trajectories. The results are numerically verified through path-following techniques for discontinuous dynamical systems.
Citation: Hany A. Hosham, Thoraya N. Alharthi. Bifurcation and chaos in simple discontinuous systems separated by a hypersurface[J]. AIMS Mathematics, 2024, 9(7): 17025-17038. doi: 10.3934/math.2024826
This research focuses on a mathematical examination of a path to sliding period doubling and chaotic behaviour for a novel limited discontinuous systems of dimension three separated by a nonlinear hypersurface. The switching system is composed of dissipative subsystems, one of which is a linear systems, and the other is not linked with equilibria. The non-linear sliding surface is designed to improve transient response for these subsystems. A Poincaré return map is created that accounts for the existence of the hypersurface, completely describing each individual sliding period-doubling orbits that route to the sliding chaotic attractor. Through a rigorous analysis, we show that the presence of a nonlinear sliding surface and a set of such hidden trajectories leads to novel bifurcation scenarios. The proposed system exhibits period-$ m $ orbits as well as chaos, including partially hidden and sliding trajectories. The results are numerically verified through path-following techniques for discontinuous dynamical systems.
[1] | M. Bernardo, C. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical systems: Theory and applications, Springer Science Business Media, 163 (2008). |
[2] | D. Weiss, T. Küpper, H. A. Hosham, Invariant manifolds for nonsmooth systems, Physica D, 241 (2012), 1895–1902. https://doi.org/10.1016/j.physd.2011.07.012 doi: 10.1016/j.physd.2011.07.012 |
[3] | N. Guglielmi, E. Hairer, Sliding modes of high codimension in piecewise-smooth dynamical systems, Numer. Algorithms, 94 (2023), 257–273. https://doi.org/10.1007/s11075-023-01499-9 doi: 10.1007/s11075-023-01499-9 |
[4] | V. Avrutin, M. R. Jeffrey, Bifurcations of hidden orbits in discontinuous maps, Nonlinearity, 34 (2021), 6140–6172. https://doi.org/10.1088/1361-6544/ac12ac doi: 10.1088/1361-6544/ac12ac |
[5] | M. R. Jeffrey, Hidden dynamics: The mathematics of switches, decisions and other discontinuous behaviour, Springer, 2018. |
[6] | H. F. Han, S. L. Li, Q. S. Bi, Non-smooth dynamic behaviors as well as the generation mechanisms in a modified Filippov-type Chua's circuit with a low-frequency external excitation, Mathematics, 10 (2022), https://doi.org/10.3390/math10193613 |
[7] | F. Luo, Y. D. Li, Y. Xiang, Bifurcation of limit cycles from a focus-parabolic-type critical point in piecewise smooth cubic systems, Mathematics, 12 (2024), 702. https://doi.org/10.3390/math12050702 doi: 10.3390/math12050702 |
[8] | H. A. Hosham, Discontinuous phenomena in bioreactor and membrane reactor systems, Int. J. Biomath., 12 (2019). https://doi.org/10.1142/S1793524519500463 |
[9] | M. Pasquini, D. Angeli, On convergence for hybrid models of gene regulatory networks under polytopic uncertainties: A Lyapunov approach, J. Math. Biol., 83 (2021). https://doi.org/10.1007/s00285-021-01690-3 |
[10] | S. F. Luo, D. S. Wang, W. X. Li, Dynamic analysis of a SIV Filippov system with media coverage and protective measures, AIMS Math., 7 (2022), 13469–13492. https://doi.org/10.3934/math.2022745 doi: 10.3934/math.2022745 |
[11] | H. J. Peng, C. C. Xiang, A Filippov tumor-immune system with antigenicity, AIMS Math., 8 (2023), 19699–19718. https://doi.org/10.3934/math.20231004 doi: 10.3934/math.20231004 |
[12] | A. Pisano, E. Usai, Sliding mode control: A survey with applications in math, Math. Comput. Simul., 81 (2011), 954–979. https://doi.org/10.1016/j.matcom.2010.10.003 doi: 10.1016/j.matcom.2010.10.003 |
[13] | J. Awrejcewicz, M. Fečkan, P. Olejnik, Bifurcations of planar sliding homoclinics, Math. Probl. Eng., 2006 (2006), 1–13. https://doi.org/10.1155/MPE/2006/85349 doi: 10.1155/MPE/2006/85349 |
[14] | H. A. Hosham, Bifurcation of periodic orbits in discontinuous systems, Nonlinear Dyn., 87 (2017), 135–148. https://doi.org/10.1007/s11071-016-3031-7 doi: 10.1007/s11071-016-3031-7 |
[15] | D. Weiss, T. Küpper, H. A. Hosham, Invariant manifolds for nonsmooth systems with sliding mode, Math. Comput. Simul., 110 (2015), 15–32. https://doi.org/10.1016/j.matcom.2014.02.004 doi: 10.1016/j.matcom.2014.02.004 |
[16] | M. Balcerzak, A. Dabrowski, B. Blazejczyk-Okolewska, A. Stefanski, Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach, Mech. Syst. Signal Process., 141 (2020), 106734. https://doi.org/10.1016/j.ymssp.2020.106734 doi: 10.1016/j.ymssp.2020.106734 |
[17] | Z. Zhang, Y. Liu, J. Sieber, Calculating the Lyapunov exponents of a piecewise-smooth soft impacting system with a time-delayed feedback controller, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105451. https://doi.org/10.1016/j.cnsns.2020.105451 doi: 10.1016/j.cnsns.2020.105451 |
[18] | G. S. Vicinansa, D, Liberzon. Estimation entropy, Lyapunov exponents, and quantizer design for switched linear systems, SIAM J. Control Optim., 61 (2023), 198–224. https://doi.org/10.1137/21M1411871 doi: 10.1137/21M1411871 |
[19] | M. Feckan, M. Pospíšil, Poincaré-Andronov-Melnikov analysis for non-smooth systems, Academic Press, 2016. |
[20] | S. Wiggins, D. S. Mazel, Introduction to applied nonlinear dynamical systems and chaos, 1990. |
[21] | N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, L. Chua, Hidden attractors in Chua circuit: Mathematical theory meets physical experiments, Nonlinear Dyn., 111 (2023), 5859–5887. https://doi.org/10.1007/s11071-022-08078-y doi: 10.1007/s11071-022-08078-y |
[22] | J. Llibre, M. A. Teixeira, Piecewise linear differential systems without equilibria produce limit cycles? Nonlinear Dyn., 88 (2017), 157–164. |
[23] | Z. K. Li, X. B. Liu, Limit cycles in discontinuous piecewise linear planar Hamiltonian systems without equilibrium points, Int. J. Bifurc. Chaos, 2022. https://doi.org/10.1142/S021812742250153X |
[24] | M. R. Jeffrey, A. Colombo, The two-fold singularity of discontinuous vector fields, SIAM J. Appl. Dyn. Syst., 8 (2009), 624–640. https://doi.org/10.1137/08073113X doi: 10.1137/08073113X |
[25] | R. Cristiano, B. R. De Freitas, J. C. Medrado, Three crossing limit cycles in a 3D-Filippov system having a T-singularity, Int. J. Bifurc. Chaos, 32 (2022). https://doi.org/10.1142/S0218127422500067 |
[26] | B. R. Hunt, J. A. Kennedy, T. Y. Li, H. E. Nusse, The theory of chaotic attractors, Springer Science Business Media, 2004. |
[27] | L. Dieci, L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simul., 81 (2011), 932–953. https://doi.org/10.1016/j.matcom.2010.10.012 doi: 10.1016/j.matcom.2010.10.012 |
[28] | H. A. Hosham, Bifurcation of limit cycles in piecewise-smooth systems with intersecting discontinuity surfaces, Nonlinear Dyn., 99 (2020), 2049–2063. https://doi.org/10.1007/s11071-019-05400-z doi: 10.1007/s11071-019-05400-z |
[29] | H. A. Hosham, Nonlinear behavior of a novel switching jerk system, Int. J. Bifurc. Chaos, 30 (2020). |
[30] | G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chuas attractors, Phys. Lett. Sect. A Gen. At. Solid State Phys., 375 (2011), 2230–2233. |
[31] | D. Benmerzouk, J. P. Barbot, Chaotic behavior analysis based on sliding bifurcations, Nonlinear Anal. Hybrid Syst., 4 (2010), 503–512. https://doi.org/10.1016/j.nahs.2009.12.001 doi: 10.1016/j.nahs.2009.12.001 |
[32] | D. Benmerzouk, J. P. Barbot, Symmetries impact in chaotification of piecewise smooth systems, Nonlinear Dyn. Syst. Theory, 16 (2016), 149–164. |