Research article Special Issues

Bifurcation and chaos in simple discontinuous systems separated by a hypersurface

  • Received: 13 March 2024 Revised: 22 April 2024 Accepted: 09 May 2024 Published: 16 May 2024
  • MSC : 34A36, 34D23, 37G15, 34H10

  • This research focuses on a mathematical examination of a path to sliding period doubling and chaotic behaviour for a novel limited discontinuous systems of dimension three separated by a nonlinear hypersurface. The switching system is composed of dissipative subsystems, one of which is a linear systems, and the other is not linked with equilibria. The non-linear sliding surface is designed to improve transient response for these subsystems. A Poincaré return map is created that accounts for the existence of the hypersurface, completely describing each individual sliding period-doubling orbits that route to the sliding chaotic attractor. Through a rigorous analysis, we show that the presence of a nonlinear sliding surface and a set of such hidden trajectories leads to novel bifurcation scenarios. The proposed system exhibits period-$ m $ orbits as well as chaos, including partially hidden and sliding trajectories. The results are numerically verified through path-following techniques for discontinuous dynamical systems.

    Citation: Hany A. Hosham, Thoraya N. Alharthi. Bifurcation and chaos in simple discontinuous systems separated by a hypersurface[J]. AIMS Mathematics, 2024, 9(7): 17025-17038. doi: 10.3934/math.2024826

    Related Papers:

  • This research focuses on a mathematical examination of a path to sliding period doubling and chaotic behaviour for a novel limited discontinuous systems of dimension three separated by a nonlinear hypersurface. The switching system is composed of dissipative subsystems, one of which is a linear systems, and the other is not linked with equilibria. The non-linear sliding surface is designed to improve transient response for these subsystems. A Poincaré return map is created that accounts for the existence of the hypersurface, completely describing each individual sliding period-doubling orbits that route to the sliding chaotic attractor. Through a rigorous analysis, we show that the presence of a nonlinear sliding surface and a set of such hidden trajectories leads to novel bifurcation scenarios. The proposed system exhibits period-$ m $ orbits as well as chaos, including partially hidden and sliding trajectories. The results are numerically verified through path-following techniques for discontinuous dynamical systems.



    加载中


    [1] M. Bernardo, C. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical systems: Theory and applications, Springer Science Business Media, 163 (2008).
    [2] D. Weiss, T. Küpper, H. A. Hosham, Invariant manifolds for nonsmooth systems, Physica D, 241 (2012), 1895–1902. https://doi.org/10.1016/j.physd.2011.07.012 doi: 10.1016/j.physd.2011.07.012
    [3] N. Guglielmi, E. Hairer, Sliding modes of high codimension in piecewise-smooth dynamical systems, Numer. Algorithms, 94 (2023), 257–273. https://doi.org/10.1007/s11075-023-01499-9 doi: 10.1007/s11075-023-01499-9
    [4] V. Avrutin, M. R. Jeffrey, Bifurcations of hidden orbits in discontinuous maps, Nonlinearity, 34 (2021), 6140–6172. https://doi.org/10.1088/1361-6544/ac12ac doi: 10.1088/1361-6544/ac12ac
    [5] M. R. Jeffrey, Hidden dynamics: The mathematics of switches, decisions and other discontinuous behaviour, Springer, 2018.
    [6] H. F. Han, S. L. Li, Q. S. Bi, Non-smooth dynamic behaviors as well as the generation mechanisms in a modified Filippov-type Chua's circuit with a low-frequency external excitation, Mathematics, 10 (2022), https://doi.org/10.3390/math10193613
    [7] F. Luo, Y. D. Li, Y. Xiang, Bifurcation of limit cycles from a focus-parabolic-type critical point in piecewise smooth cubic systems, Mathematics, 12 (2024), 702. https://doi.org/10.3390/math12050702 doi: 10.3390/math12050702
    [8] H. A. Hosham, Discontinuous phenomena in bioreactor and membrane reactor systems, Int. J. Biomath., 12 (2019). https://doi.org/10.1142/S1793524519500463
    [9] M. Pasquini, D. Angeli, On convergence for hybrid models of gene regulatory networks under polytopic uncertainties: A Lyapunov approach, J. Math. Biol., 83 (2021). https://doi.org/10.1007/s00285-021-01690-3
    [10] S. F. Luo, D. S. Wang, W. X. Li, Dynamic analysis of a SIV Filippov system with media coverage and protective measures, AIMS Math., 7 (2022), 13469–13492. https://doi.org/10.3934/math.2022745 doi: 10.3934/math.2022745
    [11] H. J. Peng, C. C. Xiang, A Filippov tumor-immune system with antigenicity, AIMS Math., 8 (2023), 19699–19718. https://doi.org/10.3934/math.20231004 doi: 10.3934/math.20231004
    [12] A. Pisano, E. Usai, Sliding mode control: A survey with applications in math, Math. Comput. Simul., 81 (2011), 954–979. https://doi.org/10.1016/j.matcom.2010.10.003 doi: 10.1016/j.matcom.2010.10.003
    [13] J. Awrejcewicz, M. Fečkan, P. Olejnik, Bifurcations of planar sliding homoclinics, Math. Probl. Eng., 2006 (2006), 1–13. https://doi.org/10.1155/MPE/2006/85349 doi: 10.1155/MPE/2006/85349
    [14] H. A. Hosham, Bifurcation of periodic orbits in discontinuous systems, Nonlinear Dyn., 87 (2017), 135–148. https://doi.org/10.1007/s11071-016-3031-7 doi: 10.1007/s11071-016-3031-7
    [15] D. Weiss, T. Küpper, H. A. Hosham, Invariant manifolds for nonsmooth systems with sliding mode, Math. Comput. Simul., 110 (2015), 15–32. https://doi.org/10.1016/j.matcom.2014.02.004 doi: 10.1016/j.matcom.2014.02.004
    [16] M. Balcerzak, A. Dabrowski, B. Blazejczyk-Okolewska, A. Stefanski, Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach, Mech. Syst. Signal Process., 141 (2020), 106734. https://doi.org/10.1016/j.ymssp.2020.106734 doi: 10.1016/j.ymssp.2020.106734
    [17] Z. Zhang, Y. Liu, J. Sieber, Calculating the Lyapunov exponents of a piecewise-smooth soft impacting system with a time-delayed feedback controller, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105451. https://doi.org/10.1016/j.cnsns.2020.105451 doi: 10.1016/j.cnsns.2020.105451
    [18] G. S. Vicinansa, D, Liberzon. Estimation entropy, Lyapunov exponents, and quantizer design for switched linear systems, SIAM J. Control Optim., 61 (2023), 198–224. https://doi.org/10.1137/21M1411871 doi: 10.1137/21M1411871
    [19] M. Feckan, M. Pospíšil, Poincaré-Andronov-Melnikov analysis for non-smooth systems, Academic Press, 2016.
    [20] S. Wiggins, D. S. Mazel, Introduction to applied nonlinear dynamical systems and chaos, 1990.
    [21] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, L. Chua, Hidden attractors in Chua circuit: Mathematical theory meets physical experiments, Nonlinear Dyn., 111 (2023), 5859–5887. https://doi.org/10.1007/s11071-022-08078-y doi: 10.1007/s11071-022-08078-y
    [22] J. Llibre, M. A. Teixeira, Piecewise linear differential systems without equilibria produce limit cycles? Nonlinear Dyn., 88 (2017), 157–164.
    [23] Z. K. Li, X. B. Liu, Limit cycles in discontinuous piecewise linear planar Hamiltonian systems without equilibrium points, Int. J. Bifurc. Chaos, 2022. https://doi.org/10.1142/S021812742250153X
    [24] M. R. Jeffrey, A. Colombo, The two-fold singularity of discontinuous vector fields, SIAM J. Appl. Dyn. Syst., 8 (2009), 624–640. https://doi.org/10.1137/08073113X doi: 10.1137/08073113X
    [25] R. Cristiano, B. R. De Freitas, J. C. Medrado, Three crossing limit cycles in a 3D-Filippov system having a T-singularity, Int. J. Bifurc. Chaos, 32 (2022). https://doi.org/10.1142/S0218127422500067
    [26] B. R. Hunt, J. A. Kennedy, T. Y. Li, H. E. Nusse, The theory of chaotic attractors, Springer Science Business Media, 2004.
    [27] L. Dieci, L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simul., 81 (2011), 932–953. https://doi.org/10.1016/j.matcom.2010.10.012 doi: 10.1016/j.matcom.2010.10.012
    [28] H. A. Hosham, Bifurcation of limit cycles in piecewise-smooth systems with intersecting discontinuity surfaces, Nonlinear Dyn., 99 (2020), 2049–2063. https://doi.org/10.1007/s11071-019-05400-z doi: 10.1007/s11071-019-05400-z
    [29] H. A. Hosham, Nonlinear behavior of a novel switching jerk system, Int. J. Bifurc. Chaos, 30 (2020).
    [30] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chuas attractors, Phys. Lett. Sect. A Gen. At. Solid State Phys., 375 (2011), 2230–2233.
    [31] D. Benmerzouk, J. P. Barbot, Chaotic behavior analysis based on sliding bifurcations, Nonlinear Anal. Hybrid Syst., 4 (2010), 503–512. https://doi.org/10.1016/j.nahs.2009.12.001 doi: 10.1016/j.nahs.2009.12.001
    [32] D. Benmerzouk, J. P. Barbot, Symmetries impact in chaotification of piecewise smooth systems, Nonlinear Dyn. Syst. Theory, 16 (2016), 149–164.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(242) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog