In this paper, a thermoelastic problem involving a viscous strain gradient beam is considered from the analytical and numerical points of view. The so-called type Ⅱ thermal law is used to model the heat conduction and two possible dissipation mechanisms are introduced in the mechanical part, which is considered for the first time within strain gradient theory. An existence and uniqueness result is proved by using semigroup arguments, and the exponential energy decay is obtained. The lack of differentiability for the semigroup of contractions is also shown. Then, fully discrete approximations are introduced by using the finite element method and the backward time scheme, for which a discrete stability property and a priori error estimates are proved. The linear convergence is derived under suitable additional regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy decay.
Citation: Noelia Bazarra, José R. Fernández, Jaime E. Muñoz-Rivera, Elena Ochoa, Ramón Quintanilla. Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity[J]. AIMS Mathematics, 2024, 9(7): 16998-17024. doi: 10.3934/math.2024825
In this paper, a thermoelastic problem involving a viscous strain gradient beam is considered from the analytical and numerical points of view. The so-called type Ⅱ thermal law is used to model the heat conduction and two possible dissipation mechanisms are introduced in the mechanical part, which is considered for the first time within strain gradient theory. An existence and uniqueness result is proved by using semigroup arguments, and the exponential energy decay is obtained. The lack of differentiability for the semigroup of contractions is also shown. Then, fully discrete approximations are introduced by using the finite element method and the backward time scheme, for which a discrete stability property and a priori error estimates are proved. The linear convergence is derived under suitable additional regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy decay.
[1] | J. Baldonedo, J. R. Fernández, A. Magaña, R. Quintanilla, Decay for strain gradient porous elastic waves, Z. Angew. Math. Phys., 74 (2023), 35. https://doi.org/10.1007/s00033-022-01930-6 doi: 10.1007/s00033-022-01930-6 |
[2] | P. G. Ciarlet, Basic error estimates for elliptic problems, In: Handbook of numerical analysis, Amsterdam: North-Holland, 2 (1991), 17–351. https://doi.org/10.1016/S1570-8659(05)80039-0 |
[3] | P. Clement, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numer., 9 (1975), 77–84. https://doi.org/10.1051/m2an/197509R200771 doi: 10.1051/m2an/197509R200771 |
[4] | M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor, J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006), 476–488. https://doi.org/10.1016/j.cma.2006.05.006 doi: 10.1016/j.cma.2006.05.006 |
[5] | K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, New York: Springer, 2000. https://doi.org/10.1007/b97696 |
[6] | A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of themomechanics, Proc. R. Soc. Lond. A, 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012 |
[7] | A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136 |
[8] | A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969 |
[9] | A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media: Ⅰ. Classical continuum physics, Proc. Roy. Soc. London A, 448 (1995), 335–356. https://doi.org/10.1098/rspa.1995.0020 doi: 10.1098/rspa.1995.0020 |
[10] | A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media: Ⅱ. Generalized continua, Proc. Roy. Soc. London A, 448 (1995), 357–377. https://doi.org/10.1098/rspa.1995.0021 doi: 10.1098/rspa.1995.0021 |
[11] | A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media: Ⅲ. Mixtures of interacting continua, Proc. Roy. Soc. London A, 448 (1995), 379–388. https://doi.org/10.1098/rspa.1995.0022 doi: 10.1098/rspa.1995.0022 |
[12] | D. Ieşan, R. Quintanilla, Strain gradient theory of chiral Cosserat thermoelasticity without energy dissipation, J. Math. Anal. Appl., 437 (2016), 1219–1235. https://doi.org/10.1016/j.jmaa.2016.01.058 doi: 10.1016/j.jmaa.2016.01.058 |
[13] | S. Jiang, R. Racke, Evolution equations in thermoelasticity, Chapman & Hall/CRC, 2000. https://doi.org/10.1201/9781482285789 |
[14] | M. C. Leseduarte, A. Magaña, R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type Ⅱ, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375–391. |
[15] | Z. Y. Liu, S. M. Zheng, Semigroups associated with dissipative systems, Chapman & Hall/CRC, 1999. |
[16] | A. Magaña, R. Quintanilla, Decay of quasi-static porous-thermo-elastic waves, Z. Angew. Math. Phys., 72 (2021), 125. https://doi.org/10.1007/s00033-021-01557-z doi: 10.1007/s00033-021-01557-z |
[17] | A. Miranville, R. Quintanilla, Exponential decay in one-dimensional type Ⅱ thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020), 112573. https://doi.org/10.1016/j.cam.2019.112573 doi: 10.1016/j.cam.2019.112573 |
[18] | A. Pazy, Semigroup of linear operators and applications to partial diferential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[19] | J. Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847–857. |
[20] | R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172–180. https://doi.org/10.1002/zamm.200310017 doi: 10.1002/zamm.200310017 |
[21] | J. M. Rivera, E. O. Ochoa, R. Quintanilla, Time decay of viscoelastic plates with type Ⅱ heat conduction, J. Math. Anal. Appl., 528 (2023), 127592. https://doi.org/10.1016/j.jmaa.2023.127592 doi: 10.1016/j.jmaa.2023.127592 |