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Abstract: This research focuses on a mathematical examination of a path to sliding period doubling
and chaotic behaviour for a novel limited discontinuous systems of dimension three separated by a
nonlinear hypersurface. The switching system is composed of dissipative subsystems, one of which is
a linear systems, and the other is not linked with equilibria. The non-linear sliding surface is designed
to improve transient response for these subsystems. A Poincaré return map is created that accounts for
the existence of the hypersurface, completely describing each individual sliding period-doubling orbits
that route to the sliding chaotic attractor. Through a rigorous analysis, we show that the presence of
a nonlinear sliding surface and a set of such hidden trajectories leads to novel bifurcation scenarios.
The proposed system exhibits period-m orbits as well as chaos, including partially hidden and sliding
trajectories. The results are numerically verified through path-following techniques for discontinuous
dynamical systems.
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1. Introduction

This article analyses a special type of dynamical system described by vector fields with jump
discontinuities along specified nonlinear hypersurfaces of the Euclidean space. We refer the reader
to [1–7] as a general references covering various concepts, theories, methods, applications and
challenges. Several real-world problems frequently lead to discontinuous systems, such as biological
systems, which are expressed by switching event functions; see [8–11]. Recently, there has been a lot
of interest in sliding mode control in mechanical systems with dry friction, where the objective of a
control system is to reach a specific sliding manifold in a finite time [12].
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According to these diverse studies, the development of novel mathematical approaches for the
analysis of discontinuous systems is interesting, but complicated due to the classical methods such
as, Lyapunov-Schmidt and center manifold theory, are no longer directly applicable to dealing with
an abrupt change in the governing vector fields. Indeed, significant progress has been made in
developing the classical methods of bifurcations to deal with the classification and characterization
of, singularities, attractors, and hidden chaotic attractors for discontinuous systems [1, 13–15].
Although there have been successful studies on calculating the Lyapunov exponent for certain
types of discontinuous dynamical systems, such as [16–18], there are still challenges to effectively
implementing it. The main issue is that there is no generalized algorithm for effectively coordinating
the root finding of indicator functions in discontinuous systems with multiple sudden changes and
repeated reordering for linearized (variational) equations. The method of the Poincaré map, which
includes invariance and attraction, has produced numerous interesting findings on bifurcation and
periodic orbits with a single line of discontinuity; see, for example, [19].

Smooth dynamic systems, such as continuous flow or maps, exhibit period-doubling bifurcation as a
route to chaos [20]. As well, many methods, such as the Lyapunov exponent method, are used directly
to predict chaotic behavior. However, the presence of nonsmooth nonlinearities in discontinuous
systems poses various difficulties, therefore requiring the development of both analytical and numerical
approaches to effectively address these characteristics.

In the continuous dynamical system, the hidden attractor is generated by a very small basin of
attraction, which may oscillate between the two scenarios of having no equilibrium or having stable
equilibria [21]. In the area of discontinuous dynamical systems, it was recently shown in [22, 23]
that a planar linear non-smooth system with no equilibria in each subsystem, whether real or virtual,
can still exhibit at least one limit cycle. In our current study, the hidden dynamics of the proposed
3-dimensional discontinuous system is related to the fact that only one subsystem in the whole system
lacks an equilibrium point.

The primary contribution of this work is to present a novel, simple dynamical system capable of
involving complicated bifurcation phenomena. Our main objective is to investigate the situation of
intersections of large dimensions and associated sliding modes. The proposed system’s dynamics
are easily explained and studied by generalizing the Poincaré map, which is created by identifying
explicit, exact solutions for each subsystem. The linear subsystem has only a unique equilibrium point,
whereas the other subsystem lacks an equilibrium point and therefore may exhibit a hidden attractor. It
should be noted here that the hidden dynamic of a sliding motion is quite different and is described by
the smooth transition from ingoing to outgoing solution paths, which occurs instantly in the jump
discontinuity of the flow. Analyzing this type of hidden dynamics is significantly complex, and
achieving a comprehensive classification is not yet feasible. In this context, some interesting categories
have been presented [3, 5]. We use analytical and numerical methods to investigate flow behavior
along a nonlinear sliding surface and hidden trajectory. We will demonstrate that the proposed system
displays period-m orbits, as well as chaos, which includes partially hidden and sliding trajectories.

The paper is structured as follows: Section 2 introduces the fundamental principles of discontinuous
differential systems and switching behavior rules. Section 3 introduces the discontinuous system and
presents its analytical solutions. Moreover, a Poincaré return map is developed to establish the criteria
for predicting period-doubling and chaos. In Section 4, we show that the proposed system has rich
dynamics, including periodic, multi-periodic, and chaotic behavior involving sliding modes. Section 5
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concludes with a summary of the obtained results.

2. Fundamental concept

Definition 1. Mathematically, a hypersurface is codimension one subset Σ̃ of in the Euclidean space
Rn, i.e., Σ̃ := {X ∈ Rn | H(X, α) = 0, such that H : Rn −→ Rd, d < n is sufficiently differentiable, and
the hypersurface intersects transversally.

For example, in this paper, we examine the limit period-m orbits, cycles, and chaos in two
discontinuous differential systems separated by the hypersurface, which is represented by the cubic
function as:

Σ̃ := {X ∈ R3 | H(X, α) = γ1z + γ2y + γ3x3 = 0}. (2.1)

Let us consider the vector X ∈ Rn, whose time dependence is defined by the vector fields Fi : Rn −→

Rn, i=1,2, such that

Ẋ =

{
F1(X, α), H(X, α) < 0,
F2(X, α), H(X, α) > 0,

(2.2)

where the phase space divides into two bounded domains Di separated by a hypersurface Σ̃ = {X ∈

Rn | H(X, α) = 0} where H(X, α) is a continuous function and α ∈ Rd. The functions Fi, i = 1, 2 are
uniformly smooth functions (Fi ∈ C

k(Σ̃,Rn), k ≥ 1), and satisfy the fundamental matrix systems

Φ̇(X, t) = Fi(Φ(X, t)), Φ(X, 0) = I.

The identity matrix I has the same order as the number of state variables. The following principles may
be required to characterize the interaction on the discontinuity surface Σ̃, due to the flow of (2.2) must
be uniquely described in forward time. Let %(X, α) =

(
nT (X, α)F1(X, α)

)
.
(
nT (X, α)F2(X, α)

)
, where

n(X, α) is a normal vector to this surface H(X, α). Consequently, the discontinuity surface Σ̃ can be
partitioned as follows:

• Crossing region Σ̃c = {X ∈ Σ̃ | %(X) > 0}, more specifically Σ̃c = Σ̃c
− ∪ Σ̃c

+ such that Σ̃c
± = {X ∈ Σ̃c |

±nT (X, α)F1(X, α) > 0}.
• Sliding region Σ̃s = {X ∈ Σ̃ | %(X) ≤ 0}, which in turn is divided into attractive region Σ̃s

− = {X ∈

Σ̃s | nT (X, α)F1(X, α) > 0}, and escaping region Σ̃s
+ = {X ∈ Σ̃s | nT (X, α)F2(X, α) > 0}.

• Boundaries between sliding and crossing modes are defined as: Σ̃0
− = {X ∈ Σ̃ |

nT (X, α)F2(X, α) = 0}, Σ̃0
+ = {X ∈ Σ̃ | nT (X, α)F1(X, α) = 0}.

Observe that Σ̃ represents the disjoint union Σ̃c ∪ Σ̃0
± ∪ Σ̃s.

The sliding flows on Σ̃s are defined by the Filippov convex combination as:

Ẋ = F3(X, α) =
P(X, α)
Q(X, α)

(2.3)

where P(X, α) = nT (X, α)F2(X, α) · F1(X, α) − nT (X, α)F1(X, α) · F2(X, α) and Q(X, α) =

nT (X, α)(F2(X, α) − F1(X, α)). Flow can become tangent to the boundary of a discontinuity surface Σ̃

from either side; X ∈ Σ̃0
− or X ∈ Σ̃0

+ (i.e., nT (X, α)F1(X, α) = 0 or nT (X, α)F2(X, α) = 0), resulting in a
fold singularity. A two-fold singularity occurs if X ∈ Σ̃0

− ∩ Σ̃0
+ ( i.e., nT (X, α)Fi(X, α) = 0, i = 1, 2). A

two-fold singularity creates unique and intricate phenomena in discontinuous systems; see [5, 24, 25].
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3. Chaos in discontinuous systems characterized by non-smooth transitions

The Poincaré map is helpful for describing the bifurcation of non-smooth systems with varying
parameters. It is worth noting that those Poincaré maps are discrete maps specified in dimension n− 1,
hence at this phase, result of Lie and Yorke “period three implies chaos” is not available [20, 26].

Let us identify a direction starting from the starting position X0 ∈ Σ̃c
− or X0 ∈ Σ̃c

+ or X0 ∈ Σ̃s
− then

the trajectory of solutions of systems Ẋ = Fr(X, α) is denoted by Ψr(Tr(X),X), r = 1, 2, 3, receptively
which are Ck, k ≥ 1. Assume that Ψr(Tr(X),X) reaches Σ̃c

∓, or Σ̃s
− (occurring, receptively) at the

minimum return times Tr(X). The return times Tr(X) are found as the first positive solutions for the
following systems:

Tr(X) := inf{T > 0 | nT (X)(Ψr(T (X),X) = 0}, k = 1, 2, 3. (3.1)

If these times exist, then we define the sub-maps as follows:

P̃1(X) :Σ̃c
− → Σ̃c

+, or P̃1(X) : Σ̃c
− → Σ̃s

−,

P̃2(X) :Σ̃c
+ → Σ̃c

−, or P̃2(X) : Σ̃c
+ → Σ̃s

−,

P̃3(X) :Σ̃s
− → Σ̃c

−, or P̃3(X) : Σ̃s
− → Σ̃c

+.

(3.2)

A generalized Poincaré map is defined as a composition of sub-maps P̃i(X); for instance, in crossing
mode, only the Poincaré map is given as

P̃(X) : Σ̃c
− → Σ̃c

− = P̃1(X) ◦ P̃2(X).

To predict the periodic orbit of our system (2.2), we consider the function

δ(X) : U ⊂ Σ̃c
− → Σ̃c

− = P̃(X) − X = 0.

If a sliding mode exists, P̃(X) is a composite of a sub-map P̃3(X) and either P̃1(X), P̃2(X), or P̃i(X), i =

1, 2, depending on the system trajectory behavior.
The following theorem indicates that the linearization of the Poincaré return map is used to predict

the period-m orbit.

Theorem 1. Crossing mode: Assume that X ∈ Σ̃c
− and P̃(m) : Σ̃c

− → Σ̃c
−, such that P̃(m)(0) = 0 and

P̃(m)(X̄) = X̄. Then, the linearization of the Poincaré map is given by

DXP̃(m) =

m∏
r=1

S̃ (m+1−r)
2 Φ

(m+1−r)
2 S̃ (m+1−r)

1 Φ
(m+1−r)
1 . (3.3)

where S̃ i, i = 1, 2 are called transition matrices. Further, P̃(m)(X̄)X1(X̄) = X1(X̄), and the attractivity
of the period-m orbit is determined by the remaining (n − 2) eigenvalues of DXP̃(m).

It should be mentioned that when (m = 1), this theorem has been proved by [19, 27, 28], and when
(m ≥ 1), and if m = 2 it has been proved by [29] and it is valid when considering a sliding mode for
any arbitrary n-dimensional nonsmooth system.

It is well known that the continuous system Ẋ = F(X, α) exhibits chaotic behavior if it is sensitive
to the starting points of solutions and has an infinite number of unstable periodic trajectories with
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different periods. Period-doubling bifurcation is a technique that has been used to cause chaos in many
well-known systems, including the Lorenz and Chua systems. In one-dimensional discrete systems,
however, the period doubling method was also used to generate chaotic behaviour. In this context,
Lie and Yorke presented the result that “period three implies chaos” and applies to one-dimensional
discrete systems [26]. But this approach is not available here due to the dim(P̃) ≥ 2. Thus, we establish
a theoretical approach to investigating the way to chaos for bounded nonsmooth systems of dimension
three with switching surfaces that is defined as H(X, α) = γ1z + γ2y + γ3x3. If H(X, α) > 0, one of the
vector fields is linear and given as:

Ẋ = F2(X, α) =


α1y
−α2x
α3z

 . (3.4)

It is obvious that the system Ẋ = F2(X, α) has only one non-hyperbolic equilibrium point at the origin,
with three eigenvalues σ1,2 = ±iβ, σ3 = α3, where 0 < α1α2 = β2. This system is dissipative if α3 < 0.
In the situation where only the system Ẋ = F2(X, α) is defined in a smooth region, then the system has
an invariant plane z = 0, and there is only one family of flat periodic orbits [2] located in the (x, y)−
plane with a constant time t = 2π/β, see Figure 1.
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Figure 1. Family of flat periodic orbits located in the (x, y)− plane with constant time T =

2π/β.

When a linear system interacts with a sliding surface, the trajectory may show chattering or frequent
switching around the sliding set. Therefore, we will show that the flat periodic orbit of the linear
system has quite different dynamics due to the interaction between its trajectory and the nonlinear
sliding surface, and a set of such hidden trajectories.

If we assume that X0 ∈ Σ̃c
+, then the general solution of this system is given by

x(t) = x0 cos(βt) + y0α1 sin(βt)/β,
y(t) = y0 cos(βt) − x0β sin(βt)/α1,

z(t) = z0 exp (α3t).
(3.5)

The duration of time required for the trajectory to return to Σ̃ is given by finding the first positive
solution to the following equation:

H(X(t), α) = γ1z(t) + γ2y(t) + γ3x(t)3 = 0.

AIMS Mathematics Volume 9, Issue 7, 17025–17038.



17030

Mathematical software, such as Maple, can compute a series approximation of this equation, yielding
the first positive approximate symbolic solution. Now, we consider a novel sub-system of (2.2) without
an equilibrium point, which is described as:

Ẋ = F1(X, α) =


α4z + α5

α6z
−z + α7(1 − x2)y

 . (3.6)

It should be noted that the attractors formed purely by this system without equilibria fall into the
category of hidden attractors (according to the definition given by [30]). If α5 = 0, the system (3.6) can
have an infinite number of equilibria. In other words, system (3.6) has an infinite number of equilibrium
points when α5 = 0, as shown below:

E = {X ∈ R3 | x = ±1, y ∈ R, z = 0},

or
E = {X ∈ R3 | x = R, y = 0, z = 0}.

Further, both subsystems (3.4) and (3.6) remain dissipative if α3 < 0.
If we assume that X0 ∈ Σ̃c

−, then the general solution of this system is given by

x(t) = (z0 − z(t))α4 + (ln z0 − ln z(t))α5 + x0,

y(t) = (z0 − z(t))α6 + y0,
(3.7)

note that φ1(X, t) is the solution of the linear system ( z(t) = z0 exp (−t) such that α7 = 0 ), and the
general solution of the nonlinear system (i.e., α7 , 0) is given as:

Φ1(X, t) = φ1(X, t) + Ω(X, t).

The expression Ω(X, t) =
∫ t

0
φ1(X, t − s)G(X(s))ds can be expressed explicitly, but the resulting

formulas are somewhat complex. In addition, numerical evaluation is used to determine the first
positive solution for the time it takes for the trajectory to return to Σ̃.

Once any subsystem’s solution reaches Σ̃s
−, the sliding mode trajectory is numerically computed by

solving Eq (2.3).
According to the semi-analytical analysis above, (3.5) and (3.7) fully determines the dynamic

behaviors of the system when cross mode is considered. An explicit expression of P̃i(X), i = 1, 2
is obtained using (3.5) and (3.7). However, it is necessary to confirm the presence of times Ti, i = 1, 2
when the flow (2.2) crosses the discontinuity surface, which are unknown. It is possible to select a
convenient Poincarés map section to be the switching surface. Then, we can present the Poincaré map
in a lower-dimensional manifold, i.e., P̃ has a 2- dimensional manifold. In this context, we consider
the first trajectory, which can intersect the crossing and sliding regions

Ψ(X) = P̃(X) − X − ξ = 0,

thus, it follows that; DXP̃(X) − I , 0.

Lemma 1. LetX ∈ Σ̃ and consider that the first trajectory is the linearized Poincaré map given by (3.3)
(such that m = 1). Further, the map P̃(X, α) satisfies the following conditions:
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(1) P̃(X̄, ᾱ) = X̄ which means that X̄ is a fixed point of the map P̃.

(2) The Jacobian DXP̃(X̄) has eigenvalues σc(ᾱ) = −1 and σ`(ᾱ), ` = 1, 2 with |σ`(ᾱ)| , 1.

(3) Assume that ξ(α) be the curve of P̃ fixed points near ξ(ᾱ) and σ`(α), ` = 1, 2, are eigenvalues of
matrix DXP̃(X)|(ξ(α)), then we get Λ = Dασc(α)|ᾱ , 0.

Then, using the implicit function theorem, there exists X(α), passing through X̄ at ᾱ, and a period-
doubling bifurcation occurs at (X̄, ᾱ).

There is a technique for constructing the criteria to predict an individual period-doubling bifurcation
for the systems (3.4) and (3.6) that can be used with the Poincaré map. Without loss of generality,
we assume that

(
X̄, ᾱ

)
= (0, 0) is a fixed point of the Poincaré map P̃ and X(α) ∈ Σ̃ is a bifurcation

neighborhood ofX(0) ∈ Σ̃. Applying the implicit function theorem toX(α), we can generate a “branch”
of continuous solutions X with regard to the bifurcation parameter α defined in some region of α = 0.
This setting reduces the dimension of the discrete Poincaré map to one, allowing Li and Yorke’s result
to be applied to P̃, for more details, see [31, 32]. In this context, the following conditions are required
in order to predict chaotic behavior using the period-doubling method performed on the corresponding
Poincaré map: We determine for the map P̃, three distinct points, such that P̃(X) = ξ, P̃(ξ) = η and
P̃(η) = X, X , ξ , η. Thus, under assumption 1 in Lemma 1, it is equivalent to (i) Ω = DXP̃(X)− 1 ,
0, (ii) ΩΩ̃ − 1 , 0 and (iii) ΩΩ̃ ˜̃Ω − 1 , 0, such that Ω̃ = −(DXP̃(X) − 1)−1, ˜̃Ω = −(ΩΩ̃ − 1)−1.

4. Results and discussion

To advance the study of our system, we discuss the influence of various parameters of interest
on flow behavior using numerical analysis. The above analytical results are used to investigate the
properties of the system that are dependent on parameters and to identify relevant parameters’ ranges.

Simply modify the control parameter α3 and keep the other parameters constant as follows: α1 =

0.322, a = 1.3, α2 = −1.58, α4 = 2.30, α5 = 1.70;α6 = 3.49, α7 = 3.24a, γ1 = −γ2 = γ3 = −1.
We show that at α3 = −0.2, the system has only a single periodic orbit involving sliding mode which
is illustrated in (Figure 2(a),(b)). By varying α3 from −0.11 to −0.1 to −0.011, we observe period-
doubling, period-4 orbit, and chaotic behavior (Figure 2(c)–(h)), respectively.
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Figure 2. Numerical simulations of subsystems (3.4) and (3.6) for varying values of α3.
Figure (a),(b) at α3 = −0.2, demonstrating single periodic orbit. Figure (c),(d) at α3 = −0.11,
demonstrating period-doubling orbits. Figure (e),(f) at α3 = −0.1 demonstrating period-4
orbits. Figure (g),(h) at α3 = −0.011 demonstrating chaotic behavior.

To explore the effect of varying parameter α1, we keep the other parameters constant as follows:
α2 = −1.0, α3 = −0.1, α4 = 2.30, α5 = 1.56, α6 = 2.6, α7 = 3.24a, and γ1 = −γ2 = γ3 = −1. Figure 3
shows that by varying the parameter α1, the sliding period-doubling occurs at α1 = 0.402, presenting a
route to sliding chaos at α1 = 0.385.

The sliding hypersurface can change position by changing one or more parameters γi, i = 1, 2, 3,
resulting in a transition from a unique periodic orbit to a period-doubling orbit and giving birth to a
period-4 orbit. For example, if the parameter γ3 is varied and the other parameters are constant, as
follows: γ1 = γ2 = 1, α1 = 0.385;α2 = −1.0;α3 = −0.01, α4 = 2.30, α5 = 1.56, α6 = 2.6, α7 = 3.24a.
If 0.5 ≤ γ3 ≤ 0.9, our system shows rich dynamical behavior. At γ3 = 0.811, Figure 4(a),(b) shows that
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the system has a unique periodic orbit. When γ3 slightly decreases beyond γ3 = 0.611, the periodic
orbit is destroyed and emerges a period-doubling orbit; see Figure 4(c),(d). Further at γ3 = 0.511, the
period-doubling orbit modifies to a period-4 orbit; see Figure 4(e),(f).
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Figure 3. The system establishes a sliding period doubling orbit at α1 = 0.402
(Figure 3(a),(b)), presenting a path to chaos at α1 = 0.385 (Figure 3(c),(d)).
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Figure 4. A shifting hypersurface results in (a),(b) a unique periodic orbit at γ3 = 0.811.
(c),(d) Period-doubling orbit at γ3 = 0.611. (e),(f) Period-4 orbit at γ3 = 0.511.
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According to Figure 5, the behavior of the system undergoes a rich dynamical behavior as the
parameter α2 varies while the other parameters, α1 = 0.385, α3 = −0.3, α4 = 2.30, α5 = 1.56, α6 =

2.6, α7 = 3.216a, remain constant. The system initially displays periodic solutions ((a) at α2 = −1.0)
that transform into period-doubling orbits ((b) α2 = −1.1), then period-3 orbits ((c) at α2 = −1.15),
and eventually generates a chaotic attractor involving a sliding mode close to the hypersurface ((d) at
α2 = −1.17).
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Figure 5. Varying the parameter α2 results in (a) a unique periodic orbit at α2 = −1.0. (b)
Period-doubling orbit at α2 = −1.1. (c), Period-3 orbits at α2 = −1.15. (d) chaotic attractor
involving a sliding mode at α2 = −1.17.

To support the verification of period-m orbit and chaos in the discontinuous system with infinite
equilibria. Set α5 = 0 and α1 = 0.2, α2 = −0.17, α3 = −0.2, α6 = 1.8, α7 = 3.216a while varying
the value of α4. Because the subsystem (3.6) has an infinite number of equilibrium points, its hidden
trajectories are preserved. Figure 6 shows the route from period-m orbit with α1 = 0.67 to chaos with
α4 = 0.7, (see Figure 6).
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Figure 6. Period-m orbit and chaotic attractor of the discontinuous system when the
subsystem (3.6) has infinite equilibria. (a),(b) a period-6 orbit involving a sliding mode at
α4 = 0.67. (c),(d) chaotic attractor involving a sliding mode at α4 = 0.7.

5. Conclusions

In this paper, we have presented a mathematical analysis of the trajectory leading to sliding period
doubling and chaotic dynamics in a novel, simple discontinuous system with a three-dimensional
configuration that incorporates a sliding surface. We proposed a switching system composed of
dissipative subsystems, one of which is linear and the other not associated with equilibria. The explicit
solutions for each subsystem have been obtained and used to establish the Poincaré return map. By
varying the linear system’s parameters, it has been shown that the sliding period-m orbit emerged,
resulting in the emergence of chaos from a previously single period one. It has been observed that, due
to the presence of a nonlinear sliding surface and a set of such hidden trajectories, the system exhibits
varied dynamic responses ranging from periodic to chaotic.
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