Based on a data-driven kernel estimator, Lepski and Willer considered the problem of adaptive $ L^{p} $ risk estimations in the convolution structure density model in 2017 and 2019. This current paper studies the same problem with a data-driven wavelet estimator on Besov spaces, as wavelet estimations offer fast algorithm and provide more local information. Our results can reduce to the traditional adaptive wavelet estimations in the classical density model with no errors, as well as deconvolutional model.
Citation: Kaikai Cao. Data-driven wavelet estimations in the convolution structure density model[J]. AIMS Mathematics, 2024, 9(7): 17076-17088. doi: 10.3934/math.2024829
Based on a data-driven kernel estimator, Lepski and Willer considered the problem of adaptive $ L^{p} $ risk estimations in the convolution structure density model in 2017 and 2019. This current paper studies the same problem with a data-driven wavelet estimator on Besov spaces, as wavelet estimations offer fast algorithm and provide more local information. Our results can reduce to the traditional adaptive wavelet estimations in the classical density model with no errors, as well as deconvolutional model.
[1] | K. K. Cao, X. C. Zeng, A data-driven wavelet estimator for deconvolution density estimations, Results Math., 78 (2023), 156. https://doi.org/10.1007/s00025-023-01928-0 doi: 10.1007/s00025-023-01928-0 |
[2] | K. K. Cao, X. C. Zeng, Adaptive wavelet density estimation under independence hypothesis, Results Math., 76 (2021), 196. https://doi.org/10.1007/s00025-021-01506-2 doi: 10.1007/s00025-021-01506-2 |
[3] | K. K. Cao, X. C. Zeng, Adaptive wavelet estimations in the convoultion structure density model, Mathematics, 8 (2020), 139. https://doi.org/10.3390/math8091391 doi: 10.3390/math8091391 |
[4] | F. Comte, C. Lacour, Anisotropic adaptive kernel deconvolution, Ann. I. H. Poincaré Probab. Stat., 49 (2013), 569–609. https://doi.org/10.1214/11-AIHP470 doi: 10.1214/11-AIHP470 |
[5] | I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992. |
[6] | D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, Density estimation by wavelet thresholding, Ann. Stat., 24 (1996), 508–539. https://doi.org/10.1214/aos/1032894451 doi: 10.1214/aos/1032894451 |
[7] | J. Fan, J. Y. Koo, Wavelet deconvolution, IEEE T. Inform. Theory, 48 (2002), 734–747. https://doi.org/10.1109/18.986021 |
[8] | A. Goldenshluger, O. Lepski, On adaptive minimax density estimation on $\mathbb{R}^{d}$, Probab. Theory Rel., 159 (2014), 479–543. https://doi.org/10.1007/s00440-013-0512-1 doi: 10.1007/s00440-013-0512-1 |
[9] | W. Härdle, G. Kerkyacharian, D. Picard, A. Tsybakov, Wavelets, approximation and statistical applications, Springer: New York, NY, USA, 1998. |
[10] | A. Juditsky, S. Lambert-Lacroix, On minimax density estimation on $\mathbb{R}$, Bernoulli, 10 (2004), 187–220. https://doi.org/10.3150/bj/1082380217 doi: 10.3150/bj/1082380217 |
[11] | G. Kerkyacharian, D. Picard, Density estimation in Besov spaces, Stat. Probab. Lett., 13 (1992), 15–24. https://doi.org/10.1016/0167-7152(92)90231-S doi: 10.1016/0167-7152(92)90231-S |
[12] | O. Lepski, T. Willer, Lower bounds in the convolution structure density model, Bernoulli, 23 (2017), 884–926. https://doi.org/10.3150/15-BEJ763 doi: 10.3150/15-BEJ763 |
[13] | O. Lepski, T. Willer, Oracle inequalities and adaptive estimation in the convolution structure density model, Ann. Stat., 47 (2019), 233–287. https://doi.org/10.1214/18-AOS1687 doi: 10.1214/18-AOS1687 |
[14] | R. Li, Y. M. Liu, Wavelet optimal estimations for a density with some additive noises, Appl. Comput. Harmon. Anal., 36 (2014), 416–433. https://doi.org/10.1016/j.acha.2013.07.002 doi: 10.1016/j.acha.2013.07.002 |
[15] | Q. Li, J. S. Racine, Nonparametric econometrics: Theory and practice, Princeton University Press, Princeton, 2007. |
[16] | Y. M. Liu, X. C. Zeng, Asymptotic normality for wavelet deconvolution density estimators, Appl. Comput. Harmon. Anal., 48 (2020), 321–342. https://doi.org/10.1016/j.acha.2018.05.006 doi: 10.1016/j.acha.2018.05.006 |
[17] | Y. M. Liu, C. Wu, Point-wise estimation for anistropic densities, J. Multivariate Anal., 171 (2019), 112–125. https://doi.org/10.1016/j.jmva.2018.11.014 doi: 10.1016/j.jmva.2018.11.014 |
[18] | Y. M. Liu, C. Wu, Point-wise wavelet estimation in the convolution structure density model, J. Fourier Anal. Appl., 26 (2020), 81. https://doi.org/10.1007/s00041-020-09794-y doi: 10.1007/s00041-020-09794-y |
[19] | K. Lounici, R. Nickl, Global uniform risk bounds for wavelet deconvolution estimators, Ann. Stat., 39 (2011), 201–231. https://doi.org/10.1214/10-AOS836 doi: 10.1214/10-AOS836 |
[20] | P. Massart, Concentration inequalities and model selection, In: Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, Springer, Berlin, 2007. |
[21] | Y. Meyer, Wavelets and operators, Cambridge University Press, Cambridge, 1992. |
[22] | M. Pensky, B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Stat., 27 (1999), 2033–2053. https://doi.org/10.1214/aos/1017939249 doi: 10.1214/aos/1017939249 |