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Abstract: Based on a data-driven kernel estimator, Lepski and Willer considered the problem of
adaptive L? risk estimations in the convolution structure density model in 2017 and 2019. This
current paper studies the same problem with a data-driven wavelet estimator on Besov spaces, as
wavelet estimations offer fast algorithm and provide more local information. Our results can reduce
to the traditional adaptive wavelet estimations in the classical density model with no errors, as well as
deconvolutional model.
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1. Introduction and preliminary

The deconvolution density estimation plays important roles in both statistics and econometrics [15].
In this paper, the generalized deconvolution density model introduced by Lepski and Willer [12,13] is
considered, which can be reduced to the classical density model with no errors and the deconvolution
one.

Let Z,,2,,--- ,Z, be independent and identically distributed (i.i.d.) random variables having the
same distribution as

Z=X+eY, (1.1)

where X stands for a real-valued random variable with an unknown probability density function f, ¥
denotes an independent random noise (error) with a known probability density g and € € {0,1} is a
Bernoulli random variable with P{e = 1} = @, a € [0, 1]. The problem is to estimate f by the observed
data Z,,7,,--- ,Z, In some Sense.

When a = 0, model (1.1) reduces to the classical density model with no errors. The representative
work belongs to Donoho et al. [6]. They established an adaptive and optimal L” risk estimation (up to
a logarithmic factor) on Besov balls by using a nonlinear wavelet estimator. In 2019, Liu and Wu [17]
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provided a data-driven wavelet estimator and considered point-wise estimations on a local anisotropic
Holder space. Two years later, Cao and Zeng [2] investigated the adaptive L? risk estimations under
the independence hypothesis on Besov balls. More related work can also be found in Refs. 8,10, 11].
The model (1.1) with @ = 1 corresponds to the deconvolution model. Fan and Koo [7] considered
optimal estimations with L? risk on a Besov ball. Moreover, Lounici and Nickl [19] discussed L risk
estimations in 2011. Three years later, Li and Liu [14] studied L? risk estimations based on linear and
non-linear wavelet estimators. In 2023, Cao and Zeng [1] provided a data-driven wavelet estimator and
considered L” risk estimations on Besov spaces. For more related literature, please see Refs. [4,16,22].
As in Ref [18], the density function 4 of Z in (1.1) satisfies

h=(1-a)f +af =g,

where f * g denotes the convolution of f and g. Moreover, when the function G, (¢) := 1 — a + ag’'(¢)
has nonzeros on R, we obtain

@) = (1 = @) + ag" O W' (1) = [GaO] "W ().

Here and throughout, /" is the Fourier transform of f € L'(R) defined by

() = f f(x)e ™dx.
R

Based on the model (1.1) with some mild assumptions on G,, Lepski and Willer [12] established
an asymptotic lower bound estimation over L” risk. Moreover, they investigated adaptive L risk
estimations over an anisotropic Nikol’skii space based on a data-driven kernel estimator in Ref. [13].
Recently, Liu and Wu [18] provided a data-driven wavelet estimator and discussed point-wise
estimations under the local Holder spaces. Cao and Zeng [3] studied L? risk estimations by using
linear and nonlinear wavelet estimators on Besov balls.

In this paper, we will introduce a data-driven wavelet estimator and study the L” (1 < p < o) risk
estimations based on model (1.1) over Besov balls. The following conditions are necessary for our
discussion:

(T1) 1Ga(®)] 2 (1 +)~F;

(T2) IGa)llw S 1, £=1,2
with B(a) = B > 0 for @« = 1 and S(@) = O for others. In fact, the condition (T1) is the same as the
assumption in Refs [13, 18] and (T2) is used in Lemma 2.1. Here and after, the notation A < B denotes
A < cB with some fixed and independent constant ¢ > 0; A > B means B < A; A ~ B stands for both
A< BandA > B.

It is well known that the wavelet estimation depends on an orthonormal wavelet expansion in L*(R).
Let ¢ be an orthonormal scaling function and ¢ be the corresponding wavelet one. Subsequently, with
D (x) 1= 229(2x — k) (& = ¢ or y), for f € [*(R),

f= Za’jokd’jokJrZZ,Bjkl/’jk (1.2)

keZ Jjzjo keZ
with @ := (f, ¢ ) and B := (f, ¥ jx)-
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As usual, let P; be the orthogonal projective operator from L*(R) onto the scaling space V; with the
orthonormal basis {¢ 4 }cz. Hence, for any f € L*(R),

Pif = ) apdj (1.3)
keZ

Moreover, the identities (1.2) and (1.3) hold in L”(R) for p > 1, if the scaling function ¢ is {-regular.
Here and throughout, £-regular [5] means that ¢ € C‘(R) and [¢(x)| < C,,(1 + [x)™ (r =0, 1,--- , )
for each m € Z and some independent positive constants C,,.

One advantage of wavelet bases is that they can characterize Besov spaces, which contain Holder
and L>-Sobolev spaces as special examples.

Lemma 1.1. [2]] Let ¢ be {-regular (¢ > s > 0) and ¥ be the corresponding wavelet. Then, for
r,q € [1,00] and f € L' (R), the following assertions are equivalent:

(i) feB,®)y

@) {27I1P;f - fll.} € H(Z);

(i) Mgyl + 1T DUB ) ol < 00
The Besov norm of f can be defined by
o 1.1
1A NBs, = Ny llr + 17 21B M) s jo -
From Lemma 1.1, we find that [|P;f — f]l, < 2775 holds for f € B; (R) and

B’ (R) < B} (R)

forr < pand s’ - é =5- % > (. Here, notation A — B stands for a Banach space A continuously

embedded in another Banach space B. For details, please see Refs. [9, 14].
In this paper, the notation B; q(M, L) with M, L > 0 means that

Bi’q(M, L):={f¢€ Bﬁ’q(M), supp f € [-L, L]},
where Bj’q(M) ={fe Bj’q(R), f is a density function, and || f ”Bf.q < M} stands for a Besov ball.

1.1. Data-driven wavelet estimator and main results

To introduce our estimator, we assume that ¢ satisfies {-regular with £ > 38(a) + 1. Therefore,

202 & . 1 (o "0
@y = — Kp)2'Z; — k d (K; = — "t 1.4
@y = Z]( 9 ) and (Ki$)@) = 5 fR rexmT (1.4)
are well-defined under condition (T1). Clearly, E@ j = @ j, for details, please see Ref [18].
As in [18], the linear wavelet estimator for (1.1) is defined by
F00 = > @), (1.5)

kezZ

Normally, the above estimator is non-adaptive [6, 11, 14], because the parameter j depends on
the smoothness index s of the unknown density function f. Motivated by the works of Lepski and
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Willer [13] and Cao and Zeng [1], we provide a selection rule of j deciding only by the observed data
Zy, -+ ,7Z,, which is so called a data-driven version.
Let H = {0, 1, , Lz log, %1} and

. / AJ@B@+D 1n gy A2/6@+D 1n 5,
Un(j) = P + - (1.6)

with | a] standing for the largest integer smaller or equal to a and A being a positive constant (specified
later on). Furthermore, for each x € R,

Em:agmym—ﬁmhuwAﬂ—wum. (1.7)
J'€T

Here and after, the notations a A b denote min{a, b} and a, means max{a, 0}.
Then, the selection of j = jj in (1.5) is given by

h:mm:mgﬂam+ﬂuﬂ. (1.8)
J€T

Moreover, the data-driven wavelet estimator is obtained by

Fulx) = Fiy(0) = ) @i in0). (1.9)
keZ
To introduce Theorem 1.1, let
Bj(x, f) := |Efj(x) = f(0)] and &,(x, j) := f;(x) — Ef;(x) (1.10)

be the bias and the stochastic error of ]‘;, respectively. Furthermore, we define

Bi(x.f)i= sup By(x.f) and v,(x) = sup[IE,(x I - UG (1.11)

2
JeH, jzj jeH +

where U, (j) is given by (1.6). Then the following point-wise oracle inequality holds.

Theorem 1.1. For any x € R, the estimator ]";(x) in (1.9) satisfies that
1,00 = 0l < inf {SB(x, £) + UL} + 500,

where Bj.(x, ), vu(x) are defined in (1.11) and U,(j) is given by (1.6).

It is important to point out that the proof of Theorem 1.1 only depends on the selection rule of
Jo in (1.8) and does not need any assumptions on the unknown density f (except for the restrictions
ensuring the existence of the model and of the risk). For more detail, please see Section 3. Therefore,
the point-wise oracle inequality in Theorem 1.1 is especially useful and plays an important role in the
following L? risk estimation.
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Theorem 1.2. Let ¢ be (-regular (¢ > 3B(a) + 1) and E be given by (1.9). If the conditions (T1)
and (T2) hold, 0 < s < L and r,q € [1, ], then for each p € [1, o), we have
lnn)Hp

sup  Ellfulirn — £} s (—
feB (M.L)NL=(M) n

where
s 1< p < 2sr + 7
251 28@)+1” s Byl
ST 2sr 1.
0 := B+ p’ PZ o th ssy
S_%-'% 2sr

" rr 1
2s—H)+2B(@)+1° pz 2B(a)+1 HEAEGS

1,1
S_7+7 . . . .
—L—1 for s > %, which coincides with

Remark 1.1. When a = 1, B(a@) = 8 and 6 = min{ 2S+§ﬁ+1, 2o-Dyragel

1,1

Theorem 4 of Li and Liu [14]. On the other hand, B(a) = O with a = 0, then 6 = min{3, ;ﬂ} with

s—1y+1
s > % while the conclusion of Theorem 3 of Donoho et al. [6] can follow directly from Theorem 1.2.
Moreover; the estimation for s < % is considered, whereas there is none in Refs. [6, 14].

Remark 1.2. The conclusion of Theorem 1.2 with « = 1 can be reduced to Theorem 4.1 of Cao and
Zeng [1]. In addition, the condition > 0 in Theorem 1.2 is weaker than the condition § > 1 in

Ref. [1].
2. Two propositions

This section provides two necessary propositions that play important roles in the proof of
Theorem 1.2.
With K ;¢ being given by (1.4), we denote

Ki(t, x) = 2/ Z(Kjd))(th — k)p(2/x - k). (2.1
keZ
Then, the following lemma holds.
Lemma 2.1. Let f € L*(M), ¢ be (-regular (¢ > 3B(x) + 1), and conditions (T1) and (T2) hold. Then
K(1, x) given by (2.1) satisfies that
K(t, 0l < M27PO*D and E|K3(Zy, 0)IF < M2/,

where M, > 0 is some constant.

Proof. According to (1.4) and (2.1), there exists some constant M, > 0 such that

K’(t, )| = |2/ Z(qus)(zf'r — k)p(2/x — k)| < M2/P @D (2.2)

kezZ

thanks to conditions (T1) and the regularity of ¢.
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Clearly, ||A]lco < (1 = @)l flle + @llf * gllo < [|fllco- This with (1.4) and (2.1) has

2

. . . 1 ity &0
EKi(Zy, 0P < Ifllx2” fR [Zk:¢(2’x—k)§ f e “m‘”] dz.

Combining (T1) and (T2) and Parseval identity, one obtains

. . 2 (@) 2 .
* 2 J Jy — 7~ j2R(@)+1)
EIK)(Z, 0P < IIflle2 (Zk:|¢(2 x = k) fR 6] @ = Mi2 : (2.3)
where M > 0 is some constant. The proof is completed by choosing M; := max{M,, M|}
and (2.2), (2.3). m]

In order to prove Proposition 2.1, the following inequality is necessary:
Bernstein’s inequality. [20] Ler X, --- , X, be i.i.d. random variables with EXZ.2 <c?and|X|| <M
(i=1,2,---,n). Then, for any t > 0,
= > (Xi— EX)

{1
P
ni:l

Proposition 2.1. Let f € L™(M), ¢ be {-regular with £ > 35(a) + 1 and conditions (T1) and (T2) hold.
Then, for each x € R and y > 0, there exists A > 4My such that

n 3n

2
> 20t+%}£2e_t.

Ev,(0)] sn°2,

where v,(x) is given by (1.11) and M, is the positive constant in Lemma 2.1.

Proof. With A4; = max{(B(a) + 2)yjIn2, }f} and j € H, one defines

— 2 M, 2/@B@)+1) A M, 2IB@)+D)
\/ : A+ — 2 (2.4)

U,(j) := .
) n / 3n /

Itis easy to see that Alnn > 2M 4, for large n follows from A > 4M,y and j € H. Thus, one concludes
U,(j) < U,()), thanks to (1.6) and (2.4). Therefore,

|16 DI = Un(h)|, < Inx DI = Tn(h)] 2.5)

Note that {[If,,(x, Nl — Un(j)]Jr > t} = {lfn(x, Nl - Un(j) > t} for each t > 0. Thus,

E[lé,x, ) = Ta(i)], = f TPl =T > 1)

0

1 1 : J(2B(e)+1) J(B()+1) .
This with a change of variables r = vw and w := 4/ M, 2 - + M ‘23n obtains

E|igux ) = U]
oo [ (2B(@)+ (B(a)+1)
< )/f (va))y_lP {lf,,(x, I > W( VY + )+ %(V + /lj)} wdv (2.6)
0
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by 1; = max{(B(@) + 2)yjIn2,1} > 1.
According to (1.5), (1.10), and (2.1), one gets

. 1 - * *
£(x. ) = ~ ;[K,. (Zi,x) - EK}(Zi, 1))

Moreover, Lemma 2.1 says that
K(Zi, )] < M 2P and E|K3(Z;, ) < M2/,

These with Bernstein’s inequality,

2M,2/@B@)+1) 4 M, 2/ B@+1)
O I
n n

Substituting this above estimate into (2.6), one knows
E[lg,(x, ) = Ta()], < 20 f Ve gy < e,
0

Therefore,

2JjB@)+1)

E[igux, ) - Us()]| s (F—=—) 27027 g pip7i

due to w = 222D | 4 2;'(:@)“) and eV < 27 B@+2yj,

Combining (1.11), (2.5), and (2.7), one has

[STa

EDn(0T < Esup i, i - U] < D E[ae =T, s a7,
J€T jeH

because H is a discrete set. The proof is done.
In order to introduce Proposition 2.2, we need the following notations:
Us@) = inf{Bj(x. ) + Un().
Q, = {x € [-L,L], 26, < Up(x) < 2™'5,},

where 6, = (%)ZM&W and C > 1 is some constant.
Clearly, Us(x) < sup, Us(x) := co for f € L*(M). Therefore, there exists

m, = min{m € Z, 28, > co}

satisfying Q,, = @ for any m > m,. Moreover, it is easy to verify that m, > 0 for a large n.

2.7)

(2.8)
(2.9)

(2.10)
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Proposition 2.2. Let f € B} (M) N L*(M), ¢ be -regular (¢ > 3B(a) + 1) and conditions (T1) and
(T2) hold. Then, for m € Z satisfying 0 < m < m,

2sr.
Qn

Furthermore, if s > L and r < p, then with s’ := s — 1 + 1,
r r P

f [U,(01dx < 27 %75,
Qn

where U ¢(x) and L, are defined in (2.8) and (2.9), respectively.

Proof. Let j; satisfy

2m _l‘ . 2m _l_
2T S, < 201 < ey 2T g, (2.11)

1
. L. . . 1 . C C 2B(a)+1
with two positive constants ¢, ¢, satisfying (2M)«[j,-; < ¢; < ¢ < min {47-3’ W—M)Z} . Then

Ji € H and U,(j1) < 2"7'6, for 0 < m < my and large n. In fact, (2.10) leads to 2™ < 2¢(d;,".
According to 0 < m < mj, (2.11) and 6, = (%)%ﬂﬁwﬂ , one concludes that

_1 . 2my _1 2 _(l+#) n %
1 < Cléns S 2]1 S C222ﬁ(a)+1 6’13' S 02(260)725(”)“6,[ s 2B(a)+1 < (1_)25(1/)+l )
nn

Hence, j; € H. On the other hand,

\/ A2/ C@+D [ny 420 B@+D 1n g
+
n n

2/12B@)+1) |
(VT4 )| 22 Inn
n

_28@+1 ]
(VA+ ) \/ Frigmg, — 28

n
(VA + ) \JF D c2ms,.

Thus, U,(j,) < 2""'6, follows from ¢, < [4( \gﬂ)z]rém.

According to Q,, = {x € [-L, L], 26, < Us(x) < 2+15 1, one has

Un(j1)

IA

IA

IA

f [Up(x)]7dx < (2"16,)7|Q, (2.12)
Qy

where |Q,,| stands for the Lebesgue measure of the set €2,,. Recall that U ¢(x) = inf jeH{B;(x, H+U))}
in (2.8). Therefore,

€2,

IA

{x € [-L, L], Us(x) > 2"6,}|
< Hx€[=L, L], B} (x, ) + Un(jr) > 2"6,}]

A
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< Hxe[-L,L], B (x,f)>2""6,)] (2.13)

thanks to j; € H and U,(j,) < 2™'6,.
When 1 < r < oo, by using Chebyshev’s inequality, (1.11), (2.13), and f € B; (M),

Qul < l{x € [=L, L], B} (x, f) >2""'5,}]
D Hxel-LLl Bi(x, f)>2""6,)

JEH, j= ji

B . r .
Z ” j( f)”r < 2—mr6r—lr2—]lsr. (214)
(2m—15n)r

IA

JEH, =2

L

This with (2.12) and 2/ ~ D 6,° implies that
f [Uf(x)]pdx < (2m+16n)p2—mr6;r2—j1sr < Zm(p—r)ég—rz—jlsr < 2’"(1""%)65. (215)
Qy
When r = oo, according to f € Bﬁ,q(M) and m > 0, one gets

B} (x, f) = sup By (x, f) < M2 < McISZ_zﬁ%'n”)ilén <2mls,

Jzj

. m _l
by the choice of 2/! > c122ﬁ<20>+1 0,° with ¢ > (2M)%. Hence, [Q,,|] = 0 by (2.13). This with (2.12)
obtains

f [Us(x)]7dx < (2™16,)F|Q,| = 0. (2.16)
Qp

Finally, the situation of s > % and r < p needs to be considered. Note that Bj, < Bj  with

s =5- % + i With the same arguments as (2.14), one has

LIS
@ o, ~

—mp s=py—j15'p
27T,

Qu < ), lxel-LLL, Bix, f)>2" 50 < )

JEH, j= 1 JEH, j2 1
Then it follows from (2.12) and 27! ~ 225(20%6,_,% that
f (U ()P dx < (21 6,)P27 s P2 15p < 27in'p < 0= 57,
Q,,
This with (2.15) and (2.16) leads to the desired conclusions. O
3. Proofs
In this section, we shall provide the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Note that U,(j) in (1.6) is monotonically increasing with j. Together with (1.7),
one shows

Finio () = Fo (Ol < Ri(x) + Un(j A Jo) + Un(Jo) < Rj(x) + 2U,(jo)-
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Similarly,
Fions) = F0 < Rjy(x) + 2U, ().
These with the selection of j, in (1.8) and ]/‘;) A= EA j, imply that
Fioni(®) = ol + 1Fipni(0) = )] < 2R;(0) + 4U, (). (3.1)
Moreover, by (1.7) and (1.10),

Ri(x) = sup [Ifinj () = F 0l = UaG A J) = Un(J)]

jeH +
< sup EFjny (0) = EFp ()l + 1a(x, j A O = UnGi A J) + a1 = Un(J)] -
JE

This with sup g, [E finj (X) = Ef;(X)] < SUP|jegr. o y1Biny(x, f) + By (x, f)} and (1.11) implies that
Rj(x) < 2B5(x, f) + 2v,(x).
Furthermore,
Fioni ) = Fu ] + 1fionj(0) = FH0] < 4B3(x, f) + 4v,(x) + AU, (j) (3.2)

by (3.1).
On the other hand, |£,(x, j)| < [If,,(x, Ni— U"(j)]+ +U,(j) < v,(x)+U,(j) by (1.11). This with (1.10)
and (1.11) leads to

1£10) = FQOI < Bj(x, £) + Ea(x, | < Bi(x, ) + va(x) + Un(). (3.3)

Clearly, |F,(x) = F)] < [FaniX) = FaOl + [Fani(6) = £ + 1Fi(x) = £, Tt follows from (3.2)
and (3.3) that

F@) = FI < 5B, £) + 5v,(0) + 5UL()
holds for any j € H. Moreover,

fis(0) = FOOL < inf {SB)(x, )+ SUL(D} + S0

Finally, the desired conclusion is completed by E(x) = ;‘;0 (x)in (1.9).
Proof of Theorem 1.2. According to Theorem 1.1, for any x € [-L, L],

1F2(x) = FOO S Up(x) + va().

Let Q; := {x € [-L, L], Uy(x) < 6,} with §, = (S222)%%@+T, Then, for each p € [1, 00),

L L L
Elfudi-ey— fIl), < E f [Us(x) + va()]Pdx < f [Us(x)])Pdx + f Elv,(x))Pdx
—L —

L -L
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< f [Up))dx+ ) f [U(x)]Pdx +n™5
Q m=0 *
< mZO fg m[Uf(x)]demg (3.4)

thanks to f € B; (M, L) and Proposition 2.1.
Recall that 2™ ~ (5,‘,1 and 6, ~ (1“7’1)2”25(&)+1 by (2.9) and (2.10). By using Proposition 2.2, one
obtains the following estimations:

() Forl<p<2— 47,

2B(a)+1
my
In 1\ s
> f [U(x))Pdx + 67 < &% < (7)2 B (3.5)
m:() Qm
(ii) For p > 525 + 1,
=2 le(p—r— 2sr ) lnl’l Zﬁ(;ﬁ
DU Wi + 8 g 20w 4 67 < (—) (3.6)
m=0 Qi n
(iii) For the cases p > 3525 + rand s > 1. Letm; € Z satisfy
it
( 2s’ +)p- 2sr
2m1 ~ 5n2,8(ar)+l 2B(a)+1 . (3.7)
Hence, 0 < m; < m, follows fromr < p, p > 2/3(2(§)r+1 +rand s > % Thus,
mp | 2
> f [Ux)dx+6, < > f [Upx)Pdx+ f [U(x0)]Pdx + 6"
m=0 * m=0 ¥ m=m; Qn

Sr 2my s I
< zml(ﬂ—r— 2/3(2(y)+1 )517 4+ 2” 2ﬂ((1y)+’; o, p + oP
~ n n*
This with (3.7), 6, ~ (%2)*@T and s’ = s — 7 +  leads to

s'p

my 1
P N O 39
Q

m=0 m

The proof of Theorem 1.2 is completed due to (3.4)—(3.6) and (3.8).
4. Conclusions

Based on a data-driven wavelet estimator, we study the adaptive L? risk estimations in the
convolution structure density model (see (1.1)). When @ = 0, the model (1.1) reduces to the classical
density model with no errors, and our results coincide with the conclusions of Theorem 3 of Donoho
et al. [6]. On the other hand, the model (1.1) with @ = 1 corresponds to the deconvolution model,
and Theorem 4 of Li and Liu [14] and Theorem 4.1 of Cao and Zeng [1] can follow directly from our
Theorem 1.2.
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