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1. Introduction and preliminary

The deconvolution density estimation plays important roles in both statistics and econometrics [15].
In this paper, the generalized deconvolution density model introduced by Lepski and Willer [12, 13] is
considered, which can be reduced to the classical density model with no errors and the deconvolution
one.

Let Z1,Z2, · · · ,Zn be independent and identically distributed (i.i.d.) random variables having the
same distribution as

Z = X + εY, (1.1)

where X stands for a real-valued random variable with an unknown probability density function f , Y
denotes an independent random noise (error) with a known probability density g and ε ∈ {0, 1} is a
Bernoulli random variable with P{ε = 1} = α, α ∈ [0, 1]. The problem is to estimate f by the observed
data Z1,Z2, · · · ,Zn in some sense.

When α = 0, model (1.1) reduces to the classical density model with no errors. The representative
work belongs to Donoho et al. [6]. They established an adaptive and optimal Lp risk estimation (up to
a logarithmic factor) on Besov balls by using a nonlinear wavelet estimator. In 2019, Liu and Wu [17]
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provided a data-driven wavelet estimator and considered point-wise estimations on a local anisotropic
Hölder space. Two years later, Cao and Zeng [2] investigated the adaptive Lp risk estimations under
the independence hypothesis on Besov balls. More related work can also be found in Refs. [8, 10, 11].

The model (1.1) with α = 1 corresponds to the deconvolution model. Fan and Koo [7] considered
optimal estimations with L2 risk on a Besov ball. Moreover, Lounici and Nickl [19] discussed L∞ risk
estimations in 2011. Three years later, Li and Liu [14] studied Lp risk estimations based on linear and
non-linear wavelet estimators. In 2023, Cao and Zeng [1] provided a data-driven wavelet estimator and
considered Lp risk estimations on Besov spaces. For more related literature, please see Refs. [4,16,22].

As in Ref [18], the density function h of Z in (1.1) satisfies

h = (1 − α) f + α f ∗ g,

where f ∗ g denotes the convolution of f and g. Moreover, when the function Gα(t) := 1 − α + αg f t(t)
has nonzeros on R, we obtain

f f t(t) = [(1 − α) + αg f t(t)]−1h f t(t) = [Gα(t)]−1h f t(t).

Here and throughout, f f t is the Fourier transform of f ∈ L1(R) defined by

f f t(t) :=
∫
R

f (x)e−itxdx.

Based on the model (1.1) with some mild assumptions on Gα, Lepski and Willer [12] established
an asymptotic lower bound estimation over Lp risk. Moreover, they investigated adaptive Lp risk
estimations over an anisotropic Nikol’skii space based on a data-driven kernel estimator in Ref. [13].
Recently, Liu and Wu [18] provided a data-driven wavelet estimator and discussed point-wise
estimations under the local Hölder spaces. Cao and Zeng [3] studied Lp risk estimations by using
linear and nonlinear wavelet estimators on Besov balls.

In this paper, we will introduce a data-driven wavelet estimator and study the Lp (1 ≤ p < ∞) risk
estimations based on model (1.1) over Besov balls. The following conditions are necessary for our
discussion:

(T1) |Gα(t)| & (1 + |t|2)−
β(α)

2 ;
(T2) ‖(Gα)(`)‖∞ . 1, ` = 1, 2

with β(α) = β ≥ 0 for α = 1 and β(α) = 0 for others. In fact, the condition (T1) is the same as the
assumption in Refs [13,18] and (T2) is used in Lemma 2.1. Here and after, the notation A . B denotes
A ≤ cB with some fixed and independent constant c > 0; A & B means B . A; A ∼ B stands for both
A . B and A & B.

It is well known that the wavelet estimation depends on an orthonormal wavelet expansion in L2(R).
Let φ be an orthonormal scaling function and ψ be the corresponding wavelet one. Subsequently, with
ϑ jk(x) := 2

j
2ϑ(2 jx − k) (ϑ = φ or ψ), for f ∈ L2(R),

f =
∑
k∈Z

α j0kφ j0k +
∑
j≥ j0

∑
k∈Z

β jkψ jk (1.2)

with α jk := 〈 f , φ jk〉 and β jk := 〈 f , ψ jk〉.
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As usual, let P j be the orthogonal projective operator from L2(R) onto the scaling space V j with the
orthonormal basis {φ jk}k∈Z. Hence, for any f ∈ L2(R),

P j f =
∑
k∈Z

α jkφ jk. (1.3)

Moreover, the identities (1.2) and (1.3) hold in Lp(R) for p ≥ 1, if the scaling function φ is `-regular.
Here and throughout, `-regular [5] means that φ ∈ C`(R) and |φ(r)(x)| ≤ Cm(1 + |x|2)−m (r = 0, 1, · · · , `)
for each m ∈ Z and some independent positive constants Cm.

One advantage of wavelet bases is that they can characterize Besov spaces, which contain Hölder
and L2-Sobolev spaces as special examples.

Lemma 1.1. [21] Let φ be `-regular (` > s > 0) and ψ be the corresponding wavelet. Then, for
r, q ∈ [1,∞] and f ∈ Lr(R), the following assertions are equivalent:

(i) f ∈ Bs
r,q(R);

(ii) {2 js‖P j f − f ‖r} ∈ lq(Z);
(iii) ‖α j0·‖lr + ‖(2 j(s− 1

r + 1
2 )‖β j·‖lr ) j≥ j0‖lq < ∞.

The Besov norm of f can be defined by

‖ f ‖Bs
r,q := ‖α j0·‖lr + ‖(2 j(s− 1

r + 1
2 )‖β j·‖lr ) j≥ j0‖lq .

From Lemma 1.1, we find that ‖P j f − f ‖r . 2− js holds for f ∈ Bs
r,q(R) and

Bs
r,q(R) ↪→ Bs′

p,q(R)

for r ≤ p and s′ − 1
p = s − 1

r > 0. Here, notation A ↪→ B stands for a Banach space A continuously
embedded in another Banach space B. For details, please see Refs. [9, 14].

In this paper, the notation Bs
r,q(M, L) with M, L > 0 means that

Bs
r,q(M, L) := { f ∈ Bs

r,q(M), supp f ⊆ [−L, L]},

where Bs
r,q(M) := { f ∈ Bs

r,q(R), f is a density function, and ‖ f ‖Bs
r,q ≤ M} stands for a Besov ball.

1.1. Data-driven wavelet estimator and main results

To introduce our estimator, we assume that φ satisfies `-regular with ` > 3β(α) + 1. Therefore,

α̂ jk :=
2 j/2

n

n∑
i=1

(K jφ)(2 jZi − k) and (K jφ)(z) :=
1

2π

∫
R

eitz φ f t(t)
Gα(−2 jt)

dt (1.4)

are well-defined under condition (T1). Clearly, Eα̂ jk = α jk, for details, please see Ref [18].
As in [18], the linear wavelet estimator for (1.1) is defined by

f̂ j(x) :=
∑
k∈Z

α̂ jkφ jk(x). (1.5)

Normally, the above estimator is non-adaptive [6, 11, 14], because the parameter j depends on
the smoothness index s of the unknown density function f . Motivated by the works of Lepski and
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Willer [13] and Cao and Zeng [1], we provide a selection rule of j deciding only by the observed data
Z1, · · · ,Zn, which is so called a data-driven version.

LetH =
{
0, 1, · · · , b 1

2β(α)+1 log2
n

ln nc
}

and

Un( j) =

√
λ2 j(2β(α)+1) ln n

n
+
λ2 j(β(α)+1) ln n

n
(1.6)

with bac standing for the largest integer smaller or equal to a and λ being a positive constant (specified
later on). Furthermore, for each x ∈ R,

R̂ j(x) := sup
j′∈H

[
| f̂ j∧ j′(x) − f̂ j′(x)| − Un( j ∧ j′) − Un( j′)

]
+
. (1.7)

Here and after, the notations a ∧ b denote min{a, b} and a+ means max{a, 0}.
Then, the selection of j = j0 in (1.5) is given by

j0 = j0(x) = arginf
j∈H

[
R̂ j(x) + 2Un( j)

]
. (1.8)

Moreover, the data-driven wavelet estimator is obtained by

f̂n(x) := f̂ j0(x) =
∑
k∈Z

α̂ j0kφ j0k(x). (1.9)

To introduce Theorem 1.1, let

B j(x, f ) := |E f̂ j(x) − f (x)| and ξn(x, j) := f̂ j(x) − E f̂ j(x) (1.10)

be the bias and the stochastic error of f̂ j, respectively. Furthermore, we define

B∗j(x, f ) := sup
j′∈H , j′≥ j

B j′(x, f ) and vn(x) := sup
j∈H

[
|ξn(x, j)| − Un( j)

]
+
, (1.11)

where Un( j) is given by (1.6). Then the following point-wise oracle inequality holds.

Theorem 1.1. For any x ∈ R, the estimator f̂n(x) in (1.9) satisfies that

| f̂n(x) − f (x)| ≤ inf
j∈H

{
5B∗j(x, f ) + 5Un( j)

}
+ 5vn(x),

where B∗j(x, f ), vn(x) are defined in (1.11) and Un( j) is given by (1.6).

It is important to point out that the proof of Theorem 1.1 only depends on the selection rule of
j0 in (1.8) and does not need any assumptions on the unknown density f (except for the restrictions
ensuring the existence of the model and of the risk). For more detail, please see Section 3. Therefore,
the point-wise oracle inequality in Theorem 1.1 is especially useful and plays an important role in the
following Lp risk estimation.
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Theorem 1.2. Let φ be `-regular (` > 3β(α) + 1) and f̂n be given by (1.9). If the conditions (T1)
and (T2) hold, 0 < s < ` and r, q ∈ [1,∞], then for each p ∈ [1,∞), we have

sup
f∈Bs

r,q(M,L)∩L∞(M)
E‖ f̂nI[−L,L] − f ‖p

p .
( ln n

n

)θp
,

where

θ :=


s

2s+2β(α)+1 , 1 ≤ p < 2sr
2β(α)+1 + r;

sr
(2β(α)+1)p , p ≥ 2sr

2β(α)+1 + r, s ≤ 1
r ;

s− 1
r + 1

p

2(s− 1
r )+2β(α)+1

, p ≥ 2sr
2β(α)+1 + r, s > 1

r .

Remark 1.1. When α = 1, β(α) = β and θ = min{ s
2s+2β+1 ,

s− 1
r + 1

p

2(s− 1
r )+2β+1

} for s > 1
r , which coincides with

Theorem 4 of Li and Liu [14]. On the other hand, β(α) = 0 with α = 0, then θ = min{ s
2s+1 ,

s− 1
r + 1

p

2(s− 1
r )+1
} with

s > 1
r , while the conclusion of Theorem 3 of Donoho et al. [6] can follow directly from Theorem 1.2.

Moreover, the estimation for s ≤ 1
r is considered, whereas there is none in Refs. [6, 14].

Remark 1.2. The conclusion of Theorem 1.2 with α = 1 can be reduced to Theorem 4.1 of Cao and
Zeng [1]. In addition, the condition β ≥ 0 in Theorem 1.2 is weaker than the condition β > 1 in
Ref. [1].

2. Two propositions

This section provides two necessary propositions that play important roles in the proof of
Theorem 1.2.

With K jφ being given by (1.4), we denote

K∗j (t, x) := 2 j
∑
k∈Z

(K jφ)(2 jt − k)φ(2 jx − k). (2.1)

Then, the following lemma holds.

Lemma 2.1. Let f ∈ L∞(M), φ be `-regular (` > 3β(α) + 1), and conditions (T1) and (T2) hold. Then
K∗j (t, x) given by (2.1) satisfies that

|K∗j (t, x)| ≤ M12 j(β(α)+1) and E|K∗j (Z1, x)|2 ≤ M12 j(2β(α)+1),

where M1 > 0 is some constant.

Proof. According to (1.4) and (2.1), there exists some constant M0 > 0 such that

|K∗j (t, x)| =

∣∣∣∣∣∣∣2 j
∑
k∈Z

(K jφ)(2 jt − k)φ(2 jx − k)

∣∣∣∣∣∣∣ ≤ M02 j(β(α)+1) (2.2)

thanks to conditions (T1) and the regularity of φ.
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Clearly, ‖h‖∞ ≤ (1 − α)‖ f ‖∞ + α‖ f ∗ g‖∞ ≤ ‖ f ‖∞. This with (1.4) and (2.1) has

E|K∗j (Z1, x)|2 ≤ ‖ f ‖∞22 j
∫
R

[∑
k

φ(2 jx − k)
1

2π

∫
eit(2 jz−k) φ f t(t)

Gα(−2 jt)
dt

]2
dz.

Combining (T1) and (T2) and Parseval identity, one obtains

E|K∗j (Z1, x)|2 ≤ ‖ f ‖∞2 j
(∑

k

|φ(2 jx − k)|
)2

∫
R

[ φ f t(t)
Gα(−2 jt)

]2
dt ≤ M′

02 j(2β(α)+1), (2.3)

where M′
0 > 0 is some constant. The proof is completed by choosing M1 := max{M0, M′

0}

and (2.2), (2.3). �

In order to prove Proposition 2.1, the following inequality is necessary:
Bernstein’s inequality. [20] Let X1, · · · , Xn be i.i.d. random variables with EX2

i ≤ σ
2 and |Xi| ≤ M

(i = 1, 2, · · · , n). Then, for any t > 0,

P


∣∣∣∣∣∣∣1n

n∑
i=1

(Xi − EXi)

∣∣∣∣∣∣∣ ≥
√

2σ2t
n

+
4Mt
3n

 ≤ 2e−t.

Proposition 2.1. Let f ∈ L∞(M), φ be `-regular with ` > 3β(α) + 1 and conditions (T1) and (T2) hold.
Then, for each x ∈ R and γ > 0, there exists λ > 4M1γ such that

E[vn(x)]γ . n−
γ
2 ,

where vn(x) is given by (1.11) and M1 is the positive constant in Lemma 2.1.

Proof. With λ j = max{(β(α) + 2)γ j ln 2, 1
4 } and j ∈ H , one defines

Un( j) :=

√
2M12 j(2β(α)+1)

n
λ j +

4M12 j(β(α)+1)

3n
λ j. (2.4)

It is easy to see that λ ln n ≥ 2M1λ j for large n follows from λ > 4M1γ and j ∈ H . Thus, one concludes
Un( j) ≤ Un( j), thanks to (1.6) and (2.4). Therefore,[

|ξn(x, j)| − Un( j)
]
+
≤

[
|ξn(x, j)| − Un( j)

]
+
. (2.5)

Note that
{[
|ξn(x, j)| − Un( j)

]
+ > t

}
=

{
|ξn(x, j)| − Un( j) > t

}
for each t ≥ 0. Thus,

E
[
|ξn(x, j)| − Un( j)

]γ
+

= γ

∫ ∞

0
tγ−1P

{
|ξn(x, j)| − Un( j) > t

}
dt.

This with a change of variables t = vω and ω :=
√

2M12 j(2β(α)+1)

n + 4M12 j(β(α)+1)

3n obtains

E
[
|ξn(x, j)| − Un( j)

]γ
+

≤ γ

∫ ∞

0
(vω)γ−1P

|ξn(x, j)| >

√
2M12 j(2β(α)+1)

n
(
√

v + λ j) +
4M12 j(β(α)+1)

3n
(v + λ j)

ωdv (2.6)
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by λ j = max{(β(α) + 2)γ j ln 2, 1
4 } ≥

1
4 .

According to (1.5), (1.10), and (2.1), one gets

ξn(x, j) =
1
n

n∑
i=1

[K∗j (Zi, x) − EK∗j (Zi, x)].

Moreover, Lemma 2.1 says that

|K∗j (Zi, x)| ≤ M12 j(β(α)+1) and E|K∗j (Zi, x)|2 ≤ M12 j(2β(α)+1).

These with Bernstein’s inequality,

P

|ξn(x, j)| >

√
2M12 j(2β(α)+1)

n
(
√

v + λ j) +
4M12 j(β(α)+1)

3n
(v + λ j)

 ≤ 2e−(v+λ j).

Substituting this above estimate into (2.6), one knows

E
[
|ξn(x, j)| − Un( j)

]γ
+
≤ 2γωγ

∫ ∞

0
vγ−1e−(v+λ j)dv . ωγe−λ j .

Therefore,

E
[
|ξn(x, j)| − Un( j)

]γ
+
.

(2 j(β(α)+1)

√
n

)γ
2−(β(α)+2)γ j . n−

γ
2 2−γ j (2.7)

due to ω =

√
2M12 j(2β(α)+1)

n + 4M12 j(β(α)+1)

3n and e−λ j ≤ 2−(β(α)+2)γ j.
Combining (1.11), (2.5), and (2.7), one has

E[vn(x)]γ . E sup
j∈H

[
|ξn(x, j)| − Un( j)

]γ
+
.

∑
j∈H

E
[
|ξn(x, j)| − Un( j)

]γ
+
. n−

γ
2 ,

becauseH is a discrete set. The proof is done. �

In order to introduce Proposition 2.2, we need the following notations:

U f (x) := inf
j∈H
{B∗j(x, f ) + Un( j)}, (2.8)

Ωm := {x ∈ [−L, L], 2mδn < U f (x) ≤ 2m+1δn}, (2.9)

where δn = (C ln n
n )

s
2s+2β(α)+1 and C > 1 is some constant.

Clearly, U f (x) ≤ supx U f (x) := c0 for f ∈ L∞(M). Therefore, there exists

m2 := min{m ∈ Z, 2mδn ≥ c0} (2.10)

satisfying Ωm = ∅ for any m > m2. Moreover, it is easy to verify that m2 > 0 for a large n.

AIMS Mathematics Volume 9, Issue 7, 17076–17088.



17083

Proposition 2.2. Let f ∈ Bs
r,q(M) ∩ L∞(M), φ be `-regular (` > 3β(α) + 1) and conditions (T1) and

(T2) hold. Then, for m ∈ Z satisfying 0 ≤ m ≤ m2,∫
Ωm

[U f (x)]pdx . 2m(p−r− 2sr
2β(α)+1 )δp

n ;

Furthermore, if s > 1
r and r ≤ p, then with s′ := s − 1

r + 1
p ,∫

Ωm

[U f (x)]pdx . 2−
2ms′ p

2β(α)+1 δ
s′
s p

n ,

where U f (x) and Ωm are defined in (2.8) and (2.9), respectively.

Proof. Let j1 satisfy

c12
2m

2β(α)+1 δ
− 1

s
n ≤ 2 j1 ≤ c22

2m
2β(α)+1 δ

− 1
s

n (2.11)

with two positive constants c1, c2 satisfying (2M)
1
s I{r=∞} < c1 < c2 < min

{
C

4c2
0
, C

4(
√
λ+λ)2

} 1
2β(α)+1

. Then

j1 ∈ H and Un( j1) ≤ 2m−1δn for 0 < m ≤ m2 and large n. In fact, (2.10) leads to 2m2 ≤ 2c0δ
−1
n .

According to 0 < m ≤ m2, (2.11) and δn = (C ln n
n )

s
2s+2β(α)+1 , one concludes that

1 < c1δ
− 1

s
n ≤ 2 j1 ≤ c22

2m2
2β(α)+1 δ

− 1
s

n ≤ c2(2c0)
2

2β(α)+1 δ
−( 1

s + 2
2β(α)+1 )

n <
( n
ln n

) 1
2β(α)+1

.

Hence, j1 ∈ H . On the other hand,

Un( j1) =

√
λ2 j1(2β(α)+1) ln n

n
+
λ2 j1(β(α)+1) ln n

n

≤ (
√
λ + λ)

√
2 j1(2β(α)+1) ln n

n

≤ (
√
λ + λ)

√
c2β(α)+1

2 22mδ
−

2β(α)+1
s

n
ln n
n

≤ (
√
λ + λ)

√
c2β(α)+1

2 /C2mδn.

Thus, Un( j1) ≤ 2m−1δn follows from c2 < [ C
4(
√
λ+λ)2 ]

1
2β(α)+1 .

According to Ωm = {x ∈ [−L, L], 2mδn < U f (x) ≤ 2m+1δn}, one has∫
Ωm

[U f (x)]pdx ≤ (2m+1δn)p|Ωm|, (2.12)

where |Ωm| stands for the Lebesgue measure of the set Ωm. Recall that U f (x) = inf j∈H {B∗j(x, f )+Un( j)}
in (2.8). Therefore,

|Ωm| ≤ |{x ∈ [−L, L], U f (x) > 2mδn}|

≤ |{x ∈ [−L, L], B∗j1(x, f ) + Un( j1) > 2mδn}|
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≤ |{x ∈ [−L, L], B∗j1(x, f ) > 2m−1δn}| (2.13)

thanks to j1 ∈ H and Un( j1) ≤ 2m−1δn.
When 1 ≤ r < ∞, by using Chebyshev’s inequality, (1.11), (2.13), and f ∈ Bs

r,q(M),

|Ωm| ≤ |{x ∈ [−L, L], B∗j1(x, f ) > 2m−1δn}|

≤
∑

j∈H , j≥ j1

|{x ∈ [−L, L], B j(x, f ) > 2m−1δn}|

≤
∑

j∈H , j≥ j1

‖B j(·, f )‖rr
(2m−1δn)r . 2−mrδ−r

n 2− j1 sr. (2.14)

This with (2.12) and 2 j1 ∼ 2
2m

2β(α)+1 δ
− 1

s
n implies that∫

Ωm

[U f (x)]pdx . (2m+1δn)p2−mrδ−r
n 2− j1 sr . 2m(p−r)δp−r

n 2− j1 sr . 2m(p−r− 2sr
2β(α)+1 )δp

n . (2.15)

When r = ∞, according to f ∈ Bs
r,q(M) and m > 0, one gets

B∗j1(x, f ) = sup
j′≥ j1

B j′(x, f ) ≤ M2− j1 s ≤ Mc
−s

1 2−
2ms

2β(α)+1 δn ≤ 2m−1δn

by the choice of 2 j1 ≥ c12
2m

2β(α)+1 δ
− 1

s
n with c1 > (2M)

1
s . Hence, |Ωm| = 0 by (2.13). This with (2.12)

obtains ∫
Ωm

[U f (x)]pdx ≤ (2m+1δn)p|Ωm| = 0. (2.16)

Finally, the situation of s > 1
r and r ≤ p needs to be considered. Note that Bs

r,q ↪→ Bs′
p,q with

s′ = s − 1
r + 1

p . With the same arguments as (2.14), one has

|Ωm| ≤
∑

j∈H , j≥ j1

|{x ∈ [−L, L], B j(x, f ) > 2m−1δn}| ≤
∑

j∈H , j≥ j1

‖B j(·, f )‖p
p

(2m−1δn)p . 2−mpδ−p
n 2− j1 s′p.

Then it follows from (2.12) and 2 j1 ∼ 2
2m

2β(α)+1 δ
− 1

s
n that∫

Ωm

[U f (x)]pdx . (2m+1δn)p2−mpδ−p
n 2− j1 s′p . 2− j1 s′p . 2−

2ms′ p
2β(α)+1 δ

s′
s p

n .

This with (2.15) and (2.16) leads to the desired conclusions. �

3. Proofs

In this section, we shall provide the proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Note that Un( j) in (1.6) is monotonically increasing with j. Together with (1.7),
one shows

| f̂ j∧ j0(x) − f̂ j0(x)| ≤ R̂ j(x) + Un( j ∧ j0) + Un( j0) ≤ R̂ j(x) + 2Un( j0).
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Similarly,

| f̂ j0∧ j(x) − f̂ j(x)| ≤ R̂ j0(x) + 2Un( j).

These with the selection of j0 in (1.8) and f̂ j0∧ j = f̂ j∧ j0 imply that

| f̂ j0∧ j(x) − f̂ j0(x)| + | f̂ j0∧ j(x) − f̂ j(x)| ≤ 2R̂ j(x) + 4Un( j). (3.1)

Moreover, by (1.7) and (1.10),

R̂ j(x) = sup
j′∈H

[
| f̂ j∧ j′(x) − f̂ j′(x)| − Un( j ∧ j′) − Un( j′)

]
+

≤ sup
j′∈H

[
|E f̂ j∧ j′(x) − E f̂ j′(x)| + |ξn(x, j ∧ j′)| − Un( j ∧ j′) + |ξn(x, j′)| − Un( j′)

]
+
.

This with sup j′∈H |E f̂ j∧ j′(x) − E f̂ j′(x)| ≤ sup{ j′∈H , j′≥ j}{B j∧ j′(x, f ) + B j′(x, f )} and (1.11) implies that

R̂ j(x) ≤ 2B∗j(x, f ) + 2vn(x).

Furthermore,

| f̂ j0∧ j(x) − f̂ j0(x)| + | f̂ j0∧ j(x) − f̂ j(x)| ≤ 4B∗j(x, f ) + 4vn(x) + 4Un( j) (3.2)

by (3.1).
On the other hand, |ξn(x, j)| ≤

[
|ξn(x, j)|−Un( j)

]
+

+Un( j) ≤ vn(x)+Un( j) by (1.11). This with (1.10)
and (1.11) leads to

| f̂ j(x) − f (x)| ≤ B j(x, f ) + |ξn(x, j)| ≤ B∗j(x, f ) + vn(x) + Un( j). (3.3)

Clearly, | f̂ j0(x) − f (x)| ≤ | f̂ j0∧ j(x) − f̂ j0(x)| + | f̂ j0∧ j(x) − f̂ j(x)| + | f̂ j(x) − f (x)|. It follows from (3.2)
and (3.3) that

| f̂ j0(x) − f (x)| ≤ 5B∗j(x, f ) + 5vn(x) + 5Un( j)

holds for any j ∈ H . Moreover,

| f̂ j0(x) − f (x)| ≤ inf
j∈H

{
5B∗j(x, f ) + 5Un( j)

}
+ 5vn(x).

Finally, the desired conclusion is completed by f̂n(x) = f̂ j0(x) in (1.9).
Proof of Theorem 1.2. According to Theorem 1.1, for any x ∈ [−L, L],

| f̂n(x) − f (x)| . U f (x) + vn(x).

Let Ω−0 := {x ∈ [−L, L], U f (x) ≤ δn} with δn = (C ln n
n )

s
2s+2β(α)+1 . Then, for each p ∈ [1,∞),

E‖ f̂nI[−L,L] − f ‖p
p . E

∫ L

−L
[U f (x) + vn(x)]pdx .

∫ L

−L
[U f (x)]pdx +

∫ L

−L
E[vn(x)]pdx

AIMS Mathematics Volume 9, Issue 7, 17076–17088.
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.

∫
Ω−0

[U f (x)]pdx +

m2∑
m=0

∫
Ωm

[U f (x)]pdx + n−
p
2

.
m2∑

m=0

∫
Ωm

[U f (x)]pdx + δp
n (3.4)

thanks to f ∈ Bs
r,q(M, L) and Proposition 2.1.

Recall that 2m2 ∼ δ−1
n and δn ∼ ( ln n

n )
s

2s+2β(α)+1 by (2.9) and (2.10). By using Proposition 2.2, one
obtains the following estimations:

(i) For 1 ≤ p < 2sr
2β(α)+1 + r,

m2∑
m=0

∫
Ωm

[U f (x)]pdx + δp
n . δ

p
n .

( ln n
n

) sp
2s+2β(α)+1

. (3.5)

(ii) For p ≥ 2sr
2β(α)+1 + r,

m2∑
m=0

∫
Ωm

[U f (x)]pdx + δp
n . 2m2(p−r− 2sr

2β(α)+1 )δp
n + δp

n .
( ln n

n

) sr
2β(α)+1

. (3.6)

(iii) For the cases p ≥ 2sr
2β(α)+1 + r and s > 1

r . Let m1 ∈ Z satisfy

2m1 ∼ δ

s′ p( 1
s −

1
s′ )

( 2s′
2β(α)+1 +1)p− 2sr

2β(α)+1 −r

n . (3.7)

Hence, 0 < m1 < m2 follows from r < p, p ≥ 2sr
2β(α)+1 + r and s > 1

r . Thus,

m2∑
m=0

∫
Ωm

[U f (x)]pdx + δp
n ≤

m1∑
m=0

∫
Ωm

[U f (x)]pdx +

m2∑
m=m1

∫
Ωm

[U f (x)]pdx + δp
n

. 2m1(p−r− 2sr
2β(α)+1 )δp

n + 2−
2m1 s′ p
2β(α)+1 δ

s′
s p

n + δp
n .

This with (3.7), δn ∼ ( ln n
n )

s
2s+2β(α)+1 and s′ = s − 1

r + 1
p leads to

m2∑
m=0

∫
Ωm

[U f (x)]pdx + δp
n .

( ln n
n

) s′ p

2(s− 1
r )+2β(α)+1 . (3.8)

The proof of Theorem 1.2 is completed due to (3.4)–(3.6) and (3.8).

4. Conclusions

Based on a data-driven wavelet estimator, we study the adaptive Lp risk estimations in the
convolution structure density model (see (1.1)). When α = 0, the model (1.1) reduces to the classical
density model with no errors, and our results coincide with the conclusions of Theorem 3 of Donoho
et al. [6]. On the other hand, the model (1.1) with α = 1 corresponds to the deconvolution model,
and Theorem 4 of Li and Liu [14] and Theorem 4.1 of Cao and Zeng [1] can follow directly from our
Theorem 1.2.
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