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1. Introduction

Quantum calculus, sometimes referred to as g—calculus, is a field of mathematics which expands
the scope of traditional calculus to encompass the realm of quantum mechanics. g—calculus is a


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024828

17064

mathematical discipline that broadens the horizons of classical calculus theories and techniques by
incorporating a novel parameter, denoted by g. g—calculus has been found to have numerous uses in
different branches of mathematics and other fields. Among the most crucial and well-studied areas of
g—calculus is the theory of g—orthogonal polynomials (g-op).

The theory of g—op began with the work of Leonard Carlitz and others in the 1940s and 1950s.
Carlitz [9] introduced a new type of polynomial called g-polynomials, which are polynomials that
satisfy a certain recurrence relation involving the g—analog of the factorial function. These polynomials
were later generalized to the theory of g—op by Askey and Wilson [7] in the 1970s.

The g—op form a collection of orthogonal polynomials whose weight function is dependent on the
parameter g. These polynomials have been discovered to have diverse applications in number theory,
combinatorics, statistical mechanics and quantum, and other branches of mathematics and physics.

There are several types of g—op, including g—Hermite, g—Jacobi, g—Laguerre, and g—Ultraspherical
polynomials (or g—Gegenbauer polynomials), among others. Each type of g—op has its own recurrence
relation, weight function, and orthogonality properties; for a comprehensive study, see [11].

The study of g—op has led to the development of many important results and techniques in
g—calculus, including the g—analog of the binomial theorem, g—difference equations, and g—special
functions. The theory of g—op has also been used to study g—integrals and g—series, which are
important tools in the study of g—calculus. In a recent development, Quesne [23] reinterpreted
Jackson’s g—exponential as a closed-form product of regular exponentials with coefficients that are
already known. This finding raises important implications for the theory of g—op in this context and
warrants further examination.

The theory of orthogonal polynomials has been extensively studied due to its numerous applications
in many fields of physics and mathematics. In recent years, the use of orthogonal polynomials and their
analogs has become an important tool for studying analytic functions in the complex plane, particularly
bi-univalent functions.

2. Preliminaries

Let A be the class of functions f of the form

f@=z+ ) az’, (D), 2.1)
s=2

which are analytic in the disk U = {z € C : |z] < 1} and satisfy the normalization condition f’(0) — 1 =
0 = f(0). Also, by S, the subclass of A has the univalent functions in U of the form given in Eq (2.1).

Differential subordination of analytical functions offers powerful methods that are extremely useful
in geometric function theory. The first differential subordination problem is attributed to Miller and
Mocanu [14]; see [15]. Most of the field’s advancements are summarized in Miller and Mocanu’s
book [16].

It is a commonly accepted fact that for any function f € S, there exists an inverse £~ that is defined
by a certain mathematical expression.

fiif@) =z (zel)
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and {
ffl@)=o (l@| < ro(f); ro(f) = Z)

where
h(w) = f_l(w) = w— aw’ + (2a§ -’ - (5a§ —Sayas + a)wt + - . (2.2)

In the context of mathematics, a function is considered to be bi-univalent in the domain U if together
the function f(z) and its inverse f~!(z) are univalent (i.e., one-to-one) in the same domain U.

The subclass of bi-univalent functions in the domain U, as defined by Eq (2.1), can be denoted by
the symbol I1. Several examples of functions that are in the class II are also available

_c log «/—2

1-7 g ’

Despite its popularity, it is important to remember that the familiar Koebe function does not belong

to the class I1. However, there exist other frequently used examples of functions that are defined in the
domain U, such as:

2z—22a z

which are also not members of I1.

In a study by Lewin [13], the bi-univalent function class I was explored, and it was demonstrated
that |a,| < 1.51. Afterward, Brannan and Clunie [8] suggested a hypothesis that |a,| < V2. However,
Netanyahu [17] subsequently provided evidence that the maximum value of |a;| among all functions in
IT1s equal to 4/3.

Askey and Ismail, in their work cited as [6], made a significant discovery of a collection of
polynomials that can be considered as g-analogues of the Ultraspherical polynomials. These
polynomials are referred to as Cﬁ(qx)(x, z) and are essentially what they have identified.

G0 = ) CP 9, (2.3)
s=0

By means of the recurrence relations, Chakrabarti and colleagues, as cited in [10], made a
noteworthy finding of a series of polynomials that can be understood as g-analogues of the
Ultraspherical functions:

Colxig) = 1,
CV 9 = N1,Cl () = 2[x lox: 2.4)
CV v 9) = [N1,2Ch(0) - ([x 2 = [NT2) CH00) = 2([N]2 + [N2) x* - [N],e.

On the other hand, in 2023, Amourah et al. [2] and Alsoboh et al. [1] built several classes of analytic
bi-univalent functions using g—Ultraspherical functions (or g—Gegenbauer polynomials).

In recent times, connections between bi-univalent functions and orthogonal polynomials have been
the subject of research by many scholars. Some of the notable studies in this regard include ( [3-5,22,
28]). However, to the best of our knowledge, there is limited research on bi-univalent functions in the
context of ultraspherical polynomials.
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3. Definitions

g—analysis theory has found applications in numerous scientific and engineering domains. The
fractional g—calculus is an expansion of the traditional fractional calculus. Srivastava [25] has made
remarkable contributions to g—calculus and the fractional g—calculus operator. In a previous study,
Purohit and Raina [21] explored the fractional g—calculus operator for defining various subclasses in
the open disk U. Other authors have previously issued new analytical function classes based on the
g—calculus operator. Purohit and Raina [18-20] presented related work on open unit disk U and
introduced new univalent classes of analytic functions. First, we employ the primary calculus
definitions and notations relevant to understanding the subject of the study (all details can be found in
Gasper and Rahman [11]), assuming (0 < g < 1).

The g-analogue of Pochhammer symbol (¢, g), is determined by

s—1
[1(1 -39, s>0
=0

&) =" 9 =1 « (3.1
g)(l -9q") , s — oo,

Equivalently, s — o)
@+ 91 -g)°
Ly(®) ’

in which the definition of the function g—gamma is determined by

(95 q)s =

(9, P
(@, @o(1 — )"

Moreover, the g—gamma function recurrence relation is as follows:

I, = 0#0,-1,-2,---. (3.2)

1= 9
Ly +1) = [91,T,(9), where, [8], =~ _qq , (33)
and [9], is the g—analogue of 9.
The g—Binomial (z — g{),-; is defined by
el
_ 1
1-y
=71Fy (q 7 gq’),
- Z
where
( ) Z (¥ q)s = (9z; q)oo’ (3.4)
@9 G
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and

(9

b
(a—b)y = aﬁ(;;q)ﬂ =g’ = (q#0). (3.5)

The Jackson’s g—derivative [12] of a function f is defined by:

%ﬁ“), (z € C\{0}),
0,f(2) =
f/(()), (Z = 0),

where lirrll 0,f(2) = f'(2).
q—)
The Jackson’s g—integral [12] of a function f is defined by

j; F@dyt = (1= )z D 4 fq'2), (3.6)
s=0

in which the right hand side converges.

Definition 3.1. For 0 < g < 1, Re{d} > 0, 9,6 being real or complex with Re{2 — ¢} > 0 and
Ref2 — 9 + 6} > 0, we define the fractional g—integral operator ﬁm’& f(2) by

L2+ A+ T2 =)
R e AYIC) (3.7)

T f(2) =
where

{q. > @D q 0 D
q(ﬂ) ( )a 1; (@ Dn(q"s Dim

()" (1-2) samna,z.

(3.8)

where (%;¢), and (1 - 1) are defined in (3.1) and (3.5).

a-1
Remark 1. If ¢ — 1—, then Ii’f f(z) is reduced to the well-known Saigo’s fractional integral operator
studied by [26] and Srivastava and Owa [27].

In view of Jackson’s integrals (3.6) and (3.8), 7:;’0’6 f(z) 1s able to be expressed as

(1= g)'T,2 + 1+ L,2 - 9
T,2-9+0) %

A+ . A+m.

N (q ,C[)m(C[ Q)m 5 l9+1 m k(q ’Q)k m+k
;) (@ D Z;q CR )

/@q/l,ﬁ,éf(z) —
(3.9

Now, under fractional g—integral operator qu’ﬁ’é, we obtain an image of the power function z°.
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Lemma 3.2. For Re(A) > 0, I and § being real or complex, if Re(s+1) > 0and Re(s—93+5+1) > 0,
then
[2+A+0),2-Nl(s+DI(s—F+6+1
7:/1,19,5Zs — q( ) q( ) q( ) ‘I( )ZS- (310)
a [2-9+0)(s+A+6+DI(s-9+1)

Proof. Taking f(z) = z° in (3.9), we have

?ﬂ,ﬂ,ézs — ZS(l _ q)/ll_“](2 + /1 + 5)rq(2 - 19)
q

r,2-9+9)
i (q/Hﬁ’ Q)m(q q)m 6 P+s+1\" i qk(s+1)(q ,Q)k
(@ D pa (@
by using the following simplification
i qk(s+1)(q/l+m;Q)k ) N C i At ) U
e (45 @k (@ P @D @ aim

Therefore,

FA5 — (1 - gy [,2+1+0)l,2-9) Z (@ D" D ( HHH)m
! (

2 -19+9) 4 Dn (G5 @ aem

_ Zs(l —'T,2+2+0)[L,2-7) « Z @ Qg% P ( MHH)m
(@ L2 -9 +06) (q; q)m(cf“” D
_ [,2+2+0),2-¥)(1-qg) g, q7° .
[,2-9+08) (g ;9 gt
T2+ A+ 0,2 -PTy(s+ A+ DL, - +s+1) (1-g) |

T,2-0+0) T, s+d+0+D,G-0+1)(@ g,

using the Eqs (3.2) and (3.5), which yields

[,2+A+0)[,2-Nly(s+ DG - +s+1) |
F2-9+0)y(s+A+0+ DI (s—93+1)

9,0 s
7:'q/l,1 ,6Z9 —

O

For Re(d) > 0, ¥ and ¢ being real or complex, if Re(s + 1) > 0 and Re(s —F+5+ 1) > 0, we
define new operator 7—;’1’19’5 A - Aby

T,2+1+6,2 - i T,(s+ DI, -D+s+1)
r

A1,9,6 —
T = T e ) (5t A+0+ Dl,s—0+1)

asz’. (3.11)

Remark 2. If A + 9 = 0, then 7—‘;’19’5 f(z) is reduced to the fractional g-differintegral operator Qg O
introduced by Ravikumar [24], and defined by

o AT2-Os+ 1)
Q@ =2+ ) TG+ 1)

s=2

az’, <2, zel). (3.12)
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4. Coeflicient bounds of the class By (4, 1, 6, @EIN)(X, 2))

Within this section, we present a novel subclass of functions that are subordinated to the
q—Ultraspherical polynomial.

Definition 4.1. A function f € II given by (2.1) is in the class By (4, 9, 6, @;N)(X, 7)) if the subsequent
subordinations are met:

3, (F"° f@) < 6k, 2) (4.1)
and
3, (F " n(@)) < 6N (v, ), (4.2)

where y € ( 1, Re(d) > 0, ¢ and 6 being real or complex, Re(s + 1) > 0, Re(s—F+5+ 1) > 0,

h(w) is given by (2.2), (5(;) is the g—Ultraspherical polynomials given by (2.3), and < stands on the
subordination.

Example 4.2. A function f € II given by (2.1) is in the class Bp(4, -4, 9, (ﬁgx)(x, 7)) if the subsequent
subordinations are met:

9, (2 £(2) < 6 (x.2)
and
3, (Qh(@)) < 6 (v, ),
where y € (%, 1], Re(d) > 0, & and 6 being real or complex, Re(s + 1) > 0, Re(s—F+d+ 1) > 0,
h(w) is given by (2.2), and (Y)Ef) is the g—Ultraspherical polynomials given by (2.3).

Initially, we provide the coefficient approximations for the class B (4, ¥, 9, (63“@(, z)) described in
Definition 4.1.

Theorem 4.3. Let f € Il be given by (2.1) in the subclass B (1,1, 9, G’)E,N)(X, 2)). Then,

) < 2[3 = 112+ A+ 61|81, [y 212 = 91, [3 + 2+ 61, [N]x
21 =

[2+6 = 01 (4131203 = 91,03 + 6 = 91,[2 + A + 6], [Ny + [21312 + 6 — 9],[N] 2 ’
+2[21312 + 6 = 91, (IN12 + [N12)

and

AR+ A+ 623 =012 [3-9],[2-9],[2+1+6] [3+/l+6]|N]|X
o] < RRR2+o-012 BRB+6-01,2+6- 0],

Proof. Let f € Byx(4,1,9, (f)ﬁf)()(, z)). From Definition 4.1, for certain functions w, v such that w(0) =
v(0) = 0 and [w(z)| < 1, W(w)| < 1 for all z, w € U, after which we may write

3, (F° f@) = 6 (. w(z)) 4.3)
and
3, (F " h(@)) = 65" (¢, v(@)). (4.4)
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From the Eqs (4.3) and (4.4), we get that

0y(F3"° 1) = 1+ €\ perz + | CP 0 e + G0 e[+ -+

and
3, (FiH"1(@)) = 1+ €0 dvo + |V s + €50 )i e + -+
That is
w(2)| = |c1z+c2z2+c3z3+--~| <1, (zeU)
and
[v(w)| = |d1w + dyw® + dyo + - - | <1, (wel)),
then

lcgl < 1and |dg| < 1 forall s € N.
Thus, from comparing the Eqs (4.5) and (4.6), we have

21212 +06 -9,

= CM(y; g)ci,
R+ aronBo, 2" w9

BLB+6-9],[2+6-3],
[3+ A+ 061,02 + A+ 61,13 - 9,12 - 9],
2122 +6 - 9],

2+ A+61,13-9],

a = ng)()(; q)di,
and

31203 + 6 — 91,12 + 6 — 9],
[3+A+061,02+A+06],[3—0],[2-7],

It follows from (4.8) and (4.10) that
¢ = —dj,

and
2

| &= [erucaf ().
q

[2]5 [2+0-1],
([2 + A+ 0],[3 - V]
If we add (4.9) and (4.11), we get

2BLB+6 - 2+6 -7,
[3+ A+ 61,02+ A+6],[3-91,[2-73],

By replacing the value of (c% + dlz) from (4.13) in (4.14), we get that

B3 +6 -], B c®(y1q) ( 2132+ 6 - 9], ) 2
[3+A+06],02-7], [Cix)(x; q)]z 2+ A+06],[3-7], 2

2+ 2+6),[3-9],
O 22+6-9,

as = CEN)()(;q)cz + C(;)(X;CI)C%,

(243 - a3) = CP (v )y + CP(x: 9)d}

@ = C(x:9) (c2 + dy) + C(x19) (c} + 7).

ng)(X; q) (2 +do),

4.5)

(4.6)

4.7)

(4.8)

4.9)

(4.10)

4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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or the equivalent to

p—ﬂbp—ﬁﬁp+4+ﬂﬁ3+A+ﬂ4d@@mﬂﬂq+dg

2
a 5 .
22 +6 - 01, (13813 - 91,13 + 6 - 91,12+ A+ 0, [CPws |~ 2B12 +6 - 91, s )

(4.16)
Moreover, from computations using (4.6), (4.7), and (4.15), we have

2[3 = 112+ A+ 61|81, [y V212 = 1,13+ A+ 61, [Nlx

la,| <

D+6—MA@BEB—ﬁLB+6—ﬂA2+A+ﬂﬂNQ¥+Dﬁp+6—mAM¢.
+2[20312 + 6 = 9], (IN12 + [N12)
Additionally, if we subtract (4.11) from (4.9), we obtain

2313 +6 9,12 + 6 -,
[3— 91,02 - 01,12+ A+ 61,03 + A +0],

(4 - @3) = D) (2~ d) + CO ) (G~ &) . (4.17)

Then, in view of (2.4) and (4.13), Eq (4.17) becomes

[2+ A+ 612[3 - 912 ,
as = 2[2][21 7 +q5 — ﬂ]éq [C?O(X;C[):I (C% n d12)
[3 - 91,2 — 9,2 + A+ 61,03+ A+ 6]
23213 + 6 = 9)y[2 +6 - D,

1™ (y:q) (c2 — dy) .

Thus, applying (2.4), we conclude that

AIRBI2+ A+ 613 = 912*  [3 = 01,02 — 91,02 + 2+ 81403 + 2 + 61, [N1e]x

jas| < 2122 + 6 — 9] i [B12[3 + 6 - F],[2 + 6 — ]
q q q 4 4

This concludes the theorem’s proof. O

5. The Fekete and Szego6 problem

In 1933, Fekete-Szego established a bound for the functional na% — a3 for a univalent function f [?].
Since that time, the challenge of finding the optimal bounds for this function over any compact set
of functions f € A with a complex n has commonly been referred to as the classical Fekete-Szego
problem. In this part, we will examine this problem for functions in the subclass BII(A4, ¥, 9, (Bﬁf)()(, 2)),
which is motivated by Zaprawa’s outcome as described in [29].

Theorem 5.1. Let f € [l as is in (2.1) be in the subclass Br(A, 9, 9, @;N)(X, 2)). Then,

2|[x]q|[2—ﬂ]q[3—0]q[2+z+5]q[3+/1+5]q

20312 [3+6-0,[2+6-0], Xs 1-FI<K
‘a3 - Fa%‘ <
2[[N]y|[2-91,[3-014[2+A+614[3++6],
| | 2+6-01, X |Q(F)| ’ |1 - FI 2 K,
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17072

where

®c . AP
(1-F)B =92+ 1+6],[CV(x: )]
LF) =

BRI3 = 91,13+ 6 = 91,12+ 1+ ), [CP )] = 12112+ 6 - 91,00 )

and

K =

. 2112 +6 = 91,00 ) ‘

BRI +5 - 91,3 - 91,12 + 4+ 61, [CPr: )|

Proof. From (4.15) and (4.17),

[3— 9,02 - 91,12+ A+ 61,13+ 1+],
223 +6- 9,2 +6 -9,

(1-F)2 = 91,13 = 9212 + A+ 213 + 1+ 61, [ (P )] (2 + )

as —Fa; =

C™;q) (cr — do) +

2[2+6 -9, ([3]5[3 — 91,[3 + 6 = 91,12 + A+ 61, | CV (v q)]2 — 2412+ 6 - 91,C(vs q))

[2 = 91,13 — 91,2 + A+ 61,03 + 1 + 6]
{ 202+6-19],

“C s q)} x

1 1
[(Q(F) " BRB+o- ﬁ]q) . (Q(F) T BRB+o- ﬁ]q)dz] ‘
In view of (2.4), we conclude that
b, (O G 1P < Fpma
‘613 - Fa%' <
ARG O s g IR, 1) >
This concludes the theorem’s proof. O

6. Corollaries

Corollary 6.1. Let f € 1 be given by (2.1) in the class Br(d, -2, 6, 63 (x, 2)). Then

wl < 203+ A, [N [y V212 = 91,13 + 2+ 61, [N]x
21 = )

\/ A[BI2[3 + Ay[3 + 6 + A, [NI22 + 20218 (IN]2 + [N12) ? + [2]4IN],2

AR+ A% 13- 91,02 - 91|81, v

as| < + ,
o 212 312
and [2+1]4[3+1]
TAlglo+4ly
NIy I1-F <K,
'a3 ~-Fd}| <
2|[N1, |12 + A1,[3 + A1,[3 + A + 6l,x 2P, Il -F|>K,
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where
(1-AB+, [V o)
LF) = - :
31203 + A1y[3+ 6+ A1, [CV ()| - 1212 (i )
and
. 213657 0: 9)

|-
[B123 + 6 + AL,[3 + A, [V (s )|
7. Conclusions

In this study, we have investigated the coefficient issues associated with a new subclass
Bs(A, 1,6, 5™ q(y, z)) of bi-univalent functions within the unit disk U. These bi-univalent functions
are defined in Definition 4.1. We have established estimations for the coefficients |a,| and |as],
furthermore to the Fekete-Szego problem for this novel subclass of the function. By specializing the
parameters in our fundamental findings, we have demonstrated numerous new findings as in Corollary
6.1. However, it remains an unsolved problem to obtain approximations regarding the boundaries of
|a,| for s > 4; s € N for the introduced class.
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