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1. Introduction

Quantum calculus, sometimes referred to as q−calculus, is a field of mathematics which expands
the scope of traditional calculus to encompass the realm of quantum mechanics. q−calculus is a

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024828


17064

mathematical discipline that broadens the horizons of classical calculus theories and techniques by
incorporating a novel parameter, denoted by q. q−calculus has been found to have numerous uses in
different branches of mathematics and other fields. Among the most crucial and well-studied areas of
q−calculus is the theory of q−orthogonal polynomials (q-op).

The theory of q−op began with the work of Leonard Carlitz and others in the 1940s and 1950s.
Carlitz [9] introduced a new type of polynomial called q-polynomials, which are polynomials that
satisfy a certain recurrence relation involving the q−analog of the factorial function. These polynomials
were later generalized to the theory of q−op by Askey and Wilson [7] in the 1970s.

The q−op form a collection of orthogonal polynomials whose weight function is dependent on the
parameter q. These polynomials have been discovered to have diverse applications in number theory,
combinatorics, statistical mechanics and quantum, and other branches of mathematics and physics.

There are several types of q−op, including q−Hermite, q−Jacobi, q−Laguerre, and q−Ultraspherical
polynomials (or q−Gegenbauer polynomials), among others. Each type of q−op has its own recurrence
relation, weight function, and orthogonality properties; for a comprehensive study, see [11].

The study of q−op has led to the development of many important results and techniques in
q−calculus, including the q−analog of the binomial theorem, q−difference equations, and q−special
functions. The theory of q−op has also been used to study q−integrals and q−series, which are
important tools in the study of q−calculus. In a recent development, Quesne [23] reinterpreted
Jackson’s q−exponential as a closed-form product of regular exponentials with coefficients that are
already known. This finding raises important implications for the theory of q−op in this context and
warrants further examination.

The theory of orthogonal polynomials has been extensively studied due to its numerous applications
in many fields of physics and mathematics. In recent years, the use of orthogonal polynomials and their
analogs has become an important tool for studying analytic functions in the complex plane, particularly
bi-univalent functions.

2. Preliminaries

LetA be the class of functions f of the form

f (z) = z +

∞∑
s=2

aszs, (z ∈ U), (2.1)

which are analytic in the disk U = {z ∈ C : |z| < 1} and satisfy the normalization condition f ′(0) − 1 =

0 = f (0). Also, by S, the subclass ofA has the univalent functions in U of the form given in Eq (2.1).
Differential subordination of analytical functions offers powerful methods that are extremely useful

in geometric function theory. The first differential subordination problem is attributed to Miller and
Mocanu [14]; see [15]. Most of the field’s advancements are summarized in Miller and Mocanu’s
book [16].

It is a commonly accepted fact that for any function f ∈ S, there exists an inverse f −1 that is defined
by a certain mathematical expression.

f −1( f (z)) = z (z ∈ U)
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and
f ( f −1($)) = $ (|$| < r0( f ); r0( f ) ≥

1
4

)

where
}($) = f −1($) = $ − a2$

2 + (2a2
2 − a3)$3 − (5a3

2 − 5a2a3 + a4)$4 + · · · . (2.2)

In the context of mathematics, a function is considered to be bi-univalent in the domainU if together
the function f (z) and its inverse f −1(z) are univalent (i.e., one-to-one) in the same domain U.

The subclass of bi-univalent functions in the domain U, as defined by Eq (2.1), can be denoted by
the symbol Π. Several examples of functions that are in the class Π are also available

z
1 − z

, log

√
1 + z
1 − z

.

Despite its popularity, it is important to remember that the familiar Koebe function does not belong
to the class Π. However, there exist other frequently used examples of functions that are defined in the
domain U, such as:

2z − z2

2
and

z
1 − z2

which are also not members of Π.
In a study by Lewin [13], the bi-univalent function class Π was explored, and it was demonstrated

that |a2| < 1.51. Afterward, Brannan and Clunie [8] suggested a hypothesis that |a2| <
√

2. However,
Netanyahu [17] subsequently provided evidence that the maximum value of |a2| among all functions in
Π is equal to 4/3.

Askey and Ismail, in their work cited as [6], made a significant discovery of a collection of
polynomials that can be considered as q-analogues of the Ultraspherical polynomials. These
polynomials are referred to as G(ℵ)

q (χ, z) and are essentially what they have identified.

G
(ℵ)
q (χ, z) =

∞∑
s=0

C(λ)
s (χ; q)zs. (2.3)

By means of the recurrence relations, Chakrabarti and colleagues, as cited in [10], made a
noteworthy finding of a series of polynomials that can be understood as q-analogues of the
Ultraspherical functions:

C
(ℵ)
0 (χ; q) = 1,

C
(ℵ)
1 (χ; q) = [ℵ]qC1

1(χ) = 2[ℵ]qχ,

C
(ℵ)
2 (χ; q) = [ℵ]q2C1

2(χ) −
1
2

(
[ℵ]q2 − [ℵ]2

q

)
C2

1(χ) = 2
(
[ℵ]q2 + [ℵ]2

q

)
χ2 − [ℵ]q2 .

(2.4)

On the other hand, in 2023, Amourah et al. [2] and Alsoboh et al. [1] built several classes of analytic
bi-univalent functions using q−Ultraspherical functions (or q−Gegenbauer polynomials).

In recent times, connections between bi-univalent functions and orthogonal polynomials have been
the subject of research by many scholars. Some of the notable studies in this regard include ( [3–5, 22,
28]). However, to the best of our knowledge, there is limited research on bi-univalent functions in the
context of ultraspherical polynomials.
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3. Definitions

q−analysis theory has found applications in numerous scientific and engineering domains. The
fractional q−calculus is an expansion of the traditional fractional calculus. Srivastava [25] has made
remarkable contributions to q−calculus and the fractional q−calculus operator. In a previous study,
Purohit and Raina [21] explored the fractional q−calculus operator for defining various subclasses in
the open disk U. Other authors have previously issued new analytical function classes based on the
q−calculus operator. Purohit and Raina [18–20] presented related work on open unit disk U and
introduced new univalent classes of analytic functions. First, we employ the primary calculus
definitions and notations relevant to understanding the subject of the study (all details can be found in
Gasper and Rahman [11]), assuming (0 < q < 1).

The q-analogue of Pochhammer symbol (ϑ, q)s is determined by

(ϑ; q)s = (qϑ; q)s =



s−1∏
ı=0

(1 − ϑqı) , s > 0

∞∏
ı=0

(1 − ϑqı) , s→ ∞.
(3.1)

Equivalently,

(ϑ; q)s =
Γq(ϑ + s)(1 − q)s

Γq(ϑ)
,

in which the definition of the function q−gamma is determined by

Γq(ϑ) =
(q, q)∞

(qϑ, q)∞(1 − q)ϑ−1 , ϑ , 0,−1,−2, · · · . (3.2)

Moreover, the q−gamma function recurrence relation is as follows:

Γq(ϑ + 1) = [ϑ]qΓq(ϑ), where, [ϑ]q =
1 − qϑ

1 − q
, (3.3)

and [ϑ]q is the q−analogue of ϑ.

The q−Binomial (z − qζ)γ−1 is defined by

(z − qζ)γ−1 = zγ−1
∞∏

s=0

(
1 − qs(qζz−1)

1 − qs+γ−1(qζz−1)

)
= zγ1F0

(
q1−γ

−
; q;

ζ

z
qγ

)
,

where

1F0

(
ϑ

−
; q; z

)
=

∞∑
s=0

(ϑ; q)s

(q; q)s
zs =

(ϑz; q)∞
(z; q)∞

, (3.4)
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and

(a − b)ϑ = aϑ
(b
a

; q
)
ϑ

= aϑ

(
b
aqϑ; q

)
∞(

b
a ; q

)
∞

, (a , 0). (3.5)

The Jackson’s q−derivative [12] of a function f is defined by:

∂q f (z) =


f (z)− f (qz)

z−qz , (z ∈ C\{0}),

f ′(0), (z = 0),

where lim
q→1

∂q f (z) = f ′(z).

The Jackson’s q−integral [12] of a function f is defined by∫ z

0
f (t)dqt = (1 − q)z

∞∑
s=0

qs f (qsz), (3.6)

in which the right hand side converges.

Definition 3.1. For 0 < q < 1, <e{λ} > 0, ϑ, δ being real or complex with <e{2 − ϑ} > 0 and
<e{2 − ϑ + δ} > 0, we define the fractional q−integral operator F λ,ϑ,δ

q f (z) by

F λ,ϑ,δ
q f (z) = zϑ

Γq(2 + λ + δ)Γq(2 − ϑ)
Γq(2 − ϑ + δ)

Iλ,ϑq,δ f (z), (3.7)

where

Iλ,ϑq,δ f (z) =
z−ϑ−1

Γq(λ)

z∫
0

(
ζq
z

; q
)
λ−1

∞∑
m=0

(qλ+ϑ; q)m(q−δ; q)m

(q; q)m(qλ; q)m
×

(
qδ−ϑ+1

)m
(
1 −

t
z

)
m

f (qmt)∂qζ,

(3.8)

where
(
ζq
z ; q

)
λ−1

and
(
1 − t

z

)
m

are defined in (3.1) and (3.5).

Remark 1. If q → 1−, then Iλ,ϑq,δ f (z) is reduced to the well-known Saigo’s fractional integral operator
studied by [26] and Srivastava and Owa [27].

In view of Jackson’s integrals (3.6) and (3.8), F λ,ϑ,δ
q f (z) is able to be expressed as

F λ,ϑ,δ
q f (z) =

(1 − q)λΓq(2 + λ + δ)Γq(2 − ϑ)
Γq(2 − ϑ + δ)

×

∞∑
m=0

 (qλ+ϑ; q)m(q−δ; q)m

(q; q)m

(
qδ−ϑ+1

)m
∞∑

k=0

qk (qλ+m; q)k

(q; q)k
f (qm+kz)

 . (3.9)

Now, under fractional q−integral operator F λ,ϑ,δ
q , we obtain an image of the power function zs.
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Lemma 3.2. For<e(λ) > 0, ϑ and δ being real or complex, if<e(s+1) > 0 and<e(s−ϑ+δ+1) > 0,
then

F λ,ϑ,δ
q zs =

Γq(2 + λ + δ)Γq(2 − ϑ)Γq(s + 1)Γq(s − ϑ + δ + 1)
Γq(2 − ϑ + δ)Γq(s + λ + δ + 1)Γq(s − ϑ + 1)

zs. (3.10)

Proof. Taking f (z) = zs in (3.9), we have

F λ,ϑ,δ
q zs = zs(1 − q)λ

Γq(2 + λ + δ)Γq(2 − ϑ)
Γq(2 − ϑ + δ)

×

∞∑
m=0

(qλ+ϑ; q)m(q−δ; q)m

(q; q)m

(
qδ−ϑ+s+1

)m
∞∑

k=0

qk(s+1) (qλ+m; q)k

(q; q)k
,

by using the following simplification

∞∑
k=0

qk(s+1) (qλ+m; q)k

(q; q)k
=

(qλ+m+s+1; q)∞
(qs+1; q)∞

=
(qλ+mqs+1; q)∞

(qs+1; q)∞
=

1
(qs+1; q)λ+m

.

Therefore,

F λ,ϑ,δ
q zs = zs(1 − q)λ

Γq(2 + λ + δ)Γq(2 − ϑ)
Γq(2 − ϑ + δ)

×

∞∑
m=0

(qλ+ϑ; q)m(q−δ; q)m

(q; q)m(qs+1; q)λ+m

(
qδ−ϑ+s+1

)m

= zs (1 − q)λΓq(2 + λ + δ)Γq(2 − ϑ)
(qs+1; q)λΓq(2 − ϑ + δ)

∞∑
m=0

(qλ+ϑ; q)m(q−δ; q)m

(q; q)m(qs+1+λ; q)m

(
qδ−ϑ+s+1

)m

=
Γq(2 + λ + δ)Γq(2 − ϑ)(1 − q)λ

Γq(2 − ϑ + δ)(qs+1; q)λ
2F1

(
qλ+ϑ, q−δ

qs+1+λ ; q; qδ−ϑ+s+1
)

=
Γq(2 + λ + δ)Γq(2 − ϑ)

Γq(2 − ϑ + δ)
Γq(s + λ + 1)Γq(δ − ϑ + s + 1)
Γq(s + λ + δ + 1)Γq(s − ϑ + 1)

(1 − q)λ

(qs+1; q)λ
zs,

using the Eqs (3.2) and (3.5), which yields

F λ,ϑ,δ
q zs =

Γq(2 + λ + δ)Γq(2 − ϑ)Γq(s + 1)Γq(δ − ϑ + s + 1)
Γq(2 − ϑ + δ)Γq(s + λ + δ + 1)Γq(s − ϑ + 1)

zs.

�

For <e(λ) > 0, ϑ and δ being real or complex, if <e(s + 1) > 0 and <e(s − ϑ + δ + 1) > 0, we
define new operator F λ,ϑ,δ

q : A → A by

F λ,ϑ,δ
q f (z) = z +

Γq(2 + λ + δ)Γq(2 − ϑ)
Γq(2 − ϑ + δ)

∞∑
s=2

Γq(s + 1)Γq(δ − ϑ + s + 1)
Γq(s + λ + δ + 1)Γq(s − ϑ + 1)

aszs. (3.11)

Remark 2. If λ + ϑ = 0, then F λ,ϑ,δ
q f (z) is reduced to the fractional q-differintegral operator Ωϑ

q f (ζ)
introduced by Ravikumar [24], and defined by

Ωϑ
q f (z) = z +

∞∑
s=2

Γq(2 − ϑ)Γq(s + 1)
Γq(s + 1 − ϑ)

aszs, (ϑ ≤ 2, z ∈ U). (3.12)
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4. Coefficient bounds of the class BΠ(λ, ϑ, δ,G(ℵ)
q (χ, z))

Within this section, we present a novel subclass of functions that are subordinated to the
q−Ultraspherical polynomial.

Definition 4.1. A function f ∈ Π given by (2.1) is in the class BΠ(λ, ϑ, δ,G(ℵ)
q (χ, z)) if the subsequent

subordinations are met:
∂q

(
F λ,ϑ,δ

q f (z)
)
≺ G(ℵ)

q (χ, z) (4.1)

and
∂q

(
F λ,ϑ,δ

q }($)
)
≺ G(ℵ)

q (χ,$), (4.2)

where χ ∈ ( 1
2 , 1], <e(λ) > 0, ϑ and δ being real or complex, <e(s + 1) > 0, <e(s − ϑ + δ + 1) > 0,

}($) is given by (2.2), G(ℵ)
q is the q−Ultraspherical polynomials given by (2.3), and ≺ stands on the

subordination.

Example 4.2. A function f ∈ Π given by (2.1) is in the class BΠ(λ,−λ, δ,G(ℵ)
q (χ, z)) if the subsequent

subordinations are met:
∂q

(
Ωϑ

q f (z)
)
≺ G(ℵ)

q (χ, z)

and
∂q

(
Ωϑ

q}($)
)
≺ G(ℵ)

q (χ,$),

where χ ∈ (1
2 , 1], <e(λ) > 0, ϑ and δ being real or complex, <e(s + 1) > 0, <e(s − ϑ + δ + 1) > 0,

}($) is given by (2.2), and G(ℵ)
q is the q−Ultraspherical polynomials given by (2.3).

Initially, we provide the coefficient approximations for the class BΠ(λ, ϑ, δ,G(ℵ)
q (χ, z)) described in

Definition 4.1.

Theorem 4.3. Let f ∈ Π be given by (2.1) in the subclass BΠ(λ, ϑ, δ,G(ℵ)
q (χ, z)). Then,

|a2| ≤
2 [3 − ϑ]q[2 + λ + δ]q

∣∣∣[ℵ]q

∣∣∣χ√
2 [2 − ϑ]q[3 + λ + δ]q [ℵ]qχ√√

[2 + δ − ϑ]q

((
4[3]2

q[3 − ϑ]q[3 + δ − ϑ]q[2 + λ + δ]q [ℵ]2
qχ

2 + [2]4
q[2 + δ − ϑ]q[ℵ]q2

+2[2]4
q[2 + δ − ϑ]q

(
[ℵ]q2 + [ℵ]2

q

)
χ2

,

and ∣∣∣a3

∣∣∣ ≤ 4[ℵ]2
q[2 + λ + δ]2

q[3 − ϑ]2
qχ

2

[2]2
q [2 + δ − ϑ]2

q
+

[3 − ϑ]q[2 − ϑ]q[2 + λ + δ]q[3 + λ + δ]q

∣∣∣[ℵ]q

∣∣∣χ
[3]2

q[3 + δ − ϑ]q[2 + δ − ϑ]q
.

Proof. Let f ∈ BΣ(λ, ϑ, δ,G(ℵ)
q (χ, z)). From Definition 4.1, for certain functions w, v such that w(0) =

v(0) = 0 and |w(z)| < 1, |v($)| < 1 for all z, $ ∈ U, after which we may write

∂q

(
F λ,ϑ,δ

q f (z)
)

= G(λ)
q (χ,w(z)) (4.3)

and
∂q

(
F λ,ϑ,δ

q }($)
)

= G(λ)
q (χ, v($)). (4.4)
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From the Eqs (4.3) and (4.4), we get that

∂q

(
F λ,ϑ,δ

q f (z)
)

= 1 + C(λ)
1 (χ; q)c1z +

[
C(ℵ)

1 (χ; q)c2 + C(ℵ)
2 (χ; q)c2

1

]
z2 + · · · (4.5)

and
∂q

(
F λ,ϑ,δ

q }($)
)

= 1 + C(λ)
1 (χ; q)d1$ +

[
C(ℵ)

1 (χ; q)d2 + C(ℵ)
2 (χ; q)d2

1

]
)$2 + · · · . (4.6)

That is
|w(z)| =

∣∣∣c1z + c2z2 + c3z3 + · · ·
∣∣∣ < 1, (z ∈ U)

and
|v($)| =

∣∣∣d1$ + d2$
2 + d3$

3 + · · ·
∣∣∣ < 1, ($ ∈ U),

then
|cs| ≤ 1 and |ds| ≤ 1 for all s ∈ N. (4.7)

Thus, from comparing the Eqs (4.5) and (4.6), we have

[2]2
q [2 + δ − ϑ]q

[2 + λ + δ]q[3 − ϑ]q
a2 = C(ℵ)

1 (χ; q)c1, (4.8)

[3]2
q[3 + δ − ϑ]q[2 + δ − ϑ]q

[3 + λ + δ]q[2 + λ + δ]q[3 − ϑ]q[2 − ϑ]q
a3 = C(ℵ)

1 (χ; q)c2 + C(ℵ)
2 (χ; q)c2

1, (4.9)

−
[2]2

q [2 + δ − ϑ]q

[2 + λ + δ]q[3 − ϑ]q
a2 = C(ℵ)

1 (χ; q)d1, (4.10)

and

[3]2
q[3 + δ − ϑ]q[2 + δ − ϑ]q

[3 + λ + δ]q[2 + λ + δ]q[3 − ϑ]q[2 − ϑ]q

(
2a2

2 − a3

)
= C(ℵ)

1 (χ; q)d2 + C(ℵ)
2 (χ; q)d2

1. (4.11)

It follows from (4.8) and (4.10) that
c1 = −d1, (4.12)

and

2
 [2]2

q [2 + δ − ϑ]q

[2 + λ + δ]q[3 − ϑ]q

2

a2
2 =

[
C(ℵ)

1 (χ; q)
]2 (

c2
1 + d2

1

)
. (4.13)

If we add (4.9) and (4.11), we get

2[3]2
q[3 + δ − ϑ]q[2 + δ − ϑ]q

[3 + λ + δ]q[2 + λ + δ]q[3 − ϑ]q[2 − ϑ]q
a2

2 = C(λ)
1 (x; q) (c2 + d2) + C(λ)

2 (x; q)
(
c2

1 + d2
1

)
. (4.14)

By replacing the value of
(
c2

1 + d2
1

)
from (4.13) in (4.14), we get that [3]2

q[3 + δ − ϑ]q

[3 + λ + δ]q[2 − ϑ]q
−

C(ℵ)
2 (χ; q)[

C(ℵ)
1 (χ; q)

]2

 [2]4
q [2 + δ − ϑ]q

[2 + λ + δ]q[3 − ϑ]q


 a2

2

=
[2 + λ + δ]q[3 − ϑ]q

2[2 + δ − ϑ]q
C(ℵ)

1 (χ; q) (c2 + d2) ,

(4.15)
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or the equivalent to

a2
2 =

[2 − ϑ]q[3 − ϑ]2
q[2 + λ + δ]2

q[3 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]3

(c2 + d2)

2[2 + δ − ϑ]q

(
[3]2

q[3 − ϑ]q[3 + δ − ϑ]q[2 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]2
− [2]4

q[2 + δ − ϑ]qC
(ℵ)
2 (χ; q)

) .
(4.16)

Moreover, from computations using (4.6), (4.7), and (4.15), we have

|a2| ≤
2 [3 − ϑ]q[2 + λ + δ]q

∣∣∣[ℵ]q

∣∣∣χ√
2 [2 − ϑ]q[3 + λ + δ]q [ℵ]qχ√√

[2 + δ − ϑ]q

((
4[3]2

q[3 − ϑ]q[3 + δ − ϑ]q[2 + λ + δ]q [ℵ]2
qχ

2 + [2]4
q[2 + δ − ϑ]q[ℵ]q2

+2[2]4
q[2 + δ − ϑ]q

(
[ℵ]q2 + [ℵ]2

q

)
χ2

.

Additionally, if we subtract (4.11) from (4.9), we obtain

2[3]2
q[3 + δ − ϑ]q[2 + δ − ϑ]q

[3 − ϑ]q[2 − ϑ]q[2 + λ + δ]q[3 + λ + δ]q

(
a3 − a2

2

)
= C(ℵ)

1 (χ; q) (c2 − d2) + C(ℵ)
2 (χ; q)

(
c2

1 − d2
1

)
. (4.17)

Then, in view of (2.4) and (4.13), Eq (4.17) becomes

a3 =
[2 + λ + δ]2

q[3 − ϑ]2
q

2[2]2
q [2 + δ − ϑ]2

q

[
C(ℵ)

1 (χ; q)
]2 (

c2
1 + d2

1

)
+

[3 − ϑ]q[2 − ϑ]q[2 + λ + δ]q[3 + λ + δ]q

2[3]2
q[3 + δ − ϑ]q[2 + δ − ϑ]q

C(ℵ)
1 (χ; q) (c2 − d2) .

Thus, applying (2.4), we conclude that

∣∣∣a3

∣∣∣ ≤ 4[ℵ]2
q[2 + λ + δ]2

q[3 − ϑ]2
qχ

2

[2]2
q [2 + δ − ϑ]2

q
+

[3 − ϑ]q[2 − ϑ]q[2 + λ + δ]q[3 + λ + δ]q

∣∣∣[ℵ]q

∣∣∣χ
[3]2

q[3 + δ − ϑ]q[2 + δ − ϑ]q
.

This concludes the theorem’s proof. �

5. The Fekete and Szegö problem

In 1933, Fekete-Szegö established a bound for the functional ηa2
2−a3 for a univalent function f [?].

Since that time, the challenge of finding the optimal bounds for this function over any compact set
of functions f ∈ A with a complex η has commonly been referred to as the classical Fekete-Szegö
problem. In this part, we will examine this problem for functions in the subclass BΠ(λ, ϑ, δ,G(ℵ)

q (χ, z)),
which is motivated by Zaprawa’s outcome as described in [29].

Theorem 5.1. Let f ∈ Π as is in (2.1) be in the subclass BΠ(λ, ϑ, δ,G(ℵ)
q (χ, z)). Then,

∣∣∣∣a3 − za2
2

∣∣∣∣ ≤


2
∣∣∣[ℵ]q

∣∣∣[2−ϑ]q[3−ϑ]q[2+λ+δ]q[3+λ+δ]q

2[3]2
q[3+δ−ϑ]q[2+δ−ϑ]q

χ, |1 − z| ≤ K,

2
∣∣∣[ℵ]q

∣∣∣[2−ϑ]q[3−ϑ]q[2+λ+δ]q[3+λ+δ]q

[2+δ−ϑ]q
χ |L(z)| , |1 − z| ≥ K,
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where

L(z) =
(1 − z)[3 − ϑ]q[2 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]2

[3]2
q[3 − ϑ]q[3 + δ − ϑ]q[2 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]2
− [2]4

q[2 + δ − ϑ]qC
(ℵ)
2 (χ; q)

,

and

K =

∣∣∣∣∣∣∣∣1 − [2]4
q[2 + δ − ϑ]qC

(ℵ)
2 (χ; q)

[3]2
q[3 + δ − ϑ]q[3 − ϑ]q[2 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]2

∣∣∣∣∣∣∣∣ .
Proof. From (4.15) and (4.17),

a3 − za2
2 =

[3 − ϑ]q[2 − ϑ]q[2 + λ + δ]q[3 + λ + δ]q

2[3]2
q[3 + δ − ϑ]q[2 + δ − ϑ]q

C(ℵ)
1 (χ; q) (c2 − d2) +

(1 − z)[2 − ϑ]q[3 − ϑ]2
q[2 + λ + δ]2

q[3 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]3

(c2 + d2)

2[2 + δ − ϑ]q

(
[3]2

q[3 − ϑ]q[3 + δ − ϑ]q[2 + λ + δ]q

[
C(ℵ)

1 (χ; q)
]2
− [2]4

q[2 + δ − ϑ]qC
(ℵ)
2 (χ; q)

)
=

{
[2 − ϑ]q[3 − ϑ]q[2 + λ + δ]q[3 + λ + δ]q

2[2 + δ − ϑ]q
C(ℵ)

1 (χ; q)
}
×[(

L(z) +
1

[3]2
q[3 + δ − ϑ]q

)
c2 +

(
L(z) −

1
[3]2

q[3 + δ − ϑ]q

)
d2

]
.

In view of (2.4), we conclude that

∣∣∣∣a3 − za2
2

∣∣∣∣ ≤


[2−ϑ]q[3−ϑ]q[2+λ+δ]q[3+λ+δ]q

2[3]2
q[3+δ−ϑ]q[2+δ−ϑ]q

∣∣∣C(ℵ)
1 (χ; q)

∣∣∣ , |L(z)| ≤ 1
[3]2

q[3+δ−ϑ]q
,

[2−ϑ]q[3−ϑ]q[2+λ+δ]q[3+λ+δ]q

[2+δ−ϑ]q

∣∣∣C(λ)
1 (x; q)

∣∣∣ |L(z)| , |L(z)| ≥ 1
[3]2

q[3+δ−ϑ]q
.

This concludes the theorem’s proof. �

6. Corollaries

Corollary 6.1. Let f ∈ Π be given by (2.1) in the class BΠ(λ,−λ, δ,G(ℵ)
q (χ, z)). Then

|a2| ≤
2 [3 + λ]q

∣∣∣[ℵ]q

∣∣∣χ√
2 [2 − ϑ]q[3 + λ + δ]q [ℵ]qχ√

4[3]2
q[3 + λ]q[3 + δ + λ]q [ℵ]2

qχ
2 + 2[2]4

q

(
[ℵ]q2 + [ℵ]2

q

)
χ2 + [2]4

q[ℵ]q2

,

∣∣∣a3

∣∣∣ ≤ 4[ℵ]2
q[3 + λ]2

qχ
2

[2]2
q

+
[3 − ϑ]q[2 − ϑ]q

∣∣∣[ℵ]q

∣∣∣χ
[3]2

q
,

and ∣∣∣∣a3 − za2
2

∣∣∣∣ ≤


[2+λ]q[3+λ]q

[3]2
q

∣∣∣[ℵ]q

∣∣∣χ, |1 − z| ≤ K,

2
∣∣∣[ℵ]q

∣∣∣[2 + λ]q[3 + λ]q[3 + λ + δ]qχ |L(z)| , |1 − z| ≥ K,
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where

L(z) =
(1 − z)[3 + λ]q

[
C(ℵ)

1 (χ; q)
]2

[3]2
q[3 + λ]q[3 + δ + λ]q

[
C(ℵ)

1 (χ; q)
]2
− [2]4

qC
(ℵ)
2 (χ; q)

,

and

K =

∣∣∣∣∣∣∣∣1 − [2]4
qC

(ℵ)
2 (χ; q)

[3]2
q[3 + δ + λ]q[3 + λ]q

[
C(ℵ)

1 (χ; q)
]2

∣∣∣∣∣∣∣∣ .
7. Conclusions

In this study, we have investigated the coefficient issues associated with a new subclass
BΣ(λ, ϑ, δ,G(ℵ)q(χ, z)) of bi-univalent functions within the unit disk U. These bi-univalent functions
are defined in Definition 4.1. We have established estimations for the coefficients |a2| and |a3|,
furthermore to the Fekete-Szegö problem for this novel subclass of the function. By specializing the
parameters in our fundamental findings, we have demonstrated numerous new findings as in Corollary
6.1. However, it remains an unsolved problem to obtain approximations regarding the boundaries of
|as| for s ≥ 4; s ∈ N for the introduced class.
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of bi-Bazilevič functions of order ϑ + iβ, Afr. Mat., 32 (2021), 1–8.

5. A. Amourah, M. Alomari, F. Yousef, A. Alsoboh, Consolidation of a Certain Discrete Probability
Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials, Math.
Probl. Eng., 2022 (2022), 6354994. http://doi.org/10.1155/2022/6354994

6. R. Askey, M. E. H. Ismail, A generalization of ultraspherical polynomials, In: Studies of Pure
Mathematics, Basel: Birkhauser, 1983. http://doi.org/10.1007/978-3-0348-5438-2 6

7. R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials, Memoirs of the American Mathematical Society, 1985.
https://doi.org/10.1090/memo/0319

8. D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, New York, London:
Academic Press, 1980.

9. L. Carlitz, Some polynomials related to the Hermite polynomials, Duke Math. J., 26 (1959), 429–
444.

10. R. Chakrabarti, R. Jagannathan, S. S. Naina Mohammed, New connection formulae for the q-
orthogonal polynomials via a series expansion of the q–exponential, J. Phys. A: Math. Gen., 39
(2006), 12371.

11. G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge: Cambridge university press,
2004.

12. F. H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Trans., 46
(1909), 253–281. https://doi.org/10.1017/S0080456800002751

13. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967),
63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

14. S. S. Miller, P. T. Mocanu, Second Order Differential Inequalities in the Complex Plane. J. Math.
Anal. Appl. , 65 (1978), 289–305.

15. S. S. Miller, P. T. Mocanu, Differential Subordinations and Univalent Functions. Mich. Math. J., 28
(1981), 157–172.

16. S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, New York:
Marcel Dekker, 2000.

17. E. Netanyahu, The minimal distance of the image boundary from the origin and the second
coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. An., 32 (1969), 100–112.

18. S. D. Purohit, R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic
functions, Mathematica, 55 (2013), 62–74.

AIMS Mathematics Volume 9, Issue 7, 17063–17075.

http://dx.doi.org/http://doi.org/10.3390/axioms12020128
http://dx.doi.org/https://doi.org/10.3934/math.2021254
http://dx.doi.org/http://doi.org/10.1155/2022/6354994
http://dx.doi.org/http://doi.org/10.1007/978-3-0348-5438-2_6
http://dx.doi.org/https://doi.org/10.1090/memo/0319
http://dx.doi.org/https://doi.org/10.1017/S0080456800002751
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1967-0206255-1


17075

19. S. D. Purohit, R. K. Raina, Some classes of analytic and multivalent functions associated with q-
derivative operators, Acta Univ. Sapientiae, Math., 6 (2014), 5–23. https://doi.org/10.2478/ausm-
2014-0015

20. S. D. Purohit, R. K. Raina, On a subclass of p-valent analytic functions involving fractional q-
calculus operators, KJS, 42 (2015), 1.

21. S. D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-
calculus operators, Math. Scand., 109 (2011), 55–70. https://doi.org/10.7146/math.scand.a-15177

22. A. B. Patil, T. G. Shaba, Sharp initial coefficient bounds and the Fekete-Szegö problem for some
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