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Abstract: In this paper, by means of a mapping φ ∈ Φ(P, P1), some new common fixed and
coincidence point theorems for four and six nonlinear self-mappings in cone b-metric spaces are
established, respectively. Also, some examples are given to prove the effectiveness of our results.
And with some remarks stating that our results complement and sharply improve some related results
in the literature.
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1. Introduction

Coincidence points and their applications for two mappings in metric spaces were first studied in
1996 by Jungck [1, 2]. From then on, the coincidence point theorems for various different nonlinear
mappings is established by some authors in metric spaces, b-metric spaces and cone metric spaces,
respectively. For example, the authors of [3–6] establish some common fixed and coincidence point
theorems for commuting and noncommuting mappings in metric spaces, the authors of [7–10]
establish some coincidence point theorems for noncontinuity and Pres̆ić-Reich type mappings in cone
metric spaces and the authors of [11–14] establish some common fixed point theorems for weakly
T -Chatterjea (T -Kannan) and four mappings in b-metric spaces. In addition, some fixed point
theorems for KKM and contractive mappings are established by the authors of [15, 16] in cone
b-metric spaces. Further, some common fixed theories are also discussed by the authors of [17–19] in
some extended b-metric spaces.

Recently, Abbas et al. [20], Han et al. [21], Rangamma et al. [22], Malhotra et al. [23] and Dubey
et al. [24] proved some the existence and uniqueness of coincidence points for three or four nonlinear
mappings in cone metric spaces, respectively. Malhotra et al. [23] unify and generalize the results
of [22] and [24] with a new type of contractive condition by introducing a mapping φ ∈ Φ(P, P1)
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(See Definition 2.10). Liu et al. [25] proved some new the existence and uniqueness of common fixed
point (CFP) for six self-mappings in b-metric spaces. In particular, it is not difficult to see that in
the conclusions obtained by the authors of [20–25], the restriction of coefficients for the nonlinear
mappings must satisfy the inequality a1 + a2 + a3 + a4 + a5 < 1. The necessity of the inequality
condition is a question worthy of study.

Inspired by the work of [23, 25], in this manuscript we discuss the existence and uniqueness of
coincidence point and CFP for four and six nonlinear self-mappings using a φ-mapping in cone b-
metric spaces. In Sections 2 and 3, we first introduce the new class of mappings Φ(P, P1). Then,
by using a mapping φ ∈ Φ(P, P1), some new coincidence point and CFP theorems for four and six
nonlinear self-mappings in cone b-metric spaces are established, respectively. Also, several important
corollaries are given. Finally, two examples are given to show the validity of our results which indicate
that our results complement and sharply improve some related results in [7,8,10,13,16,20,21,23–27].

2. Preliminaries

Throughout this paper the following notation and lemmas will be used which were taken from
[7, 8, 10, 15, 16, 20, 26, 27].

Let E be a real Banach space (RBS). A cone P ⊂ E is defined by

1) P , {θ}, P , ∅ and P is closed;
2) t, s ∈ R+ = [0,+∞), x, y ∈ P implies tx + sy ∈ P;
3) P ∩ (−P) = {θ}.

Given a cone P ⊂ E, the partial ordering ≼ induced by P is defined as x ≼ y if and only if y − x ∈ P
where x, y ∈ E. For any x, y ∈ E, if x ≼ y and x , y we abbreviated as x ≺ y. More, x ≪ y indicate
that y − x ∈ intP where intP denotes the interior of P. If intP , ∅ then P is called a solid cone. For all
θ ≼ x ≼ y, if there is k > 0 such that ∥x∥ ⩽ k∥y∥ then P is called a normal cone (see [15, 16, 25]).

In the following, E is always assumed as the RBS. θE denotes the zero element. P ⊂ E is a solid
cone. The notation of ≼ is the partial ordering with respect to P.

Definition 2.1. [26] Let X , ∅. For all x, y, z ∈ X, suppose the mapping d : X × X → E satisfies:
(cm1) θE ≼ d(x, y) and d(x, y) = θE ⇔ x = y;
(cm2) d(x, y) = d(y, x);
(cm3) d(x, y) ≼ d(x, z) + d(z, y).
Then, the pair (X, d) is called a cone metric space (CMS for short), and d is called a cone metric on X.

Definition 2.2. [15] Let X , ∅ and s ⩾ 1. For all x, y, z ∈ X, suppose the mapping d : X × X → E
satisfies:
(cbm1) θE ≼ d(x, y) and d(x, y) = θE ⇔ x = y;
(cbm2) d(x, y) = d(y, x);
(cbm3) d(x, y) ≼ s[d(x, z) + d(z, y)].
Then, the pair (X, d) is called a cone b-metric space (CbMS for short), d is called a cone b-metric on
X, and s is called the coefficient of (X, d).

Remark 2.3. The class of CbMSs is effectively larger than that of CMSs. Indeed, a cone b-metric is a
cone metric as s = 1 but the converse is not true. For the counter-example see [15, 16].
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The remark on the cones is given below.

Remark 2.4. [4] Let P ⊂ E be a cone, N = {1, 2, · · · } and x, y, z, xn, yn ∈ E.

(a) If x ≼ y and y ≪ z then x ≪ z.
(b) For all x ∈ intP, if θE ≼ y ≪ x then y = θE.
(c) If x ∈ intP and yn → θE then there is an n0 ∈ N such that yn ≪ x for all n > n0.
(d) If xn → x, yn → y and θE ≼ xn ≼ yn for all n ∈ N, then x ≼ y.
(e) If there is λ ∈ [0, 1) such that x ≼ λx then x = θE.

Definition 2.5. [15] Let (X, d) be a CbMS, x ∈ X and {xn} be a sequence in X.
(i) If for every y ∈ P with θE ≪ y there is N ∈ N such that d(xn, x) ≪ y for all n > N then {xn} is said
to be converges to x. Abbreviated as limn→∞ xn = x or xn → x.
(ii) If for every y ∈ P with θE ≪ y there is N ∈ N such that d(xn, xm) ≪ y for all n,m > N then {xn} is
called a Cauchy sequence in X.
(iii) If every Cauchy sequence in X is convergent in X then (X, d) is called a complete CbMS.

Lemma 2.6. [15, 16] Let (X, d) be a CbMS, P ⊂ E be a solid cone and let {xn} ⊂ X. We have
1) {xn} converges to x ∈ X iff d(xn, x)→ θE as n→ ∞;
2) {xn} is a Cauchy sequence iff d(xn, xm)→ θE as n,m→ ∞.

Lemma 2.7. [15,16] Let (X, d) be a CbMS, P be a solid cone and {xn} ⊂ X. If {xn} converges to x and
{xn} converges to y then x = y.

Definition 2.8. [7] Let X , ∅. Suppose that f and g are two self-mappings defined on X. An element
x ∈ X is called to a coincidence point of f and g if f x = gx = w ∈ X. At this time, w is a point of
coincidence of f and g.

Definition 2.9. [1] Two self-mappings f and g of a CMS (X, d) are said to be weakly compatible if
f gx = g f x whenever f x = gx for some x ∈ X.

Definition 2.10. Let E and E1 be two RBS and P ⊂ E and P1 ⊂ E1 be two solid cones. The notations
of ≼ and ≤ are two partial orderings with respect to P and P1 respectively. Let a mapping φ : P→ P1

satisfying the following properties:
(Φ-1) there is a constant K ⩾ 1 such that φ(x) ≤ Kφ(y) for all x, y ∈ P with x ≼ y;
(Φ-2) there is a constant σ > 0 such that φ(sx) ≤ sσφ(x) for all x ∈ P, s ⩾ 1;
(Φ-3) there is a constant ω ⩾ 1 such that φ(x + y) ≤ ω[φ(x) + φ(y)] for all x, y ∈ P;
(Φ-4) φ is sequentially continuous, i.e., if xn, x ∈ P and limn→∞ xn = x, then limn→∞ φ(xn) = φ(x);
(Φ-5) if φ(xn)→ θE1 , then xn → θE where θE and θE1 are the zero vectors of E and E1 respectively.
The set of the maps that satisfy all the above properties are represented by Φ(P, P1).

Remark 2.11. It is clear that φ(xn) → θE1 if and only if xn → θE. Let (X, d) be a CbMS with the
coefficient s ⩾ 1 and P ⊂ E be a solid cone and φ ∈ Φ(P, P1). Since d(x, y) ≼ s[d(x, z) + d(z, y)] for all
x, y, z ∈ X, we have

φ(d(x, y)) ≤ Kωsσ[φ(d(x, z)) + φ(d(z, y))]. (2.1)

In addition, if ω = 1 = s = σ, P and P1 are normal cones then Φ(P, P1) in Definition 2.10 is reduced
to the original definition of a CMS in [23].
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The following are some examples of Φ(P, P1) defined above.

Example 2.12. Let E be a RBS with P ⊂ E is a cone. Define φ : P → P by φ(x) = x, for all x ∈ P.
Then, φ ∈ Φ(P, P) with E = E1, P = P1,K = 1, σ = 1 and ω = 1.

Example 2.13. Let E be a RBS with P ⊂ E is a normal cone and normal constant k ⩾ 1. Define
φ : P → [0,+∞) by φ(x) = ∥x∥α, for all x ∈ P where 1 ⩾ α > 0. Then, φ ∈ Φ(P, P1) with
E1 = R, P1 = [0,+∞),K = kα, σ = α and ω = 1.

In fact, the validity of (Φ-1), (Φ-2), (Φ-4) and (Φ-5) is evident. Note that (γ + t)α ⩽ γα + tα (γ, t ⩾
0, 1 ⩾ α > 0). For all x, y ∈ P, we have

∥x + y∥α ⩽ (∥x∥ + ∥y∥)α ⩽ ∥x∥α + ∥x∥α

which implies ω = 1 and (Φ-3) holds.

Example 2.14. Let E be a RBS with P ⊂ E is a normal cone and normal constant k ⩾ 1. Define
φ : P → [0,+∞) by φ(x) = ∥x∥α, for all x ∈ P where 1 < α. Then, φ ∈ Φ(P, P1) with E1 = R, P1 =

[0,+∞),K = kα, σ = α and ω = 2[α].
In fact, the validity of (Φ-1), (Φ-2), (Φ-4) and (Φ-5) is evident. Note that (γ + t)α ⩽ 2[α](γα + tα),

where γ, t ⩾ 0, 1 < α and [α] is the integral function. For all x, y ∈ P, we have

∥x + y∥α ⩽ (∥x∥ + ∥y∥)α ⩽ 2[α](∥x∥α + ∥y∥α)

which implies ω = 2[α] and (Φ-3) holds.

Example 2.15. Let E = R2 and E1 =

{(
x y
0 x

)
: x, y ∈ R

}
. It is clear that E and E1 are two RBSs.

Suppose that P = {(x, y) : x, y ⩾ 0} and P1 =

{(
x y
0 x

)
: x, y ⩾ 0

}
then P ⊂ E and P1 ⊂ E1 are two

normal cones. Define φ : P→ P1 by

φ((x, y)) =
(

x2 2y2

0 x2

)
, for all (x, y) ∈ P.

Then, φ ∈ Φ(P, P1), where K = 1 and σ = 2 = ω.

Example 2.16. Let E = C([0, 1]) with the supremum norm and P = {x ∈ E : x(t) ⩾ 0,∀t ∈ [0, 1]}.
Then, P is a normal cone where normal constant k = 1. For any 1 ⩾ α > 0, define φ : P→ P by

φ(x(t)) =
xα(t)

1 + xα(t)
, for all x(t) ∈ P.

We can prove that φ ∈ Φ(P, P) with K = 1, σ = α and ω = 1. In fact, we only need to verify (Φ-3)
in Definition 2.10. Note that 1 ⩾ α > 0. For all x(t), y(t) ∈ P, we have

(x(t) + y(t))α

1 + (x(t) + y(t))α
⩽

xα(t) + yα(t)
1 + xα(t) + yα(t)

⩽
xα(t)

1 + xα(t)
+

yα(t)
1 + yα(t)

,

which shows ω = 1 and (Φ-3) holds.
If E = C2([0, 1]) with the norm ∥x(t)∥ = ∥x(t)∥∞ + ∥x′(t)∥∞ and P = {x ∈ E : x(t) ⩾ 0,∀t ∈ [0, 1]}.

Then, P is a non-normal cone. But φ : P → P in Example 2.16 also is an element of Φ(P, P) with
K = 1, σ = α and ω = 1.
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Example 2.17. Let E = C([0, 1]) with the supremum norm and P = {x ∈ E : x(t) ⩾ 0,∀t ∈ [0, 1]}.
Define φ : P→ P by

φ(x(t)) = ln(x2(t) + 1), for all x(t) ∈ P.

Then, φ ∈ Φ(P, P) where K = 1, σ = 2 and ω = 2. In fact, the validity of (Φ-1), (Φ-4) and (Φ-5) is
evident. We only need to verify (Φ-2) and (Φ-3) in Definition 2.10. Note that s2(γ2 + 1)s2−1 − s2 ⩾ 0
for all γ ⩾ 0, s ⩾ 1. We have (γ2 + 1)s2

− s2γ2 − 1 ⩾ 0 for all γ ⩾ 0, s ⩾ 1 which implies that
ln((sx(t))2 + 1) ⩽ s2 ln(x2(t) + 1), i.e., σ = 2.

Further, for any γ, t ⩾ 0, according to the fact that

γ2 + t2 + 2γt + 1 ⩽ 2(γ2 + t2) + 1 ⩽ ((γ2 + t2) + 1)2 ⩽ (γ2 + t2 + γ2t2 + 1)2,

we know that

ln((x(t) + y(t))2 + 1) ⩽ 2[ln(x2(t) + 1) + ln(y2(t) + 1)], ∀ x(t), y(t) ∈ P

which shows ω = 2 and (Φ-3) holds.

3. Main results

First, with the aid of a mapping φ ∈ Φ(P, P1) we establish a new coincidence point and CFP theorem
for four nonlinear self-mappings in a CbMS.

Theorem 3.1. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a solid cone. Suppose four
mappings f , g, S ,T : X → X satisfy the following conditions:

(a) f (X) ⊂ T (X), g(X) ⊂ S (X) with one of f (X), g(X), S (X) or T (X) is a complete subspace of X;

(b) there exists a mapping φ ∈ Φ(P, P1) such that

φ(d( f x, gy)) ≤ A1(x, y)φ(d(S x,Ty)) + A2(x, y)φ(d( f x, S x)) + A3(x, y)φ(d(gy,Ty))

+A4(x, y)φ(d( f x,Ty)) + A5(x, y)φ(d(S x, gy)),∀x, y ∈ X (3.1)

where A1, A2, A3, A4, A5 are five functions from X × X to [0,+∞) such that

(i) A1(x, y) + A4(x, y) + A5(x, y) < 1 for all x, y ∈ X;

(ii) infx,y∈X{1 − A3(x, y) − KωsσA5(x, y)} = a > 0, infx,y∈X{1 − A2(x, y) − KωsσA4(x, y)} = b > 0,

supx,y∈X{A1(x, y) + A2(x, y) + KωsσA5(x, y)} = A, supx,y∈X{A1(x, y) + A3(x, y) + KωsσA4(x, y)} = B,

with A
a ·

B
b <

1
ω2 s2σ and K ⩾ 1, ω ⩾ 1, σ > 0 are some constants as in Definition 2.10;

(iii) Kωsσ(1 − a) < 1 and Kωsσ(1 − b) < 1.

Then, there is a unique u ∈ X that is the point of coincidence of {g,T } and { f , S }. Moreover, if {g,T }
and { f , S } are weakly compatible then f , g, S and T have a unique CFP.

Proof. In X, arbitrarily take an element x0. For this x0, since f (X) ⊂ T (X), g(X) ⊂ S (X) there is
x1, x2 ∈ X such that f x0 = T x1 and gx1 = S x2. By induction we produce two sequences {xm} and {ym}

of points of X such that

y2n+1 = f x2n = T x2n+1, y2n+2 = gx2n+1 = S x2n+2 (n = 0, 1, 2, · · · ).
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Now, we will first verify that the sequence {ym} is a Cauchy sequence in X.
If ym = ym+1 for some m, e.g., if y2n = y2n+1 then applying Definition 2.2 and Remark 2.11 from

(2.1) and (3.1) we can obtain

φ(d(y2n+1, y2n+2)) = φ(d( f x2n, gx2n+1))

≤ A1(x2n, x2n+1)φ(d(S x2n,T x2n+1)) + A2(x2n, x2n+1)φ(d( f x2n, S x2n)) + A3(x2n, x2n+1)

φ(d(gx2n+1,T x2n+1)) + A4(x2n, x2n+1)φ(d( f x2n,T x2n+1)) + A5(x2n, x2n+1)φ(d(S x2n, gx2n+1))

= A1(x2n, x2n+1)φ(d(y2n, y2n+1)) + A2(x2n, x2n+1)φ(d(y2n+1, y2n)) + A3(x2n, x2n+1)φ(d(y2n+2, y2n+1))

+A4(x2n, x2n+1)φ(d(y2n+1, y2n+1)) + A5(x2n, x2n+1)φ(d(y2n, y2n+2))

≤ A1(x2n, x2n+1)φ(d(y2n, y2n+1)) + A2(x2n, x2n+1)φ(d(y2n+1, y2n)) + A3(x2n, x2n+1)φ(d(y2n+2, y2n+1))

+A5(x2n, x2n+1)Kωsσ[φ(d(y2n, y2n+1)) + φ(d(y2n+1, y2n+2))]

= [A1(x2n, x2n+1) + A2(x2n, x2n+1) + KωsσA5(x2n, x2n+1)]φ(θE)

+[A3(x2n, x2n+1) + KωsσA5(x2n, x2n+1)]φ(d(y2n+2, y2n+1))

= [A3(x2n, x2n+1) + KωsσA5(x2n, x2n+1)]φ(d(y2n+2, y2n+1)).

Note that as infx,y∈X{1 − A3(x, y) − KωsσA5(x, y)} = a > 0, we have
0 ⩽ A3(x2n, x2n+1) + KωsσA5(x2n, x2n+1) < 1. From part (e) of Remark 2.4 we know that
φ(d(y2n+1, y2n+2)) = θE1 . By φ ∈ Φ(P, P1), we see that d(y2n+1, y2n+2) = θE, i.e., y2n+2 = y2n+1. Similarly,
we obtain y2n = y2n+1 = y2n+2 = · · · . Therefore, {ym} is a Cauchy sequence.

Suppose that ym , ym+1 for all m. Then, for n = 0, 1, 2, · · · from (2.1), (3.1) and Definition 2.2 it
follows that

φ(d(y2n+1, y2n+2)) = φ(d( f x2n, gx2n+1))

≤ A1(x2n, x2n+1)φ(d(S x2n,T x2n+1)) + A2(x2n, x2n+1)φ(d( f x2n, S x2n)) + A3(x2n, x2n+1)·

φ(d(gx2n+1,T x2n+1)) + A4(x2n, x2n+1)φ(d( f x2n,T x2n+1)) + A5(x2n, x2n+1)φ(d(S x2n, gx2n+1))

= A1(x2n, x2n+1)φ(d(y2n, y2n+1)) + A2(x2n, x2n+1)φ(d(y2n+1, y2n)) + A3(x2n, x2n+1)φ(d(y2n+2, y2n+1))

+A4(x2n, x2n+1)φ(d(y2n+1, y2n+1)) + A5(x2n, x2n+1)φ(d(y2n, y2n+2))

≤ A1(x2n, x2n+1)φ(d(y2n, y2n+1)) + A2(x2n, x2n+1)φ(d(y2n+1, y2n)) + A3(x2n, x2n+1)φ(d(y2n+2, y2n+1))

+A5(x2n, x2n+1)Kωsσ[φ(d(y2n, y2n+1)) + φ(d(y2n+1, y2n+2))]

= [A1(x2n, x2n+1) + A2(x2n, x2n+1) + KωsσA5(x2n, x2n+1)]φ(d(y2n, y2n+1))

+[A3(x2n, x2n+1) + KωsσA5(x2n, x2n+1)]φ(d(y2n+2, y2n+1))

which implies that

φ(d(y2n+1, y2n+2)) ≤
A1(x2n, x2n+1) + A2(x2n, x2n+1) + KωsσA5(x2n, x2n+1)

1 − A3(x2n, x2n+1) − KωsσA5(x2n, x2n+1)
φ(d(y2n, y2n+1))

≤
supx,y∈X{A1(x, y) + A2(x, y) + KωsσA5(x, y)}

infx,y∈X{1 − A3(x, y) − KωsσA5(x, y)}
φ(d(y2n, y2n+1)).

Electronic Research Archive Volume 31, Issue 8, 4788–4806.



4794

Form condition (ii), we have

φ(d(y2n+1, y2n+2)) ≤
A
a
φ(d(y2n, y2n+1)). (3.2)

A similar method can get

φ(d(y2n+1, y2n)) = φ(d( f x2n, gx2n−1))

≤ A1(x2n, x2n−1)φ(d(S x2n,T x2n−1)) + A2(x2n, x2n−1)φ(d( f x2n, S x2n)) + A3(x2n, x2n−1)

φ(d(gx2n−1,T x2n−1)) + A4(x2n, x2n−1)φ(d( f x2n,T x2n−1)) + A5(x2n, x2n−1)φ(d(S x2n, gx2n−1))

= A1(x2n, x2n−1)φ(d(y2n, y2n−1)) + A2(x2n, x2n−1)φ(d(y2n+1, y2n)) + A3(x2n, x2n−1)φ(d(y2n, y2n−1))

+A4(x2n, x2n−1)φ(d(y2n+1, y2n−1)) + A5(x2n, x2n−1)φ(d(y2n, y2n))

≤ [A1(x2n, x2n−1) + A3(x2n, x2n−1) + KωsσA4(x2n, x2n−1)]φ(d(y2n, y2n−1))

+[A2(x2n, x2n−1) + KωsσA4(x2n, x2n−1)]φ(d(y2n, y2n+1)),

which implies that

φ(d(y2n, y2n+1)) ≤
A1(x2n, x2n−1) + A3(x2n, x2n−1) + KωsσA4(x2n, x2n−1)

1 − A2(x2n, x2n−1) − KωsσA4(x2n, x2n−1)
φ(d(y2n, y2n−1))

≤
supx,y∈X{A1(x, y) + A3(x, y) + KωsσA4(x, y)}

infx,y∈X{1 − A2(x, y) − KωsσA4(x, y)}
φ(d(y2n, y2n−1))

=
B
b
φ(d(y2n, y2n−1)). (3.3)

For n = 1, 2, · · · , using inequalities (3.2) and (3.3) we easily get

φ(d(y2n+1, y2n+2)) ≤
A
a
φ(d(y2n, y2n+1)) ≤

A
a
·

B
b
φ(d(y2n−1, y2n))

≤ · · · ≤

(A
a
·

B
b

)n

φ(d(y2, y1)) (3.4)

and
φ(d(y2n+3, y2n+2)) ≤

B
b
φ(d(y2n+2, y2n+1)) ≤

B
b

(A
a
·

B
b

)n

φ(d(y2, y1)). (3.5)

Then, for any n < k using Definition 2.2 and (Φ-1)–(Φ-3) in Definition 2.10 from (3.4) and (3.5)
we have

d(y2n+1, y2k+1) ≤ sd(y2n+1, y2n+2)+ s2d(y2n+2, y2n+3)+ · · ·+ s2(k−n)−1d(y2k−1, y2k)+ s2(k−n)−1d(y2k, y2k+1)

and
φ(d(y2n+1, y2k+1))

≤ Kφ(sd(y2n+1, y2n+2) + s2d(y2n+2, y2n+3) + · · · + s2(k−n)−1d(y2k−1, y2k) + s2(k−n)−1d(y2k, y2k+1))

≤ Kωsσφ(d(y2n+1, y2n+2)) + Kωφ(s2d(y2n+2, y2n+3) + · · · + s2(k−n)−1d(y2k−1, y2k) + s2(k−n)−1d(y2k, y2k+1))

≤ Kωsσφ(d(y2n+1, y2n+2)) + Kω2s2σφ(d(y2n+2, y2n+3)) + Kω2s2σφ(· · · + s2(k−n)−1d(y2k−1, y2k)

+s2(k−n)−1d(y2k, y2k+1))
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≤ Kωsσφ(d(y2n+1, y2n+2)) + K(ωsσ)2φ(d(y2n+2, y2n+3)) + · · · + K(ωsσ)2(k−n)−1φ(d(y2k−1, y2k))

+K(ωsσ)2(k−n)−1φ(d(y2k, y2k+1))

≤ Kωsσφ(d(y2n+1, y2n+2)) + K(ωsσ)2φ(d(y2n+2, y2n+3)) + · · · + K(ωsσ)2(k−n)−1φ(d(y2k−1, y2k))

+K(ωsσ)2(k−n)φ(d(y2k, y2k+1))

≤ K
[

k−1∑
i=n

(ωsσ)2(i−n)+1
(A

a
·

B
b

)i

+
B
b

k−1∑
i=n

(ωsσ)2(i−n)+2
(A

a
·

B
b

)i]
φ(d(y2, y1))

≤ K
[(

1 + ωsσ
B
b

)
·
∞∑

i=n−1
(ωsσ)2(i−n)+1

(A
a
·

B
b

)i]
φ(d(y2, y1)).

Similarly, we can obtain

φ(d(y2n, y2k+1)) ≤ K
[(

1 + ωsσ
B
b

)
·
∞∑

i=n−1
(ωsσ)2(i−n)+1

(A
a
·

B
b

)i]
φ(d(y2, y1)),

φ(d(y2n, y2k)) ≤ K
[(

1 + ωsσ
B
b

)
·
∞∑

i=n−1
(ωsσ)2(i−n)+1

(A
a
·

B
b

)i]
φ(d(y2, y1))

and

φ(d(y2n+1, y2k)) ≤ K
[(

1 + ωsσ
B
b

)
·
∞∑

i=n−1
(ωsσ)2(i−n)+1

(A
a
·

B
b

)i]
φ(d(y2, y1)).

Thus, for any p > m > 0 there is a natural number n with m−1
2 ⩽ n ⩽ m

2 such that

φ(d(ym, yp)) ≤ K

(1 + ωsσ
B
b

)
·

∞∑
i=n−1

(ωsσ)2(i−n)+1
(A

a
·

B
b

)i
φ(d(y2, y1)). (3.6)

Let θE1 ≪ c be given. Since P1 ⊂ E1 is a solid cone, we can take δ > 0 such that c + Nδ(θ) ⊂ P1

where Nδ(θ) = {y ∈ E1 : ∥y∥ < δ}. Note that 0 ⩽ A
a ·

B
b <

1
ω2 s2σ . It follows from Cauchy’s root test that∑

(ωsσ)2n−1 ( A
a ·

B
b )n is convergent. Then, there exists a natural number N such that

K[(1 + ωsσ
B
b

) ·
∞∑

i=n−1

(ωsσ)2(i−n)+1(
A
a
·

B
b

)i]φ(d(y2, y1)) ∈ Nδ(θ), ∀n ⩾ N.

This shows that K[(1 + ωsσ B
b ) ·

∞∑
i=n−1

(ωsσ)2(i−n)+1( A
a ·

B
b )i]φ(d(y2, y1)) ≪ c, for all n ⩾ N. From (3.6),

we have φ(d(ym, yp)) ≪ c, for all m ⩾ 2N which proves that {ym} is a Cauchy sequence in X via Remark
2.11 and Definition 2.10.

Next, to prove the existence of the point of coincidence we discuss it in two cases:
Case 1: Suppose that T (X) is complete. So, we know that y2n+1 = f x2n = T x2n+1 → u ∈ T (X),

and there is v ∈ X such that Tv = u. ( If f (X) is complete, there is u ∈ f (X) ⊂ T (X) which means to a
similar conclusion.)

Now we shall show that gv = Tv = u. If gv , Tv, for n = 0, 1, 2, · · · , applying Definition 2.2 and
(3.1) by Remark 2.11 we have

φ(d(y2n+1, gv)) = φ(d( f x2n, gv))

≤ A1(x2n, v)φ(d(S x2n,Tv)) + A2(x2n, v)φ(d( f x2n, S x2n)) + A3(x2n, v)φ(d(gv,Tv))
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+A4(x2n, v)φ(d( f x2n,Tv)) + A5(x2n, v)φ(d(S x2n, gv))

= A1(x2n, v)φ(d(y2n, u)) + A2(x2n, v)φ(d(y2n+1, y2n)) + A3(x2n, v)φ(d(gv, u))

+A4(x2n, v)φ(d(y2n+1, u)) + A5(x2n, v)φ(d(y2n, gv))

≤ A1(x2n, v)φ(d(y2n, u)) + A2(x2n, v)φ(d(y2n+1, y2n)) + A3(x2n, v)φ(d(gv, u))

+A4(x2n, v)φ(d(y2n+1, u)) + KωsσA5(x2n, v)[φ(d(y2n, u)) + φ(d(u, gv))]

which implies that

φ(d(y2n+1, gv)) ≤ [A1(x2n, v) + KωsσA5(x2n, v)]φ(d(y2n, u)) + A2(x2n, v)φ(d(y2n+1, y2n))

+A4(x2n, v)φ(d(y2n+1, u)) + [A3(x2n, v) + KωsσA5(x2n, v)]φ(d(gv, u)). (3.7)

Since y2n+1 → u, y2n → u, d(y2n+1, y2n)→ θE as n→ ∞ and φ ∈ Φ(P, P1), letting n→ ∞ in (3.7) we
get

lim sup
n→∞

φ(d(y2n+1, gv)) ≤ sup
x,y∈X

[A3(x, y) + KωsσA5(x, y)]φ(d(gv, u)).

Note that
φ(d(u, gv)) ≤ Kωsσ[φ(d(u, y2n+1)) + φ(d(y2n+1, gv))].

So, we have

φ(d(u, gv)) ≤ Kωsσ sup
x,y∈X

[A3(x, y) + KωsσA5(x, y)]φ(d(gv, u)) = Kωsσ(1 − a)φ(d(gv, u)).

Using part the condition (iii) and (e) of Remark 2.4 we obtain that φ(d(u, gv))) = θE1 , i.e., d(u, gv) =
θE which is not possible. Therefore, Tv = gv = u.

Since u = gv ∈ g(X) ⊂ S (X), there is ω ∈ X such that Sω = u. By (3.1), we have

φ(d( fω, Sω)) = φ(d( fω, u)) = φ(d( fω, gv))

≤ A1(ω, v)φ(d(Sω,Tv)) + A2(ω, v)φ(d( fω, Sω)) + A3(ω, v)φ(d(gv,Tv))

+A4(ω, v)φ(d( fω,Tv)) + A5(ω, v)φ(d(Sω, gv))

= [A2(ω, v) + A4(ω, v)]φ(d( fω, Sω)) ≤ supx,y∈X{A2(x, y) + A4(x, y)}φ(d( fω, Sω)).

Since infx,y∈X{1 − A2(x, y) − KωsσA4(x, y)} = b > 0, K ⩾ 1, ω ⩾ 1 and sσ ⩾ 1, we have
supx,y∈X{A2(x, y) + A4(x, y)} < 1. Hence, from Remarks 2.4 and 2.11 we can obtain fω = Sω.
Therefore, fω = Sω = gv = Tv = u.

Case 2: Suppose S (X) is complete. We have y2n+2 = gx2n+1 = S x2n+2 → u ∈ S (X). Then, there is
ω ∈ X such that Sω = u. ( If g(X) is complete, there is u ∈ g(X) ⊂ S (X), which means to a similar
conclusion.) Now we shall show that fω = u. For n = 0, 1, 2, · · · , applying Definition 2.2 and (3.1),
by Remark 2.11, we get

φ(d( fω, y2n+2)) = φ(d( fω, gx2n+1))

≤ A1(ω, x2n+1)φ(d(Sω,T x2n+1)) + A2(ω, x2n+1)φ(d( fω, Sω)) + A3(ω, x2n+1)φ(d(gx2n+1,T x2n+1))

+A4(ω, x2n+1)φ(d( fω,T x2n+1)) + A5(ω, x2n+1)φ(d(Sω, gx2n+1)
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= A1(ω, x2n+1)φ(d(u, y2n+1)) + A2(ω, x2n+1)φ(d( fω, u)) + A3(ω, x2n+1)φ(d(y2n+2, y2n+1))

+A4(ω, x2n+1)φ(d( fω, y2n+1)) + A5(ω, x2n+1)φ(d(u, y2n+2)). (3.8)

Since y2n+2 → u, y2n+1 → u, d(y2n+1, y2n+2) → θE as n → ∞ and φ ∈ Φ(P, P1). Therefore, letting
n→ ∞ in (3.8) we get

lim sup
n→∞

φ(d(y2n+2, fω))) ≤ sup
x,y∈X

[A2(x, y) + A4(x, y)]φ(d(u, fω)).

From
φ(d(u, fω)) ≤ Kωsσ[φ(d(u, y2n+2)) + φ(d(y2n+2, fω))],

K ⩾ 1, ω ⩾ 1 and sσ ⩾ 1, we obtain

φ(d(u, fω)) ≤ Kωsσ sup
x,y∈X

[A2(x, y) + A4(x, y)]φ(d(u, fω)) ≤ Kωsσ(1 − b)φ(d(u, fω)).

Using part the condition (iii) and (e) of Remark 2.4 we obtain that φ(d(u, fω)) = θE1 , i.e., d(u, fω) =
θE. Therefore, Sω = fω = u. Then, according to u = fω ∈ f (X) ⊂ T (X) there is v ∈ X such that
Tv = u. From (3.1), we have

φ(d(u, gv)) = φ(d(Tv, gv)) = φ(d( fω, gv)) ≤ A1(ω, v)φ(d(Sω,Tv)) + A2(ω, v)φ(d( fω, Sω))

+A3(ω, v)φ(d(gv,Tv)) + A4(ω, v)φ(d( fω,Tv)) + A5(ω, v)φ(d(Sω, gv))

≤ supx,y∈X{A3(x, y) + A5(x, y)}d(u, gv).

Noticing that K ⩾ 1, ω ⩾ 1, sσ ⩾ 1 and infx,y∈X{1 − A3(x, y) − KωsσA5(x, y)} = a > 0. We know
that supx,y∈X{A3(x, y) + A5(x, y)} < 1. Hence, from Remarks 2.4 and 2.11 we have u = gv. Therefore,
fω = Sω = gv = Tv = u.

Now, we will prove the uniqueness of the point of coincidence of f and g. To that end, assume that
there is another u∗ in X such that fω∗ = Sω∗ = gv∗ = Tv∗ = u∗. Thus, by (3.1) we can obtain

φ(d(u, u∗)) = φ(d( fω, gv∗) ≤ A1(ω, v∗)φ(d(Sω,Tv∗)) + A2(ω, v∗)φ(d( fω, Sω))

+A3(ω, v∗)φ(d(gv∗,Tv∗)) + A4(ω, v∗)φ(d( fω,Tv∗)) + A5(ω, v∗)φ(d(Sω, gv∗))

= [A1(ω, v∗) + A4(ω, v∗) + A5(ω, v∗)]φ(d(u, u∗)).

Note that A1(x, y) + A4(x, y) + A5(x, y) < 1 (∀x, y ∈ X). Thus, φ(d(u, u∗)) = θE1 , i.e., u = u∗.
Moreover, for fω = Sω = gv = Tv = u if { f , S } and {g,T } are weakly compatible then S fω =

f Sω = f u = S u and Tgv = gTv = gu = Tu. From (3.1), we have

φ(d( f u, u)) = φ(d( f fω, gv) ≤ A1( fω, v)φ(d(S fω,Tv)) + A2( fω, v)φ(d( f fω, S fω))

+A3( fω, v)φ(d(gv,Tv)) + A4( fω, v)φ(d( f fω,Tv)) + A5( fω, v)φ(d(S fω, gv))

= [A1( fω, v) + A4( fω, v) + A5( fω, v)]φ(d( f u, u)).

Note that A1(x, y)+A4(x, y)+A5(x, y) < 1 for all x, y ∈ X. Then, φ(d( f u, u)) = θE1 , i.e., f u = u = S u.
Similarly, we can prove Tu = gu = u. These show that u is a CFP of f , g, S and T . In addition, if
u = f u = gu = S u = Tu then u is also a point of coincidence of { f , S } and {g,T } and therefore u = u
by uniqueness. The uniqueness is proved and we complete the proof of the theorem.
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From the given examples in Section 2, we know that the mapping φ in the class Φ(P, P1) is quite
general. Choosing the different mappings in Φ(P, P1), we can obtain different varieties of Theorem
3.1 which are significative. For example, taking φ(a) = a in Theorem 3.1 (See Example 2.12) we can
obtain the following:

Theorem 3.2. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a solid cone. Suppose four
mappings f , g, S ,T : X → X satisfy the condition (a) in Theorem 3.1 and
(b) for all x, y ∈ X,

d( f x, gy) ≼ A1(x, y)d(S x,Ty) + A2(x, y)d( f x, S x) + A3(x, y)d(gy,Ty)

+A4(x, y)d( f x,Ty) + A5(x, y)d(S x, gy) (3.9)

where A1, A2, A3, A4, A5 are five functions from X × X to [0,+∞) such that

(i) A1(x, y) + A4(x, y) + A5(x, y) < 1 for all x, y ∈ X;

(ii) infx,y∈X{1 − A3(x, y) − sA5(x, y)} = a > 0, infx,y∈X{1 − A2(x, y) − sA4(x, y)} = b > 0,

supx,y∈X{A1(x, y) + A2(x, y) + sA5(x, y)} = A, supx,y∈X{A1(x, y) + A3(x, y) + sA4(x, y)} = B,

with A
a ·

B
b <

1
s2 ;

(iii) s(1 − a) < 1 and s(1 − b) < 1.
Then, the conclusions of Theorem 3.1 are equally valid.

Corollary 3.3. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a solid cone. Suppose four
mappings f , g, S ,T : X → X satisfy the condition (a) in Theorem 3.1 and

(b) there is a mapping φ ∈ Φ(P, P1) such that for all x, y ∈ X,

φ(d( f x, gy)) ≤ a1φ(d(S x,Ty)) + a2φ(d( f x, S x)) + a3φ(d(gy,Ty))

+a4φ(d( f x,Ty)) + a5φ(d(S x, gy)) (3.10)

where ai ⩾ 0 (i = 1, 2, 3, 4, 5) are constants with a1 + a4 + a5 < 1,Kωsσ(a2 + Kωsσa4) < 1,Kωsσ(a3 +

Kωsσa5) < 1 and (a1+a2+Kωsσa5)(a1+a3+Kωsσa4)
(1−a2−Kωsσa4)(1−a3−Kωsσa5) < 1

ω2 s2σ and K ⩾ 1, ω ⩾ 1, σ > 0 are some constants as in
Definition 2.10. Then, the conclusions of Theorem 3.1 still hold.

Proof. Let A1(x, y) = a1, A2(x, y) = a2, A3(x, y) = a3, A4(x, y) = a4, A5(x, y) = a5 for all x, y ∈ X. It is
evident that a1 + a4 + a5 < 1, 0 < 1 − a2 − Kωsσa4, and 0 < 1 − a3 − Kωsσa5. Then, we easily see
the conditions (i), (ii) and (iii) of Theorem 3.1 are valid. Therefore, by Theorem 3.1 Corollary 3.3 is
proved.

Corollary 3.4. Let (X, d) be a CMS, and P be a solid cone. Suppose four mappings f , g, S ,T : X → X
satisfy the condition (a) in Theorem 3.2 and
(b) for all x, y ∈ X,

d( f x, gy) ≼ a1d(S x,Ty) + a2d( f x, S x) + a3d(gy,Ty) + a4d( f x,Ty) + a5d(S x, gy) (3.11)

where ai ⩾ 0 (i = 1, 2, 3, 4, 5), δ ⩾ 0 with
∑5

i=1 a5 = 1 + δ, a1 + a4 + a5 < 1, a2 + a4 < 1, a3 + a5 < 1 and
(a2 − a3)(a5 − a4) > 2δ. Then, the conclusions of Theorem 3.2 still hold.
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Proof. Note that a1 < 1, (a2 − a3)(a5 − a4) > 2δ. We have

a1(1 + δ) + a2a4 + a3a5 ⩽ a1 + δ + a2a4 + a3a5 < a1 − δ + a2a5 + a3a4.

By
∑5

i=1 a5 = 1 + δ, we can obtain

a1(
∑5

i=1 a5) + a2a4 + a3a5 + a2a3 + a4a5

< a1 − δ + a2a5 + a3a4 + a2a3 + a4a5 = (1 − a2 − a4)(1 − a3 − a5).

Notice that (X, d) is a CMS with the coefficient s = 1. We have (a1+a2+a5)(a1+a3+a4)
(1−a2−a4)(1−a3−a5) < 1 = 1

s2 . Thus the
conditions in Theorem 3.2 are valid. Therefore, by Theorem 3.2 Corollary 3.4 is proved.

Remark 3.5. The numbers ai (i = 1, 2, 3, 4, 5) and δ in Corollary 3.4 exist. For example, if we take
δ = 1

40 , a1 =
1
20 , a2 =

2
5 , a3 =

1
20 , a4 =

1
40 , a5 =

1
2 then

∑5
i=1 a5 = 1 + 1

40 , a1 + a4 + a5 =
23
40 <

1, a2 + a4 =
17
40 < 1, a3 + a5 =

11
20 < 1 and (a2 − a3)(a5 − a4) = 133

800 > 1
20 , i.e., the conditions

in Corollary 3.4 are satisfied. If we take δ = 0, a1 =
1

10 , a2 =
7

15 , a3 =
1

15 , a4 =
23
90 , a5 =

1
9 , then∑5

i=1 a5 = 1, a1 + a4 + a5 < 1, a2 + a4 < 1, a3 + a5 < 1, and (a2 − a3)(a5 − a4) > 0, i.e., the conditions in
Corollary 3.4 are also satisfied. These two examples show that a1 + a2 + a3 + a4 + a5 ⩾ 1 is admissible
(see below Example 3.6) in Theorem 3.2 as (X, d) is a CMS.

In addition, Theorem 2.8 in [20] is a special case of Theorem 3.2 as (X, d) is a CMS with a4 = a5

and a1 + a2 + a3 + a4 + a5 < 1 . In fact, by a1 + a2 + a3 + 2a4 < 1, we have

(a1 + a2 + a5)(a1 + a3 + a4)
(1 − a2 − a4)(1 − a3 − a5)

<
(a1 + a2 + a4)(a1 + a3 + a5)
(a1 + a3 + a5)(a1 + a2 + a4)

= 1

which shows that the conditions in Theorem 3.2 are valid satisfied. Further, Theorem 2.1 in [21] is a
special case of Theorem 3.2 as (X, d) is a CMS with a1+a2+a3+2 max{a4, a5} < 1 or a1+max{a2, a3}+

a4 + a5 < 1. These show that Theorem 3.2 sharply improves the main results of Abbas et al. [20] and
Han et al. [21].

Example 3.6. Let X = {0, 1, 2}, E = C1
R[0, 1], and let P = {ψ ∈ E : ψ(t) ⩾ 0, t ∈ [0, 1]}. The mapping

d : X × X → P is defined by d(x, y)(t) = ψ(t), x , y and d(x, y)(t) = 0, x = y where ψ ∈ P is a fixed
function, for example ψ(t) = et. Then, (X, d) is a complete CMS with normal cone P. Define four
mappings f , g, S , T : X → X as follows:

f (0) = f (1) = f (2) = 0, and g(0) = g(1) = 0, g(2) = 1,

S = T = I (the identity mapping on X). Then g(X) is a complete subspace. Now taking A1 =
1
40 , A2 =

1
40 , A3 =

19|x−y|+9
40|x−y|+20 , A4 =

1
2 and A5 =

1
40 in Theorem 3.2, we have A1 + A4 + A5 =

39
40 < 1,

1−A2−A4 =
19
40 > 0, infx,y∈X{1−A3−A5} =

101
200 > 0, A1+A2+A5 =

11
20 , supx,y∈X{A1+A3+A4} =

199
200 and

( 199
200 ·

11
20 )/(39

40 ·
19
20 ) = 2189

3705 < 1 which imply that conditions (i)–(iii) in Theorem 3.2 as s = 1 are satisfied .
Moreover, if x = 0 and y = 2 then

d( f (0), g(2))(t) = et ≼ 1
40d(0, 2))(t) + 1

40d( f (0), 0)(t) + 19|0−2|+9
40|0−2|+20d(g(2), 2)(t)

+1
2d( f (0), 2)(t) + 1

40d(0, g(2))(t)

= ( 1
20 + 0 + 47

100 +
1
2 +

1
40 )et = 209

200et.

If x = 1 and y = 2, then d( f (1), g(2))(t) = et ≼ 61
60et. If x = 2 and y = 2, then d( f (2), g(2))(t) = et ≼ 41

40et.

If x = 0, 1, 2 and y = 0, 1, then d( f (x), g(y))(t) = 0. Hence, f , g, S ,T satisfy the conditions in Theorem
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3.2 and they have a unique CFP in X. But for any non-negative real numbers a1, a2, a3, a4, a5 with
a1 + a2 + a3 + a4 + a5 < 1, we have

a1d(1, 2)(t) + a2( f (1), 1)(t) + a3d(g(2), 2)(t) + a4d( f (1), 2)(t) + a5d(1, g(2))(t)

= (a1 + a2 + a3 + a4)et ≪ et = d( f (1), g(2))(t).

Thus, f , g, s, t cannot satisfy the relation about coefficients a1 + a2 + a3 + a4 + a5 < 1.

In the same way, taking φ(a) = ∥a∥ in Theorem 3.1 (see the above Example 2.13) we can obtain
Theorem 3.7.

Theorem 3.7. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a normal cone with normal
constant k ⩾ 1. Suppose four mappings f , g, S ,T : X → X satisfy (a) in Theorem 3.1 and
(b) for all x, y ∈ X,

∥d( f x, gy)∥ ⩽ A1(x, y)∥d(S x,Ty)∥ + A2(x, y)∥d( f x, S x)∥ + A3(x, y)∥d(gy,Ty)∥

+A4(x, y)∥d( f x,Ty)∥ + A5(x, y)∥d(S x, gy)∥ (3.12)

where A1–A5 are five functions from X × X to [0,+∞) such that

(i) A1(x, y) + A4(x, y) + A5(x, y) < 1 for all x, y ∈ X;

(ii) infx,y∈X{1 − A3(x, y) − ksA5(x, y)} = a > 0, infx,y∈X{1 − A2(x, y) − ksA4(x, y)} = b > 0,

supx,y∈X{A1(x, y) + A2(x, y) + ksA5(x, y)} = A, supx,y∈X{A1(x, y) + A3(x, y) + ksA4(x, y)} = B,

with A
a ·

B
b <

1
s2 ;

(iii) ks(1 − a) < 1 and ks(1 − b) < 1.

Then, the conclusions of Theorem 3.1 still hold.

As direct consequences of the above nonlinear results, we can obtain the corresponding linear
results.

Corollary 3.8. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a normal cone with k ⩾ 1.
Suppose four mappings f , g, S ,T : X → X satisfy (a) in Theorem 3.1 and (b) for all x, y ∈ X,

∥d( f x, gy)∥ ⩽ a1∥d(S x,Ty)∥ + a2∥d( f x, S x)∥ + a3∥d(gy,Ty)∥ + a4∥d( f x,Ty)∥ + a5∥d(S x, gy)∥, (3.13)

where ai ⩾ 0 (i = 1, 2, 3, 4, 5) with a1 + a4 + a5 < 1, ks(a2 + ksa4) < 1, ks(a3 + ksa5) < 1 and
(a1+a2+ksa5)(a1+a3+ksa4)
(1−a2−ksa4)(1−a3−ksa5) < 1

s2 . Then, the conclusions of Theorem 3.7 still hold.

Remark 3.9. Theorem 2.4 in [8] is a special case of Corollary 3.8 as (X, d) is a CMS with a1 < 1, a2 =

0 = a3 = a4 = a5 and S ,T are continuous. Therefore, Corollary 3.8 complements and improves the
result of Radenović [8].

Next, by using Theorem 3.1, we prove that the following coincidence point and CFP theorems for
six self-mappings in X.
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Theorem 3.10. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a solid cone. Suppose that six
mappings f , g, S ,T, F,G : X → X satisfy the following conditions:

(a) f (X) ⊂ TG(X), g(X) ⊂ S F(X) with one of f (X), g(X), S F(X) or TG(X) is a complete subspace of
X;

(b) f F = F f , S F = FS , gG = Gg,TG = GT;

(c) there is a mapping φ ∈ Φ(P, P1) such that

φ(d( f x, gy)) ≤ A1(x, y)φ(d(S Fx,TGy)) + A2(x, y)φ(d( f x, S Fx)) + A3(x, y)φ(d(gy,TGy))

+A4(x, y)φ(d( f x,TGy)) + A5(x, y)φ(d(S Fx, gy)), ∀x, y ∈ X (3.14)

where A1–A5 are five functions from X × X to [0,+∞) such that (i), (ii) and (iii) of Theorem 3.1 hold.
Then, there is a unique z ∈ X that is the point of coincidence of { f , S F} and {g,TG}. Moreover, if
{ f , S F} and {g,TG} are weakly compatible then f , g, S ,T, F and G have a unique CFP.

Proof. Putting P = S F,Q = TG, we can see that conditions (a) and (c) of the theorem imply conditions
(a) and (b) of Theorem 3.1. Therefore, { f , P = S F} and {g,Q = TG} have a unique point of coincidence
in X via Theorem 3.1. Moreover, if { f , P = S F} and {g,Q = TG} are weakly compatible then f , g, P
and Q have a unique CFP z in X, i.e.,

f z = gz = Pz = Qz = z. (3.15)

Next, we will illustrate that z is also a CFP of S and F. By (3.15) and condition (b), we have
f Fz = F f z = Fz and PFz = (S F)Fz = (FS )Fz = F(S F)z = FPz = Fz. Thus, by condition (b) of
Theorem 3.1 (putting x = Fz and y = z in (3.1)) we get

φ(d(Fz, z)) = φ(d( f Fz, gz))

≤ A1(Fz, z)φ(d(S FFz,TGz)) + A2(Fz, z)φ(d( f Fz, S FFz)) + A3(Fz, z)

·φ(d(gz,TGz)) + A4(Fz, z)φ(d( f Fz,TGz)) + A5(Fz, z)φ(d(S FFz, gz))

= A1(Fz, z)φ(d(Fz, z)) + A2(Fz, z)φ(d(Fz, Fz)) + A3(Fz, z)φ(d(z, z))

+A4(Fz, z)φ(d(Fz, z)) + A5(Fz, z)φ(d(Fz, z))

= [A1(Fz, z) + A4(Fz, z) + A5(Fz, z)]φ(d(Fz, z)).

From (i) of Theorem 3.1, Remarks 2.4 and 2.11 we can obtain Fz = z, and so z = Pz = S Fz = S z.
Therefore, z is a CFP of S and F.

Similarly, we can prove that z is also a CFP of T and G. In fact, by (3.15) and condition (b) we have
gGz = Ggz = Gz and QGz = (TG)Gz = (GT )Gz = G(TG)z = GQz = Gz. Thus, by condition (b) of
Theorem 3.1 (putting x = z and y = Gz in (3.1)), we get

φ(d(z,Gz)) = φ(d( f z, gGz))

≤ A1(z,Gz)φ(d(S Fz,TGGz)) + A2(z,Gz)φ(d( f z, S Fz)) + A3(z,Gz)

·φ(d(gGz,TGGz)) + A4(z,Gz)φ(d( f z,TGGz)) + A5(z,Gz)φ(d(S Fz, gGz))

= A1(z,Gz)φ(d(z,Gz)) + A2(z,Gz)φ(d(z, z)) + A3(z,Gz)φ(d(Gz,Gz))
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+A4(z,Gz)φ(d(z,Gz)) + A5(z,Gz)φ(d(z,Gz))

= [A1(z,Gz) + A4(z,Gz) + A5(z,Gz)]φ(d(z,Gz)).

From (i) of Theorem 3.1, Remarks 2.4 and 2.11, we know that Gz = z, and so z = Qz = TGz = Tz.
This shows that z is also a CFP of T and G. Therefore, z is a CFP of f , g, S ,T, F and G. Since z is a
unique CFP of f , g, P and Q, it is easy to see that z is also a unique CFP of f , g, S ,T, F and G.

Remark 3.11. We also can obtain Theorem 3.1 by putting F = G = I in Theorem 3.10. Therefore,
Theorem 3.1 and Theorem 3.10 are equivalent.

In the same way, we obtain the corresponding result.

Corollary 3.12. Let (X, d) be a CbMS with the coefficient s ⩾ 1 and P be a solid cone. Suppose six
mappings f , g, S ,T, F,G : X → X satisfy the conditions (a) and (b) in Theorem 3.10 and

(c) there is a mapping φ ∈ Φ(P, P1) such that

φ(d( f x, gy)) ≤ a1φ(d(S Fx,TGy)) + a2φ(d( f x, S Fx)) + a3φ(d(gy,TGy))

+a4φ(d( f x,TGy)) + a5φ(d(S Fx, gy)), ∀x, y ∈ X (3.16)

where ai ⩾ 0 (i = 1, 2, 3, 4, 5) are constants with a1 + a4 + a5 < 1,Kωsσ(a2 + Kωsσa4) < 1,Kωsσ(a3 +

Kωsσa5) < 1 and (a1+a2+Kωsσa5)(a1+a3+Kωsσa4)
(1−a2−Kωsσa4)(1−a3−Kωsσa5) < 1

ω2 s2σ , and K ⩾ 1, ω ⩾ 1, σ > 0 are some constants as in
Definition 2.10. Then, the conclusions of Theorem 3.10 are equally valid.

Remark 3.13. Obviously, taking (X, d) as a b-metric space and φ(a) = a in Corollary 3.12 then we
have K = ω = σ = 1 which imply that ai ⩾ 0 (i = 1, 2, 3, 4, 5) are constants with a1 + a4 + a5 <

1, s(a2 + sa4) < 1, s(a3 + sa5) < 1 and (a1+a2+sa5)(a1+a3+sa4)
(1−a2−sa4)(1−a3−sa5) < 1

s2 .
Let a1 + a2 + a3 + 2 max{a4, a5} <

1
s4 . Note that s ⩾ 1. We have a1 + a4 + a5 < 1, s(a2 + sa4) < 1 and

s(a3 + sa5) < 1 . Again by s ⩾ 1, we have a1 + a2 + a3 + 2a4 <
1
s4 <

1
s2 ⇒ s(a1 + a3 + sa4) < 1− a2 − sa4

and a1 + a2 + a3 + 2a5 <
1
s2 ⇒ s(a1 + a2 + sa5) < 1− a3 − sa5, which show that (a1+a2+sa5)(a1+a3+sa4)

(1−a2−sa4)(1−a3−sa5) < 1
s2 .

Therefore, taking (X, d) as a b-metric space, φ(a) = a and ai ⩾ 0 (i = 1, 2, 3, 4, 5) are constants with
a1 + a2 + a3 + 2 max{a4, a5} <

1
s4 in Corollary 2.11 of [25] then the conclusion of Corollary 3.12 is still

holds. Hence, Corollary 3.12 sharply improves Corollary 2.11 of [25] in its four aspects:
1) the b-metric space is replaced by the CbMS;
2) the contractive condition is replaced by the new contractive condition defined by (3.16);
3) the continuity of function is not required;
4) one pair of maps is compatible and another is weak compatible decrease to the two pairs are both
weak compatible.

Moreover, from Remark 2.13 in [25], we easily see that Corollary 3.12 also improves Theorem 2.7
of Roshan et al. [13].

In the following, we will give a specific example of Theorem 3.2.

Example 3.14. Let E = R2, X = [0, 1], and let P = {(x1, x2) ∈ E : x1, x2 ⩾ 0}. Define d : X ×X → P by

d(x, y) = ((x − y)2, α(x − y)2)
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for all x, y ∈ X where α > 0. Then (X, d) is a complete CbMS with the coefficient s = 2. Suppose that
four mappings f , g, S and T be defined by

f (x) =
{

0, x ∈ [0, 1
2 ],

1
4 , x ∈ (1

2 , 1];
g(x) =

{
0, x ∈ [0, 1

2 ],
1
2 , x ∈ ( 1

2 , 1];

S (x) =


0, x = 0,
1
2 , x ∈ (0, 1

2 ],
1, x ∈ ( 1

2 , 1];
T (x) =

{
x, x ∈ [0, 1

2 ],
1, x ∈ (1

2 , 1].

It is easy to see that f (X) ⊂ T (X), g(X) ⊂ S (X), and f (X), g(X), S (X) and T (X) are some complete
subspaces of X, and { f , S } and {g,T } are weakly compatible. Now taking
A1(x, y) ≡ 1

40 ≡ A2(x, y), A3(x, y) ≡ 9
40 = A4(x, y) and A5(x, y) ≡ 1

40 for all x, y ∈ X in Theorem 3.2, we
have A1 + A4 + A5 =

11
40 < 1, 1 − A2 − 2A4 =

21
40 > 0, infx,y∈X{1 − A3 − 2A5} =

29
40 > 0,

A1 + A2 + 2A5 =
1

10 , 2(1 − 21
40 ) = 19

20 < 1, 2(1 − 29
40 ) = 11

20 < 1, supx,y∈X{A1 + A3 + 2A4} =
7

10 and
( 1

10 ·
7
10 )/(29

40 ·
21
40 ) = 16

87 <
1
22 , which imply that conditions (i)–(iii) in Theorem 3.2 are satisfied.

Moreover, by a simple calculation we can check that f , g, S and T are satisfying the condition (3.9)
of Theorem 3.2. For this purpose, we consider the following six cases:
case 1. x ∈ [0, 1

2 ] and y ∈ [0, 1
2 ]. Obviously, we have

d( f x, gy) = (0, 0) ≼ A1d(S x,Ty) + A2d( f x, S x) + A3d(gy,Ty) + A4d( f x,Ty) + A5d(S x, gy).

case 2. x = 0 and y ∈ ( 1
2 , 1]. In this case, we have

A1d(S x,Ty) + A2d( f x, S x) + A3d(gy,Ty) + A4d( f x,Ty) + A5d(S x, gy)

= 1
40 (1, α) + 0 + 9

40 ( 1
4 , α

1
4 ) + 9

40 (1, α) + 1
40 (1

4 , α
1
4 ) = ( 5

16 , α
5

16 ) ≽ ( 1
4 , α

1
4 ) = d( f x, gy).

case 3. x ∈ (0, 1
2 ] and y ∈ ( 1

2 , 1]. In this case, we have

A1d(S x,Ty) + A2d( f x, S x) + A3d(gy,Ty) + A4d( f x,Ty) + A5d(S x, gy)

= 1
40 (1

4 , α
1
4 ) + 1

40 ( 1
4 , α

1
4 ) + 9

40 ( 1
4 , α

1
4 ) + 9

40 (1, α) + 0 = ( 47
160 , α

47
160 ) ≽ (1

4 , α
1
4 ) = d( f x, gy).

case 4. x ∈ ( 1
2 , 1] and y = 0. In this case, we can obtain that

A1d(S x,Ty) + A2d( f x, S x) + A3d(gy,Ty) + A4d( f x,Ty) + A5d(S x, gy)

= 1
40 (1, α) + 1

40 (( 3
4 )2, α( 3

4 )2) + 0 + 9
40 (( 1

4 )2, α( 1
4 )2) + 1

40 (1, α)

= ( 5
64 , α

5
64 ) ≽ ( 1

16 , α
1

16 ) = d( f x, gy).

case 5. x ∈ ( 1
2 , 1] and y ∈ (0, 1

2 ]. In this case, by 19
40y2 − 13

80y + 5
64 ⩾

1
16 for all y ∈ (0, 1

2 ], we can obtain
that

A1d(S x,Ty) + A2d( f x, S x) + A3d(gy,Ty) + A4d( f x,Ty) + A5d(S x, gy)

= 1
40 ((1 − y)2, α(1 − y)2) + 1

40 (( 3
4 )2, α( 3

4 )2) + 9
40 (y2, αy2) + 9

40 (( 1
4 − y)2, α( 1

4 − y)2) + 1
40 (1, α)

= ( 19
40y2 − 13

80y + 5
64 , α[19

40y2 − 13
80y + 5

64 ]) ≽ ( 1
16 , α

1
16 ) = d( f x, gy).

case 6. x ∈ ( 1
2 , 1] and y ∈ ( 1

2 , 1]. In this case, we can obtain that

A1d(S x,Ty) + A2d( f x, S x) + A3d(gy,Ty) + A4d( f x,Ty) + A5d(S x, gy)

= 0 + 1
40 (( 3

4 )2, α(3
4 )2) + 9

40 ( 1
4 , α

1
4 ) + 9

40 (( 3
4 )2, α( 3

4 )2) + 1
40 (1

4 , α
1
4 ) = (13

64 , α
13
64 )
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≽ ( 1
16 , α

1
16 ) = d( f x, gy).

Then, in all the above cases, f , g, S and T are satisfying the condition (3.9) of Theorem 3.2. So all
the conditions of Theorem 3.2 are valid. Obviously, 0 is the unique CFP for all of the mappings f , g, S
and T . But for any non-negative real numbers a1, a2, a3, a4, a5 with a1 + a2 + a3 + 2 max{a4, a5} <

1
24 , if

x = 0, y ∈ (1
2 , 1], we have

a1d(S x,Ty) + a2d( f x, S x) + a3d(gy,Ty) + a4d( f x,Ty) + a5d(S x, gy)

= a1(1, α) + 0 + a3( 1
4 , α

1
4 ) + a4(1, α) + a5(1

4 , α
1
4 ) = (a1 +

a3
4 + a4 +

a5
4 , α(a1 +

a3
4 + a4 +

a5
4 ))

≼ (a1 + a3 + a4 + a5, α(a1 + a3 + a4 + a5)) ≼ ( 1
24 ,

α
24 ) ≼ (1

4 , α
1
4 ) = d( f x, gy).

Thus, f , g, S ,T cannot satisfy the relation about coefficients a1 + a2 + a3 + 2 max{a4, a5} <
1
24 . This

also shows that our results improve and extend the results in [13, 25].

Remark 3.15. In Example 3.14, if we discuss it under the usual metric d(x, y) = |x−y|, it is not difficult
to verify that the inequality does not hold in the cases 2–4 of Example 3.14. In particular, we are able
to check that the inequality does not true under a1 + a2 + a3 + 2 max{a4, a5} < 1. These illustrate the
validity of Example 3.14.

4. Conclusions

It is well known that the study of fixed points of mappings satisfying a more weak nonlinear and
linear contractive conditions has been at the center of vigorous research activity. Thus, a question
arises of whether the restriction of coefficients a1 + a2 + a3 + a4 + a5 < 1 can be omitted or improved
in [13, 16, 20–25].

In this paper, we give an affirmative answer to the above question. To this end, we first introduce
the new class Φ(P, P1) which is defined from a RBS into another RBS. By using the function φ ∈

Φ(P, P1) , we prove a coincidence point and CFP theorem for four self-mappings which satisfy new
nonlinear conditions in a CbMS. Secondly, as applications of the main theorem, we consider some
coincidence point and CFP theorems for six self-mappings satisfying new nonlinear conditions in a
CbMS. Also, some examples are given to illustrate the validity of our results and the restriction of
coefficients a1 + a2 + a3 + a4 + a5 ≥ 1 are allowed, which indicate that the conditions under which our
theorem holds are clearly weaker than those found in [13, 16, 20–25]. For details, see Examples 3.6
and 3.14, and Remarks 3.5, 3.11 and 3.13 of this paper.
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