This paper presents a novel concept of G-Hardy-Rogers functional operators on metric spaces endowed with a graph. It investigates sufficient circumstances under which such a mapping becomes a Picard operator. As applications of the principal idea discussed herein, a few important corresponding fixed point results in ordered metric spaces and cyclic operators are pointed out and analyzed. For upcoming research papers in this field, comparative graphical illustrations are created to highlight the pre-eminence of proposed notions with respect to the existing ones.
Citation: Mohammed Shehu Shagari, Faryad Ali, Trad Alotaibi, Akbar Azam. Fixed point of Hardy-Rogers-type contractions on metric spaces with graph[J]. Electronic Research Archive, 2023, 31(2): 675-690. doi: 10.3934/era.2023033
[1] | Minlong Lin, Ke Tang . Selective further learning of hybrid ensemble for class imbalanced increment learning. Big Data and Information Analytics, 2017, 2(1): 1-21. doi: 10.3934/bdia.2017005 |
[2] | Subrata Dasgupta . Disentangling data, information and knowledge. Big Data and Information Analytics, 2016, 1(4): 377-390. doi: 10.3934/bdia.2016016 |
[3] | Qinglei Zhang, Wenying Feng . Detecting Coalition Attacks in Online Advertising: A hybrid data mining approach. Big Data and Information Analytics, 2016, 1(2): 227-245. doi: 10.3934/bdia.2016006 |
[4] | Tieliang Gong, Qian Zhao, Deyu Meng, Zongben Xu . Why Curriculum Learning & Self-paced Learning Work in Big/Noisy Data: A Theoretical Perspective. Big Data and Information Analytics, 2016, 1(1): 111-127. doi: 10.3934/bdia.2016.1.111 |
[5] | Xin Yun, Myung Hwan Chun . The impact of personalized recommendation on purchase intention under the background of big data. Big Data and Information Analytics, 2024, 8(0): 80-108. doi: 10.3934/bdia.2024005 |
[6] | Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen . Big data collection and analysis for manufacturing organisations. Big Data and Information Analytics, 2017, 2(2): 127-139. doi: 10.3934/bdia.2017002 |
[7] | Zhen Mei . Manifold Data Mining Helps Businesses Grow More Effectively. Big Data and Information Analytics, 2016, 1(2): 275-276. doi: 10.3934/bdia.2016009 |
[8] | Ricky Fok, Agnieszka Lasek, Jiye Li, Aijun An . Modeling daily guest count prediction. Big Data and Information Analytics, 2016, 1(4): 299-308. doi: 10.3934/bdia.2016012 |
[9] | M Supriya, AJ Deepa . Machine learning approach on healthcare big data: a review. Big Data and Information Analytics, 2020, 5(1): 58-75. doi: 10.3934/bdia.2020005 |
[10] | Sunmoo Yoon, Maria Patrao, Debbie Schauer, Jose Gutierrez . Prediction Models for Burden of Caregivers Applying Data Mining Techniques. Big Data and Information Analytics, 2017, 2(3): 209-217. doi: 10.3934/bdia.2017014 |
This paper presents a novel concept of G-Hardy-Rogers functional operators on metric spaces endowed with a graph. It investigates sufficient circumstances under which such a mapping becomes a Picard operator. As applications of the principal idea discussed herein, a few important corresponding fixed point results in ordered metric spaces and cyclic operators are pointed out and analyzed. For upcoming research papers in this field, comparative graphical illustrations are created to highlight the pre-eminence of proposed notions with respect to the existing ones.
For a continuous risk outcome
Given fixed effects
In this paper, we assume that the risk outcome
y=Φ(a0+a1x1+⋯+akxk+bs), | (1.1) |
where
Given random effect model (1.1), the expected value
We introduce a family of interval distributions based on variable transformations. Probability densities for these distributions are provided (Proposition 2.1). Parameters of model (1.1) can then be estimated by maximum likelihood approaches assuming an interval distribution. In some cases, these parameters get an analytical solution without the needs for a model fitting (Proposition 4.1). We call a model with a random effect, where parameters are estimated by maximum likelihood assuming an interval distribution, an interval distribution model.
In its simplest form, the interval distribution model
The paper is organized as follows: in section 2, we introduce a family of interval distributions. A measure for tail fatness is defined. In section 3, we show examples of interval distributions and investigate their tail behaviours. We propose in section 4 an algorithm for estimating the parameters in model (1.1).
Interval distributions introduced in this section are defined for a risk outcome over a finite open interval
Let
Let
Φ:D→(c0,c1) | (2.1) |
be a transformation with continuous and positive derivatives
Given a continuous random variable
y=Φ(a+bs), | (2.2) |
where we assume that the range of variable
Proposition 2.1. Given
g(y,a,b)=U1/(bU2) | (2.3) |
G(y,a,b)=F[Φ−1(y)−ab]. | (2.4) |
where
U1=f{[Φ−1(y)−a]/b},U2=ϕ[Φ−1(y)] | (2.5) |
Proof. A proof for the case when
G(y,a,b)=P[Φ(a+bs)≤y] |
=P{s≤[Φ−1(y)−a]/b} |
=F{[Φ−1(y)−a]/b}. |
By chain rule and the relationship
∂Φ−1(y)∂y=1ϕ[Φ−1(y)]. | (2.6) |
Taking the derivative of
∂G(y,a,b)∂y=f{[Φ−1(y)−a]/b}bϕ[Φ−1(y)]=U1bU2. |
One can explore into these interval distributions for their shapes, including skewness and modality. For stress testing purposes, we are more interested in tail risk behaviours for these distributions.
Recall that, for a variable X over (−
For a risk outcome over a finite interval
We say that an interval distribution has a fat right tail if the limit
Given
Recall that, for a Beta distribution with parameters
Next, because the derivative of
z=Φ−1(y) | (2.7) |
Then
Lemma 2.2. Given
(ⅰ)
(ⅱ) If
(ⅲ) If
Proof. The first statement follows from the relationship
[g(y,a,b)(y1−y)β]−1/β=[g(y,a,b)]−1/βy1−y=[g(Φ(z),a,b)]−1/βy1−Φ(z). | (2.8) |
By L’Hospital’s rule and taking the derivatives of the numerator and the denominator of (2.8) with respect to
For tail convexity, we say that the right tail of an interval distribution is convex if
Again, write
h(z,a,b)=log[g(Φ(z),a,b)], | (2.9) |
where
g(y,a,b)=exp[h(z,a,b)]. | (2.10) |
By (2.9), (2.10), using (2.6) and the relationship
g′y=[h′z(z)/ϕ(z)]exp[h(Φ−1(y),a,b)],g″yy=[h″zz(z)ϕ2(z)−h′z(z)ϕ′z(z)ϕ3(z)+h′z(z)h′z(z)ϕ2(z)]exp[h(Φ−1(y),a,b)]. | (2.11) |
The following lemma is useful for checking tail convexity, it follows from (2.11).
Lemma 2.3. Suppose
In this section, we focus on the case where
One can explore into a wide list of densities with different choices for
A.
B.
C.
D.D.
Densities for cases A, B, C, and D are given respectively in (3.3) (section 3.1), (A.1), (A.3), and (A5) (Appendix A). Tail behaviour study is summarized in Propositions 3.3, 3.5, and Remark 3.6. Sketches of density plots are provided in Appendix B for distributions A, B, and C.
Using the notations of section 2, we have
By (2.5), we have
log(U1U2)=−z2+2az−a2+b2z22b2 | (3.1) |
=−(1−b2)(z−a1−b2)2+b21−b2a22b2. | (3.2) |
Therefore, we have
g(y,a,b)=1bexp{−(1−b2)(z−a1−b2)2+b21−b2a22b2}. | (3.3) |
Again, using the notations of section 2, we have
g(y,p,ρ)=√1−ρρexp{−12ρ[√1−ρΦ−1(y)−Φ−1(p)]2+12[Φ−1(y)]2}, | (3.4) |
where
Proposition 3.1. Density (3.3) is equivalent to (3.4) under the relationships:
a=Φ−1(p)√1−ρ and b=√ρ1−ρ. | (3.5) |
Proof. A similar proof can be found in [19]. By (3.4), we have
g(y,p,ρ)=√1−ρρexp{−1−ρ2ρ[Φ−1(y)−Φ−1(p)/√1−ρ]2+12[Φ−1(y)]2} |
=1bexp{−12[Φ−1(y)−ab]2}exp{12[Φ−1(y)]2} |
=U1/(bU2)=g(y,a,b). |
The following relationships are implied by (3.5):
ρ=b21+b2, | (3.6) |
a=Φ−1(p)√1+b2. | (3.7) |
Remark 3.2. The mode of
√1−ρ1−2ρΦ−1(p)=√1+b21−b2Φ−1(p)=a1−b2. |
This means
Proposition 3.3. The following statements hold for
(ⅰ)
(ⅱ)
(ⅲ) If
Proof. For statement (ⅰ), we have
Consider statement (ⅱ). First by (3.3), if
[g(Φ(z),a,b)]−1/β=b1/βexp(−(b2−1)z2+2az−a22βb2) | (3.8) |
By taking the derivative of (3.8) with respect to
−{∂[g(Φ(z),a,b)]−1β/∂z}/ϕ(z)=√2πb1β(b2−1)z+aβb2exp(−(b2−1)z2+2az−a22βb2+z22). | (3.9) |
Thus
{∂[g(Φ(z),a,b)]−1β/∂z}/ϕ(z)=−√2πb1β(b2−1)z+aβb2exp(−(b2−1)z2+2az−a22βb2+z22). | (3.10) |
Thus
For statement (ⅲ), we use Lemma 2.3. By (2.9) and using (3.2), we have
h(z,a,b)=log(U1bU2)=−(1−b2)(z−a1−b2)2+b21−b2a22b2−log(b). |
When
Remark 3.4. Assume
limz⤍+∞−{∂[g(Φ(z),a,b)]−1β/∂z}/ϕ(z) |
is
For these distributions, we again focus on their tail behaviours. A proof for the next proposition can be found in Appendix A.
Proposition 3.5. The following statements hold:
(a) Density
(b) The tailed index of
Remark 3.6. Among distributions A, B, C, and Beta distribution, distribution B gets the highest tailed index of 1, independent of the choices of
In this section, we assume that
First, we consider a simple case, where risk outcome
y=Φ(v+bs), | (4.1) |
where
Given a sample
LL=∑ni=1{logf(zi−vib)−logϕ(zi)−logb}, | (4.2) |
where
Recall that the least squares estimators of
SS=∑ni=1(zi−vi)2 | (4.3) |
has a closed form solution given by the transpose of
X=⌈1x11…xk11x12…xk2…1x1n…xkn⌉,Z=⌈z1z2…zn⌉. |
The next proposition shows there exists an analytical solution for the parameters of model (4.1).
Proposition 4.1. Given a sample
Proof. Dropping off the constant term from (4.2) and noting
LL=−12b2∑ni=1(zi−vi)2−nlogb, | (4.4) |
Hence the maximum likelihood estimates
Next, we consider the general case of model (1.1), where the risk outcome
y=Φ[v+ws], | (4.5) |
where parameter
(a)
(b)
Given a sample
LL=∑ni=1−12[(zi−vi)2/w2i−ui], | (4.6) |
LL=∑ni=1{−(zi−vi)/wi−2log[1+exp[−(zi−vi)/wi]−ui}, | (4.7) |
Recall that a function is log-concave if its logarithm is concave. If a function is concave, a local maximum is a global maximum, and the function is unimodal. This property is useful for searching maximum likelihood estimates.
Proposition 4.2. The functions (4.6) and (4.7) are concave as a function of
Proof. It is well-known that, if
For (4.7), the linear part
In general, parameters
Algorithm 4.3. Follow the steps below to estimate parameters of model (4.5):
(a) Given
(b) Given
(c) Iterate (a) and (b) until a convergence is reached.
With the interval distributions introduced in this paper, models with a random effect can be fitted for a continuous risk outcome by maximum likelihood approaches assuming an interval distribution. These models provide an alternative regression tool to the Beta regression model and fraction response model, and a tool for tail risk assessment as well.
Authors are very grateful to the third reviewer for many constructive comments. The first author is grateful to Biao Wu for many valuable conversations. Thanks also go to Clovis Sukam for his critical reading for the manuscript.
We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication.
The views expressed in this article are not necessarily those of Royal Bank of Canada and Scotiabank or any of their affiliates. Please direct any comments to Bill Huajian Yang at h_y02@yahoo.ca.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181. |
[2] | M. Alansari, M. S. Shagari, Analysis of fractional differential inclusion models for COVID-19 via fixed point results in metric space, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/8311587 |
[3] | P. Debnath, N. Konwar, S. Radenovic, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Springer Nature Singapore, 2021. |
[4] | F. Echenique, A short and constructive proof of Tarski's fixed-point theorem, Int. J. Game Theory, 33 (2005), 215–218. |
[5] | J. A. Jiddah, M. Alansari, O. K. S. K. Mohamed, M. S. Shagari, A. A. Bakery, Fixed point results of Jaggi-type hybrid contraction in generalized metric space, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/2205423 |
[6] | M. Noorwali, S. S. Yeşilkaya, On Jaggi-Suzuki-type hybrid contraction mappings, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/6721296. |
[7] |
G. E. Hary, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
![]() |
[8] |
S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9
![]() |
[9] |
A. F. R. L. de Hierro, E. Karapınar, A. Fulga, Multiparametric contractions and related Hardy-Roger type fixed point theorems, Mathematics, 8 (2020), 957. https://doi.org/10.3390/math8060957 doi: 10.3390/math8060957
![]() |
[10] | M. U. Ali, H. Aydi, M. Alansari, New generalizations of set valued interpolative Hardy-Rogers type contractions in b−metric spaces, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/6641342. |
[11] |
H. Aydi, C. M. Chen, E. Karapınar, Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance, Mathematics, 7 (2019), 84. https://doi.org/10.3390/math7010084 doi: 10.3390/math7010084
![]() |
[12] |
H. Aydi, E. Karapinar, A. F. R. L. de Hierro, w-Interpolative Ćirić-Reich-Rus-Type contractions, Mathematics, 7 (2019), 57. https://doi.org/10.3390/math7010057 doi: 10.3390/math7010057
![]() |
[13] |
P. Debnath, M. de L. Sen, Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Ćirić-type contractions in b-metric spaces, Mathematics, 7 (2019), 849. https://doi.org/10.3390/math7090849 doi: 10.3390/math7090849
![]() |
[14] |
E. Karapınar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2019), 8. https://doi.org/10.3390/sym11010008 doi: 10.3390/sym11010008
![]() |
[15] |
P. Saipara, K. Khammahawong, P. Kumam, Fixed-point theorem for a generalized almost Hardy-Rogers-type F-contraction on metric-like spaces, Math. Meth. Appl. Sci., 42 (2019), 5898–5919. https://doi.org/10.1002/mma.5793 doi: 10.1002/mma.5793
![]() |
[16] | M. A. Petric, Some remarks concerning ˊCiriˊc-Reich-Rus operators, Creat. Math. Inf., 18 (2009), 188–193. |
[17] | R. Johnsonbaugh, Discrete mathematics, Prentice-Hall, New Jersey, 1997. |
[18] |
F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. https://doi.org/10.1016/j.na.2012.02.009 doi: 10.1016/j.na.2012.02.009
![]() |
[19] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 1 (2008), 1359–1373. |
[20] |
O. Acar, H. Aydi, M. de la Sen, New fixed point results via a graph structure, Mathematics, 9 (2021), 1013. https://doi.org/10.3390/math9091013. doi: 10.3390/math9091013
![]() |
[21] |
E. Ameer, H. Aydi, M. Arshad, M. de la Sen, Hybrid Ćirić Type Graphic Y, Contraction mappings with applications to electric circuit and fractional differential equations, Symmetry, 12 (2020), 467. https://doi.org/10.3390/sym12030467 doi: 10.3390/sym12030467
![]() |
[22] |
N. A. K. Muhammad, A. Azam, M. Nayyar, Coincidence points of a sequence of multivalued mappings in metric space with a graph, Mathematics, 5 (2017), 30. https://doi.org/10.3390/math5020030 doi: 10.3390/math5020030
![]() |
[23] | M. Shoaib, M. Sarwar, K. Shah, N. Mlaiki, Common fixed point results via set-valued generalized weak contraction with directed graph and its application, J. Math., 2022 (2022). https://doi.org/10.1155/2022/2068050 |
[24] |
A. Sultana, V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl., 417 (2014), 336–344. https://doi.org/10.1016/j.jmaa.2014.03.015 doi: 10.1016/j.jmaa.2014.03.015
![]() |
[25] | R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comp. Math., 20 (2021), 313–333. |
[26] |
R. S. Adigüzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Meth. Appl. Sci., 4 (2020), 123–129. https://doi.org/10.1002/mma.6652 doi: 10.1002/mma.6652
![]() |