
ERA, 31(10): 6327–6346. 
DOI: 10.3934/era.2023320 
Received: 04 August 2023 
Revised: 09 September 2023 
Accepted: 11 September 2023 
Published: 22 September 2023 

http://www.aimspress.com/journal/era 
 

Research article 

Automatic detection method of abnormal vibration of engineering 
electric drive construction machinery 

Jian Yuan1, Hao Liu3 and Yang Zhang2,3,* 

1 China Road & Bridge Corporation, Beijing 100011, China  
2 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Xi’an 710018, China 
3 School of Transportation, Southeast University, Nanjing 211189, China 

* Correspondence: E-mail: yang-zhang@seu.edu.cn; Tel: +8618913344511. 

Abstract: Aiming at the problem that the extraction effect of abnormal vibration characteristics of 
current engineering electric drive construction machinery is poor, an automatic detection method of 
abnormal vibration of engineering electric drive construction machinery is proposed. Firstly, the 
abnormal data of mechanical abnormal vibration are collected and identified, and based on the 
identification results, the dynamic characteristic model of engineering electric drive construction 
machinery is constructed. The empirical mode decomposition and Hilbert spectrum are used to 
decompose the abnormal vibration of machinery, calculate the response amplitude and time lag value 
generated by the operation of the engineering electric drive construction machinery to simplify the 
diagnosis steps of the abnormal vibration of the engineering electric drive construction machinery 
and realize the positioning and detection of the transverse and torsional vibration characteristics. 
Finally, through experiments, it was confirmed that the automatic detection method of the abnormal 
vibration of the engineering electric drive construction machinery has high accuracy, which can 
better ensure the healthy operation of mechanical equipment. This endeavor aims to establish 
scientific methodologies and standards for fault detection techniques in construction machinery, 
ultimately forging a versatile solution better suited for detecting and resolving issues across various 
categories of construction equipment. 
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1. Introduction 

There are many parts and components in engineering electric drive construction machinery, and 
the layout of structural parts is complex. The cooperation of various parts is the basis for effectively 
ensuring the stable and reliable operation of engineering electric drive construction machinery. 
Engineering electric-drive construction machinery is the mechanical equipment that converts other 
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forms of energy into electric energy [1]. The common engineering electric drive construction 
machinery mainly includes hydraulic turbines, steam turbines, diesel engines, etc. All forms of 
engineering electric-drive construction machinery transmit mechanical energy to engineering electric 
drive construction machinery through transmission engineering electric drive construction machinery, 
build the magnetic circuit and circuit of transmission engineering electric drive construction 
machinery through appropriate magnetic and conductive materials and push the piston downward to 
do work under the extrusion of the piston to realize energy conversion. Engineering electric drive 
construction machinery is widely used in industrial and agricultural production, national defense, 
science and technology, life and other fields that have important basic significance. In industrial 
production, a large number of fluid machinery, such as compressors, pumps, etc., often have 
abnormal vibration, which has a great impact on normal production [2]. The fault diagnosis 
technology widely used in the vibration diagnosis of rotating machinery is mostly based on signal 
analysis. When facing the abnormal vibration of on-site machines, it depends on the experience of 
on-site technicians to a great extent. Because there is no obvious and quantitative law between 
vibration causes and characteristic signals, and due to the limitations of production conditions, many 
fault sites cannot obtain complete detection data. Therefore, on-site diagnosis is a very difficult 
problem. The abnormal vibration of engineering electric drive construction machinery is divided into 
bending vibration, torsional vibration and axial vibration. Through the nonlinear dynamic analysis 
and abnormal feature extraction of engineering electric drive construction machinery, the state test 
and detection of engineering electric drive construction machinery are realized [3]. Furthermore, 
existing research struggles to effectively depict the dynamic evolution of the health status of the 
target object across various time scales [4,5]. Consequently, the concept of digital twins has been 
introduced as a promising approach for predicting and managing the health of construction 
machinery [6,7]. However, a fundamental challenge lies in modeling complex systems, which is also 
an inherent obstacle within the realm of digital twins. Traditional mechanistic models demand an 
extensive amount of specialized knowledge, making it arduous to encompass all the behaviors and 
rules of the system, especially for intricate systems featuring global or local unknowns [8,9]. 
Additionally, these mechanistic models face difficulties keeping up with changing system states or 
incurring prohibitively high update costs. Consequently, methods grounded in mechanistic models 
exhibit poor scalability and pose challenges in terms of verification [10–12]. Ke et al.’s 
groundbreaking proposal of a novel gear wear prediction scheme, designed for forecasting the 
remaining service life of gear transmission systems, serves as a strong research foundation for 
advancing detection methods in the field of engineering machinery [13]. Simultaneously, Ma et al. 
pioneered the development of a digital twin model for a bearing test bench, leveraging 
multidisciplinary simulation. They adeptly identified closely spaced modal parameters through the 
application of a modal decomposition algorithm, enabling comprehensive bearing fault analysis 
across diverse domains [14]. Through the preceding research and analysis, it can be inferred that, 
among the currently available methods, the power spectral density feature extraction method is 
commonly employed for capturing abnormal vibration characteristics in electrical transmission 
engineering machinery. Nonetheless, owing to the non-Gaussian nature of power spectral density, its 
effectiveness in tracking abnormal vibrations in electrical transmission machinery under varying 
temperatures is limited. In this paper, an automatic detection method for the abnormal vibration of 
engineering electrical transmission construction machinery is proposed. Furthermore, the engineering 
inspection method devised in this study holds the potential for broader applications. It can be utilized 
for the selection of highly sensitive wireless power transfer (WPT) bands to determine entropy 
measures for identifying faulty components in axial piston pumps. Additionally, it can enhance 
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laboratory transfer learning techniques for detecting defects in hydraulic machinery and facilitate the 
development of an innovative convolutional neural network (CNN) tailored for diagnosing bearing 
defects in rotating machinery. 

2. Automatic detection of abnormal mechanical vibration 

2.1. Identification of abnormal mechanical vibration data 

In the process of abnormal vibration of engineering electrical transmission construction 
machinery and equipment, the famous bathtub curve law is basically followed and the whole process 
includes a running-in period, a normal probation period and a wear and tear period. Through the 
necessary measurement and fault diagnosis of mechanical equipment, we can find the stage of the 
equipment at a certain point in time to avoid the equipment entering the loss fault in advance [15]. 
Mechanical abnormal vibration diagnosis technology for mechanical equipment refers to the use of 
detection devices to detect the state information of mechanical equipment in operation or under 
relatively static conditions under a certain working environment, judge whether the mechanical 
equipment is in a normal operation state by analyzing the operation state information of mechanical 
equipment, and qualitatively and quantitatively judge the real-time operation state of mechanical 
equipment and its parts in combination with the fault mechanism and historical operation state of the 
diagnostic object [16]. According to the corresponding fault characteristics, the possible faults and 
fault locations of mechanical equipment are identified and the operation trend and remaining life of 
relevant faults are predicted to determine targeted equipment management, maintenance and repair 
countermeasures. The purpose of fault diagnosis is to find faults in time and minimize losses. Based 
on this, the steps of the abnormal vibration diagnosis of mechanical equipment are optimized, as 
shown in Figure 1 below: 

 

Figure 1. Basic process diagram of abnormal vibration diagnosis. 
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When a mechanical fault occurs, the intrinsic mode function (IMF) component obtained from 
the decomposition of the fault signal must be consistent with the normal vibration signal ( )A f , 
whose IMF components are different, that is, the vibration characteristics contain df  atypism. In 

order to quantify the characteristics of each IMF vibration signal and form a mechanical fault 
criterion, this paper uses the power spectral density function to calculate the power of the IMF signal 
component decomposed by empirical mode decomposition (EMD) P  feature extraction [17,18]. 
Taking intrinsic mode function 1 (imf1) as an example, the maximum amplitude of the imf1 
component power spectrum is taken according to the experimental data X , Calculate the integral 

sum of all IMF power spectra 
1

n

i
i

X

 . The ratio of this value to the power spectral density integral of 

IMF in this interval is taken as the characteristic value, which is defined as the local maximum power 
characteristic, that is: 
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where, fm  is the frequency corresponding to the maximum amplitude of the power spectrum, and if 
( )R x  is the power spectral density function. In the modeling process of mechanical fault diagnosis, 

we must first extract the features that can describe the fault category from the original signal [19]. In 
this paper, local mean decomposition (LMD) is used to extract the mechanical fault characteristics of 
the original signal v . Set the signal collected by the sensor as ( )s a , and then the steps of 
mechanical fault feature extraction are as follows: estimation ( )s a  is all local extreme points, 

including local mean function  is t and local envelope function  ia t , and separates out ( )s a  

from  is t  thus: 

   ( ) / ( )[( ) ]i iR x G ah t v s at s t                     
(2) 

Use  is t  divide  ia t  realize demodulation so that: 

   /i iK s t a t
                                     

(3) 

In an ideal environment, K  is a pure frequency modulation (FM) signal. However, in 
practice, K  is difficult to meet this condition, so this condition is met through continuous 
iteration: 1 1K   ; get iteration function    n 1ia t  Satisfy the equation:    n 1 1iKa t   . All local 

envelope functions are multiplied to obtain the characteristic signal, namely: 

   1 1 2 n 1
1

( ) ( ) ( ) ( ) 1
n

q n i
q

a t a t a t a t Ka t


                   (4) 

Separate the characteristic data  is t to generate a new signal: 

  1( ) ( ) ( )i qt h ts tKt a                               
(5) 

Let ( )t as raw data, repeat the above process until i (t)  is a monotone function. Then, 

( )X t can be expressed as n  sum of PF component and  ku t  to obtain: 

 1( ) ( ) kX t t nPF u t                             
(6) 
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Find the extreme point ( ja , jb ). Then, calculate the mean value between the two extreme 

points, and the local mean function of segment I is: 

  / 2 ( )j j jm a b i X t                              
(7) 

Based on the above algorithm, the vibration signal is collected and the specific steps are shown 
in Figure 2. The acquisition device includes GIS equipment, acceleration sensor, charge amplifier, 
data acquisition instrument and computer. 

 

Figure 2. Vibration signal acquisition system. 

 

Figure 3. EMD vibration identification processing flow. 
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The measured mechanical vibration is converted into electrical signals by the piezoelectric 
acceleration sensor installed on the construction mechanical equipment driven by engineering 
electrical appliances [20]. The data acquisition instrument is used for data acquisition, and integrates 
a voltage amplifier, charge amplifier, integral circuit, differential circuit and filter circuit. The 
selected amplifier and filter circuit can be set through relevant software, signal analysis, display, and 
recording [21]. Based on this, the EMD vibration identification processing flow is optimized, as 
shown in Figure 3. 

As shown Figure 4, the vibration sensor collects the external vibration acceleration signal of the 
equipment and transmits it to the computer for data storage, analysis and processing through the data 
acquisition function of the data acquisition instrument [22]. After any signal completes the EMD 
process, many IMF components obtained only contain one signal feature. This process not only 
removes the useless components of the signal (residual function) and realizes signal denoising but 
also reconstructs the residual signal, which is convenient for the next step of fault diagnosis and 
analysis [23]. Sample function No T  and the resulting function, that is: 

T

2 2
( )

0 ,
2 2

j

j j

T T
T m

x t
T T

m m
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                          (8) 

 

Figure 4. The sensors used in this study. 

Abnormal vibration has obvious pulse characteristics. Within a certain sampling time, if the 
frequency of abnormal vibration is less, the abnormal sound heard is intermittent and the abnormal 
vibration frequency is higher, then the abnormal sound heard is continuous [24]. According to the 
different sound qualities, they can be divided into buzzing, rumbling, communication, chirping, 
popping, clicking, screeching, roaring echo, etc. If the vibration signal of engineering electric drive 
construction machinery W  is the root mean square value, then: 

T
1

1
( )RMS

ij

j

x W Wx t
m 

                               (9) 

This value is the average value of time and is not sensitive to the abnormal vibration pulse 
response of engineering electrical transmission construction machinery. The effective value can only 
show the overall vibration of the tested engineering electric drive construction machinery but cannot 
effectively distinguish whether there is an abnormal sound in the engineering electric drive 
construction machinery. 
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The peak value is very effective for the abnormal vibration pulse caused by various reasons in 
of the detected engineering electric drive construction machinery. However, due to the different size 
and structure of the engineering electric drive construction machinery, the size of the peak value is 
also different, so the maximum peak value alone cannot effectively evaluate the abnormal sound of 
the engineering electric drive construction machinery [25]. To distinguish the abnormal sound of 
engineering electric drive construction machinery, it is necessary to compare the maximum peak 
value of the tested engineering electric drive construction machinery with the effective value, which 
requires the use of a peak factor to identify whether there is an abnormal sound. 

2.2. Optimization of abnormal diagnosis steps of mechanical abnormal vibration 

In the process of mechanical fault diagnosis, the working state of mechanical components 
should be collected first. Currently, the working state information of mechanical components cannot 
be accurately and comprehensively collected by using a single sensor. Therefore, multiple sensors are 
used to collect the working state information of mechanical components at the same time and the 
mechanical fault information features are extracted from the signals. Then, the more important 
mechanical fault information features are selected by using principal component analysis [26]. 
Finally, support vector machines are used to learn the feature vector of mechanical fault information 
and establish a classifier for mechanical fault diagnosis. Therefore, the principle of mechanical fault 
diagnosis based on sensor signal fusion is shown in Figure 5. 

 

Figure 5. Mechanical fault diagnosis principle of sensor signal fusion. 

Based on the dynamic model of engineering electric drive construction machinery constructed 
above, the vibration analysis model of engineering electric drive construction machinery is 
constructed and the energy fuzzy rule equation of engineering electric drive construction machinery 
is constructed as follows: 
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Calculate the response amplitude of the engineering electric drive construction mechanical force 
generated by contacting machinery 0  and time lag value h  to effectively compensate the 
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measurement error  . At present, transverse and torsional positioning and detection of vibration 
characteristics are carried out. Based on the above system structure analysis and vibration mechanics 
model construction, the abnormal vibration spectrum characteristics of engineering electrical 
transmission construction machinery are extracted [27]. At present, the power spectral density feature 
extraction method is used to extract the characteristics of abnormal vibration in engineering electrical 
transmission construction machinery. Because the power spectral density feature is non-Gaussian, the 
tracking performance of abnormal vibrations of engineering electrical transmission construction 
machinery under alternating temperatures is not good. In order to overcome the disadvantages of 
traditional methods, a feature extraction algorithm for the abnormal vibration spectrum of 
engineering electrical transmission construction machinery is proposed [28]. First, the vibration 
signal acquisition is carried out, and the abnormal vibration signal acquisition and generation model 
design of engineering electrical transmission construction machinery are analyzed. Suppose T 
represents the vibration source, S1, S2, S3 and S4 represent four vibration signal sensors respectively 
and the signal acquisition structure is shown in Figure 6: 

 

Figure 6. Layout of abnormal vibration signal sensor of engineering electric drive 
construction machinery. 

According to the analysis of the basic structure, structural characteristics, and working principle 
of engineering electric drive construction machinery, it is found that the mechanical seal structure is 
complex and there are many parts [29]. However, as typical rotating equipment, the reliability of 
engineering electric drive construction machinery mainly depends on whether the rotor rotates 
normally. Therefore, most of the faults in engineering electric drive construction machinery are 
related to the rotor. No matter which kind of vibration fault is present, it will be reflected in the most 
sensitive part of engineering electric drive construction machinery, that is, the rotor. In addition to 
high fault-rate of the rotor itself, engineering electric drive construction machinery and mechanical 
seals that closely cooperate with the rotor are also the high fault prone parts of engineering electric 
drive construction machinery [30]. In order to have a more in-depth and comprehensive 
understanding of various possible failure forms and their causes in oil transfer pumps, this paper 
summarizes the common failure forms by consulting the literature. See Table 1 for the main fault 
forms of the electric drive construction machinery of the project. 
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Table 1. Main failure modes of mechanical equipment. 

Parts Rotor Rolling bearing Sliding bearing Impeller 

Main fault 
types 

Out-off-balance 
Fatigue 
spalling 

Oil film oscillation Local damage 

Not right Damage 
Friction induced 
surge 

Mechanical looseness

Looseness Rust Air gap excitation Axial sliding 

Eccentric Crack —— Out-off-balance 

Bend Gluing —— Cavitation 

Transverse axis crack Damaged cage —— —— 

Friction damage —— —— —— 

The data acquisition system is composed of sensors for obtaining vibration signals and 
amplifiers or converters for processing the output electrical signals. The function of a vibration test 
sensor is to transform the measured vibration physical quantity into a signal in the form of an electric 
quantity or electrical parameters [31]. The electrical parameters of the signal output by the sensor are 
output as an analog signal. 

Table 2. performance parameters of vibration sensor. 

model 
application 
environment 

Sensitivity 
(V/ms-2) 

frequency 
range (Hz) 

Linearity 
(m/s2) 

Weight 
(g) 

Install 
resonance point 
(Hz) 

YD35 
General measurement 
in harsh environment 

0.006 0.5–10,000 2000 15 35k 

YD38 
General measurement 
in harsh environment 

5 0.3–10,000 16,000 15 40k 

The data acquisition module is to sort out the signals collected by the data acquisition card. It is 
the combination of the whole program end, the software system and hardware system and plays an 
important role in the whole system. The modeling of LabVIEW makes it extremely convenient data 
acquisition. The data acquisition module converts the collected vibration signals into digital signals 
and then integrates the digital signals into the computer, which can be transferred to other modules of 
the software system as the original data. The data analysis module constitutes the core part of the live 
detection system. This module applies a large number of algorithms and some digital signal 
processing modules to analyze the transmitted raw data to complete the implementation of the 
analysis and diagnosis algorithms. The most important part of designing the whole software system 
is the design of the data analysis module and algorithm programming. Whether the function of the 
software system can be realized correctly depends on the feasibility of the application algorithm. The 
algorithm and function tools of LabVIEW greatly facilitate the programming requirements. In 
addition, Lab View also has interface operations that can be used for the C language and MATLAB. 
At the same time, it can realize the parallel application of the comprehensive analysis and fault 
diagnosis algorithms proposed above in MATLAB. The data storage module forms many records of 
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the original signal data (received from the data acquisition module) and the analysis and calculation 
results (obtained from the data processing and analysis module) and stores them in the database, 
which is conducive to the management and query of records. LabVIEW has data access technology. 
We can use this technology to create an automatic test system that is convenient for queries at any 
time. The data retrieval module can query the existing data in the database in real time according to 
needs, which is convenient for research work. 

2.3. Realization of automatic detection of abnormal vibration 

The purpose of signal acquisition is to obtain the state and characteristic information of the 
target object, but often the useful signal is mixed with complex noise. The target features cannot be 
obvious or make the target features buried, and the collected signals cannot be directly recognized 
and applied. Therefore, we often process the collected vibration signals through various methods in 
order to obtain the required characteristic signal. The processing can be understood as decomposing a 
complex signal into multiple simple signals. The purpose is to eliminate or weaken the redundant 
components in the original signal, weaken the noise and interference mixed in the signal or convert 
the signal into a form convenient for identification and feature extraction. The whole process is 
shown in Figure 7. 

 

Figure 7. Basic processing process of vibration signal. 

Engineering electric-drive construction machinery will produce vibration in the working 
process, which is composed of normal vibration and abnormal vibration. Affected by the elastic 
characteristics, the vibration generated by qualified engineering electric drive construction 
machinery during operation is normal. If the vibration is affected by the surface condition of the 
engineering electric drive construction machinery, it is abnormal vibration. During operation, the 
internal components of engineering electric drive construction machinery may impact each other to 
produce forced vibration. If the frequency is equal to the natural vibration frequency, the vibration 
will be intensified. The natural frequency is only related to its own nature and has nothing to do 
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with the speed of engineering electrical transmission construction machinery. The natural 
frequency of rolling elements. 

0.424

2b

E
f

r 
                                   (12) 

where r  is the radius of the rolling element, is the material density and E  is the elastic modulus. 
If the surface of rolling engineering electric drive construction machinery is damaged, it will lead to 
the failure of engineering electric drive construction machinery. In general, the characteristic 
frequency of engineering electric drive construction machinery is lower than 1 kHz, which is 
important information reflecting the failure of engineering electric drive construction machinery. 
When diagnosing the fault of engineering electric drive construction machinery, it is necessary to 
separate the low-frequency vibration generated by the fault from the complex high-frequency natural 
vibration, and calculate the fault characteristic frequency of engineering electric drive construction 
machinery with low-frequency vibration to judge the fault location of engineering electric drive 
construction machinery. If the rolling engineering electric drive construction machinery fails during 
operation, it can be classified according to different vibration characteristics, including scratching, 
peeling, pitting and other surface damage and wear faults. Generally, the surface wear of engineering 
electric drive construction machinery, as a gradual failure, takes a long time to go through during 
normal operation. When the surface wear of engineering electric drive construction machinery occurs, 
its vibration property is the same as that of normal engineering electric-drive construction machinery, 
which is an irregular waveform with strong randomness, but compared with normal engineering 
electric drive construction machinery, the vibration amplitude of fault engineering electric drive 
construction machinery is significantly higher. Therefore, it is only necessary to monitor the peak 
value and effective value to diagnose the wear fault of engineering electric drive construction 
machinery. If it exceeds the normal value by a lot, the wear fault of engineering electric drive 
construction machinery will occur. Wear will not directly lead to the damage of engineering electric 
drive construction machinery, and the degree of harm is small. During the vibration detection and 
fault diagnosis of the rolling engineering electric drive construction machinery, the rolling 
engineering electric drive construction machinery is running, and the interference of the engineering 
electric drive construction machinery itself will produce vibration signals. After the vibration signal 
is generated, it needs to be picked up and converted by the sensor first, and the vibration signal is 
converted into a weak voltage signal. Then the signal can be amplified by the amplification circuit to 
diagnose the fault of engineering electrical transmission construction machinery. The amplified 
signal also contains noise and other interference signals from the non-engineering electric drive 
construction machinery itself. The interference signals need to be filtered out through the filter. Only 
the vibration signals of the engineering electric drive construction machinery itself are retained, so 
that the signal can more accurately reflect the operation state of the engineering electric drive 
construction machinery. Then, it will collect the filtered signal through the acquisition card, convert 
the signal into a digital signal, transmit it to the upper computer through the USSB data line and 
process the signal in the upper computer to diagnose the fault of engineering electrical transmission 
construction machinery. 
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Figure 8. Flow of vibration detection and fault diagnosis system. 

In order to further understand the equipment status, frequency domain information is often 
required. Because the amount of information provided by time-domain analysis is very limited, the 
time-domain eigenvalues can only roughly judge whether the equipment has a fault or the severity of 
the fault, but cannot judge the equipment or its location. The most common method of fault location 
is to analyze the signal in the frequency domain. Through the Fourier transform, the relationship 
between time domain and frequency domain is established, and the time domain signal is changed 
into a frequency domain signal. Then, through the analysis of each frequency domain signal, the 
characteristic frequencies of equipment parts are compared, so as to find the fault source. Amplitude 
spectrum: Fourier transform the sampled time-domain signal directly, and the obtained model is the 
amplitude spectrum of the signal. The mathematical expression is: 

2( ) ( ) 1n rX f X t H e  


                           (13) 

Power spectrum refers to the signal energy in the frequency domain n  or power v . 
Self-power spectrum is often used to describe the distribution 'v . Although it provides the same 
amount of information as the amplitude spectrum, it is clearer than the amplitude spectrum. There are 
two calculation methods, which are essentially the same. The self-power spectrum expression of the 
amplitude spectrum based on discrete sampling is 

21
( ) ( ) ( ')n nS f X

n
vf v                           (14) 

The formula for calculating the power spectrum based on the correlation function is: 

2( ) ( ) ( ) i
x n xS f S f R e d 

 


                        (15) 
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where   represents the effective value of the harmonic frequency time domain signal, xR  is the 

linear distribution of the amplitude of each harmonic of the time domain signal with frequency. 
d is the self-multiplication of harmonic frequency time domain signal amplitude, highlighting the 
main frequency components. The logarithmic spectrum is analysed for response analysis and 
averaging is achieved using frequency components with small amplitude, which can be used to 
observe all frequency components of the signal. Based on the above algorithm, abnormal data can be 
retrieved quickly to improve the accuracy of diagnosis and detection. 

3. Analysis of experiment results 

In order to test the performance of this algorithm in realizing the abnormal vibration spectrum 
feature extraction of engineering electric drive construction machinery and improving the accuracy 
of mechanical condition monitoring, a simulation experiment is carried out. The experiment is 
established on a large engineering electric drive construction machinery platform, and the TED2014 
engineering electric drive construction machinery vibration signal acquisition system developed by 
our laboratory is used to collect the original information of mechanical vibration data. The vibration 
performance of electric drive construction machinery in transmission engineering is tested under five 
working modes of electric drive construction machinery. Set up sensor components inside the 
construction machinery for data collection, as shown in Figure 9.  

 

Figure 9. Schematic diagram of mechanical state detection. 

The signal sampling frequency is 60 kHz, the parameter setting is v = 8, w = 2, the number of 
subcarriers of abnormal vibration signal to a single engineering electric drive construction machinery 
is 32 and 256, the delay is 5 sampling points, the signal-to-noise ratio is -10 dB and the number of 
weights selected is m = 20, step = 0.005. According to the above simulation environment and 
parameter settings, the vibration signal collection of the original engineering electric drive 
construction machinery is obtained. The abnormal vibration problems of the engineering electric 
drive construction machinery can be specifically divided into rotating body failure, inner ring failure 
and outer ring failure. Therefore, in this study, the setting state of the engineering electric drive 
construction machinery is divided into normal state, rotating body failure state, inner ring failure 
state, and outer ring failure state, and then wavelet packet analysis is used. The vibration signals of 
engineering electric drive construction machinery in different setting states are decomposed and 
reconstructed, and the energy entropy characteristics of the signals processed by wavelet packets are 
extracted. Finally, the frequency band energy entropy and relative energy entropy data groups of 
engineering electric drive construction machinery vibration signals in different setting states are 
obtained as follows: 
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Table 3. Energy entropy data of vibration signal frequency band of engineering electric 
drive construction machinery. 

Bearing setting 
state 

Band energy entropy after wavelet packet decomposition and reconstruction
E30 E31 E32 E33 E34 E35 E36 E37

Normal state of 
bearing 

9.8158 6.7278 1.5026 4.2036 0.0879 0.3075 0.3869 0.8563 

Rotating body 
failure state 

29.5359 14.5315 46.7812 21.4458 2.1178 2.6212 35.3036 15.2661

Inner ring failure 
status 

6.3847 6.0751 14.9889 3.9798 0.8262 1.7497 17.0583 2.6867 

Outer ring failure 
status 

60.9998 39.4902 41.7067 16.7605 1.4975 1.74325 31.3845 6.7973 

Take two data points as training samples for the rotor misalignment state and the rotor 
imbalance state, respectively. The eigenvector is shown in the table. Train the samples, set the global 
error to 0.07 and set the maximum training time as 1000. After training, the test results of the training 
samples are shown in Tables 4 and 5: 

Table 4. Identification results of rotor misalignment. 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Output 
vector 

0.062312 -0.00953 -0.02926 0.022017 0.044389 0.011575 -0.01336
0.941718 1.005568 1.097797 0.857989 0.655599 0.86522 0.948149
0.000469 0.004695 -0.0589 0.100118 0.302843 0.123948 0.071576

Table 5. Identification results of rotor unbalance state. 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Output 
vector 

-0.0445 -0.0137 -0.02952 0.005159 0.036477 -0.02095 0.051465
0.051817 0.090086 -0.09217 0.182567 0.287448 0.198947 0.055799
0.981582 0.916898 1.106422 0.798733 0.678728 0.830456 0.908983

 

Figure 10. Characteristics of abnormal vibration of electric drive construction machinery. 

Empirical mode decomposition and the method in this paper are used to decompose the 
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abnormal vibration of engineering electric drive construction machinery into multiple components 
and extract the spectral characteristics of the abnormal vibration of engineering electric drive 
construction machinery. The spectral feature extraction results are shown in Figure 10. 

It can be seen from the figure that the method in this paper can effectively reflect the variation 
characteristics of abnormal vibration harmonic components of engineering electric drive 
construction machinery, carry out pre-distortion chemotactic correlation analysis of vibration 
signals, optimize the structure and dynamic parameters of the transmission system on this basis, 
carry out abnormal correction, obtain the correction results, carry out pre-distortion chemotactic 
correlation analysis of vibration signals and optimize the structure and dynamic parameters of the 
transmission system on this basis. The abnormal correction of the gear is carried out and the 
correction results are shown in Figure 10. 
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Figure 11. Correction results of abnormal meshing of engineering electric drive 
construction machinery. 

Figure 11 shows the correction results of abnormal meshing of engineering electric drive 
construction machinery. It can be seen from the figure that this method is used to correct the 
abnormal meshing of engineering electric drive construction machinery. Through this method, the 
influence of alternating temperature and clearance on engineering electric drive construction 
machinery can be effectively avoided. With the increase in eccentricity, the lateral and axial 
vibrations are corrected, which improves the stability and reliability of the operation of engineering 
electric drive construction machinery. In order to test the abnormal diagnosis effect of mechanical 
vibration, a machine is used as the research object and the MATLAB 2020 toolbox is used for 
programming and simulation experiments. The equipment and testing machines used in the 
experiment are shown in Figure 12(a),(b). Mechanical faults include initial imbalance, oil film 
oscillation, coupling fault, misalignment, eccentricity, etc. The number of training samples and test 
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samples for generating a mechanical working state is shown in Table 6. Support vector machine 
(SVM) without principal component analysis is selected to test the superiority of this method in 
mechanical fault diagnosis. 

 

Figure 12. Equipment and testing machines used in the experiment. 

Table 6. Sample distribution of mechanical working state. 

State Code Number of training samples Number of test samples
Initial unbalance 1 12 7 
Oil film oscillation 2 12 7 
Coupling failure 3 16 7 
Not right 4 12 7 
eccentric 5 16 7 
normal 6 20 7 

 

Figure 13. Mechanical fault results of SVM. 
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The vibration detection effect of the traditional SVM detection method and this method in a 
noise interference environment is compared and recorded, as shown in Figures 13 and 14. 

 

Figure 14. Mechanical failure results of this method. 

Based on the above comparison, the detection results are true. Compared with the traditional 
SVM detection method, this method fits the standard curve better, which shows that this method can 
diagnose mechanical vibration more accurately. The overall running time and diagnostic accuracy of 
the two methods are compared. And the results are shown in Table 7: 

Table 7. Comparison of fault diagnosis results of different methods. 

Method Fault diagnosis time /s Correct rate of fault identification /%
SVM 5.25 85.25
Method in this paper 1.25 96.29

According to the above results, this method can better detect and control the vibration wave 
frequency and the wave fluctuation is relatively small under the influence of the noise environment, 
which proves that this method can better identify, diagnose and warn about vibration and noise 
quickly. However, there are still some deficiencies in this method, which cannot completely 
eliminate the vibration and noise, and it still needs to be improved. 

4. Conclusions 

The failure of abnormal mechanical vibration is not inevitable but cannot be fundamentally 
eliminated. For relevant staff, we should adhere to the concept of prevention first and do a good job 
of prevention. It is particularly important for the maintenance of steam turbine units to be loyal to the 
mechanical equipment and the responsible personnel of the unit. The inspection records must be kept 
completely and properly. If the parts at the fault point of mechanical equipment have just been 
repaired or replaced, it is necessary to confirm the fault point. For abnormal vibration of mechanical 
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equipment, first find out the cause of the fault. Then, “Suit the remedy to the case” is the most 
important. Utilizing the identification results, we have developed a dynamic characteristic model for 
engineering electrically driven construction machinery, aimed at streamlining the diagnostic 
procedures for detecting abnormal vibrations in such machinery. Subsequently, we conducted 
specific experiments to validate the accuracy of this method in detecting abnormal vibrations in 
construction machinery, ensuring the safety and stability of engineering electric transmission 
construction machinery during operation. Notably, our research in this article highlights the absence 
of comparative analysis concerning alternative detection methods. Considering that the primary 
objective of this study is to introduce a novel approach to engineering diagnostics, it becomes 
imperative to undertake more comprehensive analysis and research on various detection methods in 
future investigations. 
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