In this paper, we find solutions and investigate the superstability bounded by a function (Gǎvruta sense) for the $ p $-power-radical functional equation related to sine function equation:
$ \begin{equation*} f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} -f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = f(x)f(y) \end{equation*} $
from an approximation of the $ p $-power-radical functional equation:
$ \begin{align*} f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} -f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = g(x)h(y), \end{align*} $
where $ p $ is a positive odd integer, and $ f, g $ and $ h $ are complex valued functions on $ \mathbb{R} $. Furthermore, the obtained results are extended to Banach algebras.
Citation: Hye Jeang Hwang, Gwang Hui Kim. Superstability of the $ p $-power-radical functional equation related to sine function equation[J]. Electronic Research Archive, 2023, 31(10): 6347-6362. doi: 10.3934/era.2023321
In this paper, we find solutions and investigate the superstability bounded by a function (Gǎvruta sense) for the $ p $-power-radical functional equation related to sine function equation:
$ \begin{equation*} f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} -f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = f(x)f(y) \end{equation*} $
from an approximation of the $ p $-power-radical functional equation:
$ \begin{align*} f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} -f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = g(x)h(y), \end{align*} $
where $ p $ is a positive odd integer, and $ f, g $ and $ h $ are complex valued functions on $ \mathbb{R} $. Furthermore, the obtained results are extended to Banach algebras.
[1] | S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964. |
[2] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[3] | J. A. Baker, J. Lawrence, F. Zorzitto, The stability of the equation $f(x+y) = f(x)f(y)$, Proc. Am. Math. Soc., 74 (1979), 242–246. https://doi.org/10.1090/S0002-9939-1979-0524294-6 doi: 10.1090/S0002-9939-1979-0524294-6 |
[4] | J. A. Baker, The stability of the cosine equation, Proc. Am. Math. Soc., 80 (1980), 411–416. https://doi.org/10.1090/S0002-9939-1980-0580995-3 doi: 10.1090/S0002-9939-1980-0580995-3 |
[5] | G. H. Kim, The stability of the d'Alembert and Jensen type functional equations, J. Math. Anal. Appl., 325 (2007), 237–248. https://doi.org/10.1016/j.jmaa.2006.01.062 doi: 10.1016/j.jmaa.2006.01.062 |
[6] | G. H. Kim, On the stability of mixed trigonometric functional equations, Banach J. Math. Anal., 1 (2007), 227–236. |
[7] | G. H. Kim, On the stability of trigonometric functional equations, Adv. Differ. Equations, 2007 (2008), 90405. |
[8] | R. Badora, On the stability of cosine functional equation, Rocz. Nauk. - Dydaktyczny WSP Krakowie, (1998), 1–14. |
[9] | R. Badora, R. Ger, On some trigonometric functional inequalities, in Functional Equations Advances in Mathematics (eds. Z. Daróczy, Z. Páles), Springer, Boston, USA, (2002), 3–15. |
[10] | P. Kannappan, G. H. Kim, On the stability of the generalized cosine functional equations, Annates Acad. Paedagogicae Cracov., 2001 (2001), 49–58. |
[11] | G. H. Kim, S. S. Dragomir, On the the stability of generalized d'Alembert and Jensen functional equation, Int. J. Math. Math. Sci., 2006 (2006), 043185. https://doi.org/10.1155/IJMMS/2006/43185 doi: 10.1155/IJMMS/2006/43185 |
[12] | B. Bouikhalene, E. Elquorachi, J. M. Rassias, The superstability of d'Alembert's functional equation on the Heisenberg group, Appl. Math. Lett., 23 (2010), 105–109. https://doi.org/10.1016/j.aml.2009.08.013 doi: 10.1016/j.aml.2009.08.013 |
[13] | P. de Place Friis, d'Alembert's and Wilson's equations on Lie groups, Aequ. Math., 67 (2004), 12–25. https://doi.org/10.1007/s00010-002-2665-3 doi: 10.1007/s00010-002-2665-3 |
[14] | E. Elqorachi, M. Akkouchi, On Hyers-Ulam stability of the generalized Cauchy and Wilson equations, Publ. Math. Debrecen, 66 (2005), 283–301. https://doi.org/10.5486/PMD.2005.2956 doi: 10.5486/PMD.2005.2956 |
[15] | P. Sinopoulos, Generalized sine equations, $III$, Aeq. Math., 51 (1996), 311–327. https://doi.org/10.1007/BF01833286 |
[16] | P. W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc., 88 (1983), 631–634. https://doi.org/10.1090/S0002-9939-1983-0702289-8 doi: 10.1090/S0002-9939-1983-0702289-8 |
[17] | G. H. Kim, A stability of the generalized sine functional equations, J. Math. Anal. Appl., 331 (2007), 886–894. https://doi.org/10.1016/j.jmaa.2006.09.037 doi: 10.1016/j.jmaa.2006.09.037 |
[18] | G. H. Kim, On the stability of the generalized sine functional equations, Acta Math. Sin. Engl. Ser., 25 (2009), 29–38. |
[19] | M. E. Gordji, M. Parviz, On the Hyers-Ulam-Rassias stability of the functional equation $f(\sqrt{x^2 + y^2}) = f(x) + f(y)$, Nonlinear Funct. Anal. Appl., 14 (2009), 413–420. |
[20] | M. Almahalebi, R. El Ghali, S. Kabbaj, C. Park, Superstability of $p$-radical functional equations related to Wilson-Kannappan-Kim functional equations, Results Math., 76 (2021), 1–14. https://doi.org/10.1007/s00025-021-01409-2 doi: 10.1007/s00025-021-01409-2 |
[21] | G. H. Kim, Superstability of the $p$-radical functional equations related to Wilson's and Kim's equation, Int. J. Nonlinear Anal. Appl., 12 (2021), 571–582. https://doi.org/10.22075/IJNAA.2021.23376.2526 doi: 10.22075/IJNAA.2021.23376.2526 |
[22] | G. H. Kim, On the superstability of the $p$-power-radical sine functional equation, Nonlinear Funct. Anal. Appl., 28 (2023), 801–812. https://doi.org/10.22771/nfaa.2023.28.03.14 doi: 10.22771/nfaa.2023.28.03.14 |