

ERA, 31(10): 6347–6362. DOI: 10.3934/era.2023321 Received: 03 June 2023 Revised: 09 September 2023 Accepted: 17 September 2023 Published: 25 September 2023

http://www.aimspress.com/journal/era

Research article

Superstability of the *p*-power-radical functional equation related to sine function equation

Hye Jeang Hwang¹ and Gwang Hui Kim^{2,*}

- ¹ Department of Mathematical Education, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Korea
- ² Department of Mathematics, Kangnam University, Giheung-gu, Yongin-si, Gyeonggi-do 16979, Korea
- * Correspondence: Email: ghkim@kangnam.ac.kr.

Abstract: In this paper, we find solutions and investigate the superstability bounded by a function (Găvruta sense) for the *p*-power-radical functional equation related to sine function equation:

$$f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 = f(x)f(y)$$

from an approximation of the *p*-power-radical functional equation:

$$f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = g(x)h(y),$$

where *p* is a positive odd integer, and *f*, *g* and *h* are complex valued functions on \mathbb{R} . Furthermore, the obtained results are extended to Banach algebras.

Keywords: stability; superstability; sine functional equation; *p*-radical functional equation; *p*-power-radical functional equation

1. Introduction

The stability problem for the functional equation was conjectured by Ulam [1] in 1940. In the following year, Hyers [2] presented a partial answer for the case of the additive mapping in this problem: If f satisfies $|f(x + y) - f(x) - f(y)| \le \varepsilon$ for some fixed $\varepsilon > 0$, then there is an additive mapping g satisfying g(x + y) = g(x) + g(y) and $|f(x) - g(x)| \le \varepsilon$, which is called the

Hyers-Ulam stability.

Baker et al. [3] announced, in 1979, the new concept for the *superstability* as follows: If f satisfies $|f(x + y) - f(x)f(y)| \le \varepsilon$ for some fixed $\varepsilon > 0$, then either f is bounded or f satisfies the exponential functional equation f(x + y) = f(x)f(y).

Baker [4] showed the superstability of the cosine (also called d'Alembert) functional equation

$$f(x + y) + f(x - y) = 2f(x)f(y).$$
 (C)

The cosine (d'Alembert) functional equation (C) was generalized to the following:

$$f(x+y) + f(x-y) = 2f(x)g(y),$$
 (W)

$$f(x + y) + f(x - y) = 2g(x)f(y),$$
 (K_{gf})

$$f(x+y) - f(x-y) = 2f(x)f(y),$$
 (T)

$$f(x + y) - f(x - y) = 2g(x)f(y),$$
 (T_{gf})

$$f(x + y) - f(x - y) = 2g(x)g(y),$$
 (T_{gg})

$$f(x+y) - f(x-y) = 2g(x)h(y),$$
 (T_{gh})

in which (W) is called the Wilson equation, (K_{gf}) is called the Kim's equation and remaining equations are raised in Kim's papers [5–7].

The superstability of the trigonometric (cosine (C), Wilson (W), Kim ((K_{gf}) , (T), (T_{gf}) and (T_{gh})) functional equations were founded in Badora [8], Badora and Ger [9], Kannappan and Kim [10], Kim and Dragomir [11], Kim [5–7] and in papers [12–15].

In 1983, Cholewa [16] proved the superstability of the sine functional equation

$$f(\frac{x+y}{2})^2 - f(\frac{x-y}{2})^2 = f(x)f(y)$$
(S)

under the stability inequality bounded by constant. This was improved to the condition bounded by a function in Badora and Ger [9]. Their results were also further improved later by Kim [17, 18], who obtained the superstability under the assumption that the stability inequality is bounded by a constant or a function for the generalized sine functional equations:

$$f(\frac{x+y}{2})^2 - f(\frac{x-y}{2})^2 = f(x)g(y), \qquad (S_{fg})$$

$$f(\frac{x+y}{2})^2 - f(\frac{x-y}{2})^2 = g(x)f(y), \qquad (S_{gf})$$

$$f(\frac{x+y}{2})^2 - f(\frac{x-y}{2})^2 = g(x)g(y), \qquad (S_{gg})$$

$$f(\frac{x+y}{2})^2 - f(\frac{x-y}{2})^2 = g(x)h(y).$$
 (S_{gh})

In 2009, Eshaghi Gordji and Parviz [19] introduced the quadratic-radical functional equation

$$f(\sqrt{x^2 + y^2}) = f(x) + f(y).$$
 (R)

related to the additive mapping and proved its stability.

Electronic Research Archive

Recently, Almahalebi et al. [20], Kim [21, 22] obtained the superstability of *p*-radical functional equations in relation with Wilson (*W*), Kim ((K_{gf}), (T_{gf}) and (T_{gh})). In the concept of the *p*-radical, the sine functional equation (*S*) and (S)-type's equations (S_{fg}), (S_{gf}), (S_{gg}), (S_{gh}) are expressed as follows:

$$f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = f(x)f(y), \qquad (S^{r})$$

$$f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = f(x)g(y), \qquad (S_{fg}^{r})$$

$$f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = g(x)f(y), \qquad (S_{gf}^{r})$$

$$f\left(\sqrt[p]{\frac{x^2+y^2}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^2-y^2}{2}}\right)^2 = g(x)g(y), \qquad (S_{gg}^r)$$

$$f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = g(x)h(y). \tag{S_{gh}^{r}}$$

In the above, letting $f(x) = F(x^p)$, then F satisfies (S)-type equations. Hence, in this paper, they will be reasonably called the p-power-radical equation. Since the function $f(x) = \sin x^p$ is the solution of the equation (S^r), it will be called the p-power-radical sine functional equation.

Our aim of this paper is to find solutions and to investigate the superstability bounded by a function (Găvruta sense) for the *p*-power-radical sine functional equation (S^r) from an approximation of the *p*-power-radical functional equation (S_{gh}^r) .

As a corollary, we obtain the superstability bounded by a constant and a function for the *p*-power-radical sine functional equation (S^r) from an approximation of the *p*-power-radical functional equations (S^r) , (S_{gf}^r) , (S_{gg}^r) , (S_{gg}^r) . Moreover, the obtained results are extended to Banach algebras.

In this paper, let \mathbb{R} be the field of real numbers, $\mathbb{R}_+ = [0, \infty)$ and \mathbb{C} be the field of complex numbers. We assume that f, g, h are nonzero functions, ε is a nonnegative real number, $\varphi : \mathbb{R} \to \mathbb{R}_+$ is a given nonnegative function and p is a positive odd integer.

2. Solutions of the functional equations

Let's recall the trigonometric formula, the *p*-power-radical functional equation's forms for the functional equations (cosine (d'Alembert) (C), Wilson (W), Kim (T_{gf}) , (T_{gg}) and (T_{gh}) are the following:

$$f\left(\sqrt[p]{x^p + y^p}\right) + f\left(\sqrt[p]{x^p - y^p}\right) = 2f(x)f(y),\tag{C^r}$$

$$f\left(\sqrt[p]{x^p + y^p}\right) + f\left(\sqrt[p]{x^p - y^p}\right) = 2f(x)g(y),\tag{W}^r$$

$$f\left(\sqrt[p]{x^p + y^p}\right) - f\left(\sqrt[p]{x^p - y^p}\right) = 2g(x)f(y), \qquad (T_{gf}^r)$$

$$f\left(\sqrt[p]{x^p + y^p}\right) - f\left(\sqrt[p]{x^p - y^p}\right) = 2g(x)g(y), \qquad (T_{gg}^r)$$

Electronic Research Archive

6350

$$f\left(\sqrt[p]{x^p + y^p}\right) - f\left(\sqrt[p]{x^p - y^p}\right) = 2g(x)h(y). \tag{T_{gh}^r}$$

We can confirm that each equation has a solution as follows: (C^r) : $f(x) = \cos(x^p)$, (W^r) : $f(x) = \sin(x^p)$, $g(x) = \cos(x^p)$, (T_{gf}^r) : $f(x) = \sin(x^p)$, $g(x) = \cos(x^p)$, (T_{gg}^r) : $f(x) = \cos(x^p)$, $g(x) = i\sin(x^p)$, (T_{gh}^r) : $f(x) = \cos(x^p)$, $g(x) = \sin(x^p)$, $h(x) = -\sin(x^p)$.

In addition, the solution of each equation can also be found in perspective of the hyperbolic function, exponential function and *p*-power function, simultaneously.

Letting p=1 in the above paragraph, we know that each original equation ((C), (W), (T_{gf}) , (T_{gg}) , (T_{gh})) has the corresponding solution of the same form, respectively. They also are represented by the hyperbolic function, exponential function and *p*-power function, simultaneously.

Now let's consider the functional equations generated by the product of the above equations, then we obtain the target equations: *p*-power-radical functional equation (S^r) and (S^r) -type's equations $(S_{fg}^r), (S_{gg}^r), (S_{gg}^r)$ and (S_{gh}^r) .

1) (*S*^{*r*}) has a solution as the *p*-power function $f(x) = x^p$:

$$f\left(\sqrt[p]{\frac{x+y}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x-y}{2}}\right)^2 = \left(\frac{x+y}{2}\right)^2 - \left(\frac{x-y}{2}\right)^2 = xy = f(\sqrt[p]{x})f(\sqrt[p]{y}).$$

2) When (S^r) has a solution as the sine function, it also has simultaneously as an exponential solution as follows:

$$\begin{split} &\left(\frac{1}{2i}e^{i\left(\frac{p\sqrt{x^{p}+y^{p}}}{2}\right)^{p}} - \frac{1}{2i}e^{-i\left(\frac{p\sqrt{x^{p}+y^{p}}}{2}\right)^{p}}\right)^{2} - \left(\frac{1}{2i}e^{i\left(\sqrt{x^{p}-y^{p}}\right)^{p}} - \frac{1}{2i}e^{-i\left(\sqrt{y\sqrt{x^{p}-y^{p}}}\right)^{p}}\right)^{2} \\ &= f\left(\sqrt{y\sqrt{x^{p}+y^{p}}}\right)^{2} - f\left(\sqrt{y\sqrt{x^{p}-y^{p}}}\right)^{2} = \sin\left(\frac{x^{p}+y^{p}}{2}\right)^{2} - \sin\left(\frac{x^{p}-y^{p}}{2}\right)^{2} = \sin(x^{p})\sin(y^{p}) \\ &= f(x)f(y) = \left(\frac{e^{ix^{p}} - e^{-ix^{p}}}{2i}\right) \left(\frac{e^{iy^{p}} - e^{-iy^{p}}}{2i}\right). \end{split}$$

3) When (S^r) has a solution as the hyperbolic sine function, it also has simultaneously as an exponential solution as follows:

$$\left(\frac{1}{2}e^{\left(\sqrt[p]{x^{p}+y^{p}}{2}\right)^{p}} - \frac{1}{2}e^{-\left(\sqrt[p]{x^{p}+y^{p}}{2}\right)^{p}}\right)^{2} - \left(\frac{1}{2}e^{\left(\sqrt[p]{x^{p}-y^{p}}{2}\right)^{p}} - \frac{1}{2}e^{-\left(\sqrt[p]{x^{p}-y^{p}}{2}\right)^{p}}\right)^{2}$$

$$= f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = \sinh\left(\frac{x^{p}+y^{p}}{2}\right)^{2} - \sinh\left(\frac{x^{p}-y^{p}}{2}\right)^{2}$$

$$= \sinh(x^{p})\sinh(y^{p}) = f(x)f(y) = \left(\frac{e^{x^{p}}-e^{-x^{p}}}{2}\right)\left(\frac{e^{y^{p}}-e^{-y^{p}}}{2}\right).$$

Although the mentioned all functional equations may have arisen from sine or cosine, as shown in the previous, they have solutions as the p-power, the hyperbolic and the exponential function, simultaneously. Hence, they can be considered as the p-power-radical, the p-power-radical exponential and the p-power-radical hyperbolic functional equation, simultaneously.

Electronic Research Archive

Letting p = 1 in the above items 1), 2) and 3), then (S^r) arrives (S). Hence, based on the above reasons, the Eq (S) well-known as the sine function equation can also be called as the *p*-power, the exponential and the hyperbolic functional equation, simultaneously.

In the following lemma, we find the forms of solutions of the *p*-power-radical functional equations $(S_{gh}^r), (S_{gg}^r), (S_{fg}^r)$.

Lemma 1. If $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy (S_{gh}^r) , then, as one of the solutions of (S_{gh}^r) , f, g, h have the forms $f(x) = \cos(x^p)$, $g(x) = \sin(x^p)$ and $h(x) = -\sin(x^p)$ for all $x \in \mathbb{R}$.

Proof. For all $x, y \in \mathbb{R}$,

$$\left(\cos\frac{x^{p}+y^{p}}{2}\right)^{2} - \left(\cos\frac{x^{p}-y^{p}}{2}\right)^{2}$$

$$= f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = g(x)h(y)$$

$$= -\sin(x^{p})\sin(y^{p}) = \sin(x^{p})(-\sin(y^{p})).$$

In the next lemma, let's find an exponential solution for (S_{fg}^r) .

Lemma 2. If $f, g : \mathbb{R} \to \mathbb{C}$ satisfy (S_{fg}^r) , then, as the solutions of (S_{fg}^r) , f, g have the following two forms

(*i*) $f(x) = e^{x^p}$, $g(x) = e^{x^p} - e^{-x^p}$ for all $x \in \mathbb{R}$, (*ii*) $f(x) = e^{x^p}$, $g(x) = 2\sinh(x^p)$ for all $x \in \mathbb{R}$.

Proof. For all $x, y \in \mathbb{R}$,

$$\left(e^{\frac{x^{p}+y^{p}}{2}}\right)^{2} - \left(e^{\frac{x^{p}-y^{p}}{2}}\right)^{2} = f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2}}\right)^{2} - f\left(\sqrt[p]{\frac{x^{p}-y^{p}}{2}}\right)^{2} = f(x)g(y) = \begin{cases} (i) \ e^{x^{p}}\left(e^{y^{p}}-e^{-y^{p}}\right) \\ (ii) \ e^{x^{p}}2\sinh(y^{p}). \end{cases}$$

In the next lemma, let's find a hyperbolic and trigonometric solution for (S_{gg}^r) .

Lemma 3. If $f,g : \mathbb{R} \to \mathbb{C}$ satisfy (S_{gg}^r) , then, as the solutions of (S_{gg}^r) , f,g have the following two forms

(*i*) $f(x) = \cosh(x^p), g(x) = \sinh(x^p),$ (*ii*) $f(x) = \cos(x^p), g(x) = i\sin(x^p).$

Proof. For all $x, y \in \mathbb{R}$,

$$(i)\left(\cosh\frac{x^p + y^p}{2}\right)^2 - \left(\cosh\frac{x^p - y^p}{2}\right)^2 = f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 = g(x)g(y) = \sinh x^p \sinh y^p.$$

$$(ii)\left(\cos\frac{x^p + y^p}{2}\right)^2 - \left(\cos\frac{x^p - y^p}{2}\right)^2 = f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 = g(x)g(y) = i\sin(x^p)i\sin(y^p)$$

Electronic Research Archive

3. Superstability of (S^r) from (S^r_{gh})

In Section 3, we study the superstability of the *p*-power-radical sine functional equation (S^r) from an approximation of the *p*-power-radical functional equation (S_{gh}^r) related to (S).

Theorem 1. Assume that $f, g, h : \mathbb{R} \longrightarrow \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)h(y) \right| \le \varphi(y)$$
(3.1)

for all $x, y \in \mathbb{R}$, where p is a positive odd integer.

Then, either g is bounded or h satisfies (S^r) . Moreover, if g satisfies (C^r) , then h and g satisfy p-power-radical equation (T_{gf}^r) : = $h(\sqrt[q]{x^p + y^p}) - h(\sqrt[q]{x^p - y^p}) = 2g(x)h(y)$.

Proof. By putting $x = \sqrt[p]{2}x$ and $y = \sqrt[p]{2}y$ in (3.1), it is written equivalently as

$$\left|f\left(\sqrt[p]{x^p+y^p}\right)^2 - f\left(\sqrt[p]{x^p-y^p}\right)^2 - g(\sqrt[p]{2}x)h(\sqrt[p]{2}y)\right| \le \varphi(\sqrt[p]{2}y), \quad \forall x, y \in \mathbb{R}.$$
(3.2)

Assume that g is unbounded. Then, we can choose a sequence $\{x_n\}$ in \mathbb{R} such that

$$0 \neq |g(\sqrt[p]{2}x_n)| \to \infty, \text{ as } n \to \infty.$$
 (3.3)

Taking $x = x_n$ in (3.2), we get

$$\left|\frac{f\left(\sqrt[p]{x_n^p+y^p}\right)^2-f\left(\sqrt[p]{x_n^p-y^p}\right)^2}{g(\sqrt[p]{2}x_n)}-h(\sqrt[p]{2}y)\right|\leq\frac{\varphi(\sqrt[p]{2}y)}{|g(\sqrt[p]{2}x_n)|},$$

and by (3.3), we get

$$h(\sqrt[p]{2}y) = \lim_{n \to \infty} \frac{f\left(\sqrt[p]{x_n^p + y^p}\right)^2 - f\left(\sqrt[p]{x_n^p - y^p}\right)^2}{g(\sqrt[p]{2}x_n)}.$$
(3.4)

Replacing x by $\sqrt[p]{2x_n^p + x^p}$ and $\sqrt[p]{2x_n^p - x^p}$ in (3.1), we have

$$2\varphi(y) \ge \left| g(\sqrt[p]{2x_n^p + x^p})h(y) - f\left(\sqrt[p]{\frac{2x_n^p + x^p + y^p}{2}}\right)^2 + f\left(\sqrt[p]{\frac{2x_n^p + x^p - y^p}{2}}\right)^2 \right|$$

$$+ \left| g(\sqrt[p]{2x_n^p - x^p})h(y) - f\left(\sqrt[p]{\frac{2x_n^p - x^p + y^p}{2}}\right)^2 + f\left(\sqrt[p]{\frac{2x_n^p - x^p - y^p}{2}}\right)^2 \right|$$

$$\ge \left| \left(g(\sqrt[p]{2x_n^p + x^p}) + g(\sqrt[p]{2x_n^p - x^p}) \right)h(y) - \left(f\left(\sqrt[p]{x_n^p + \frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{x_n^p - \frac{x^p + y^p}{2}}\right)^2 \right) + \left(f\left(\sqrt[p]{x_n^p + \frac{x^p - y^p}{2}}\right)^2 - f\left(\sqrt[p]{x_n^p - \frac{x^p - y^p}{2}}\right)^2 \right) \right|$$

$$(3.5)$$

Electronic Research Archive

for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$. Consequently,

$$\frac{2\varphi(y)}{|g(\sqrt[p]{2}x_{n}^{p} + x^{p}) + g(\sqrt[p]{2}x_{n}^{p} - x^{p})}{g(\sqrt[p]{2}x_{n})}h(y) - \frac{f\left(\sqrt[p]{2}x_{n}^{p} + \frac{x^{p} + y^{p}}{2}\right)^{2} - f\left(\sqrt[p]{2}x_{n}^{p} - \frac{x^{p} + y^{p}}{2}\right)^{2}}{g(\sqrt[p]{2}x_{n})} + \frac{f\left(\sqrt[p]{2}x_{n}^{p} + \frac{x^{p} - y^{p}}{2}\right)^{2} - f\left(\sqrt[p]{2}x_{n}^{p} - \frac{x^{p} - y^{p}}{2}\right)^{2}}{g(\sqrt[p]{2}x_{n})}$$
(3.6)

for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$. Taking $n \to \infty$ in (3.6) and using (3.3) and (3.4), we reach a conclusion that, for every $x \in \mathbb{R}$, there exists the limit function

$$L_1(x) := \lim_{n \to \infty} \frac{g(\sqrt[p]{2x_n^p + x^p}) + g(\sqrt[p]{2x_n^p - x^p})}{g(\sqrt[p]{2}x_n)},$$

where $L_1 : \mathbb{R} \to \mathbb{C}$ satisfies the equation as even

$$h(\sqrt[p]{x^p + y^p}) - h(\sqrt[p]{x^p - y^p}) = L_1(x)h(y), \quad \forall x, y \in \mathbb{R}.$$
(3.7)

From the definition of L_1 , we obtain the equality $L_1(0) = 2$, which, jointly with (3.7), indicates that *h* is odd. Keeping this in mind, through (3.7), we deduce the equality

$$h(\sqrt[p]{x^{p} + y^{p}})^{2} - h(\sqrt[p]{x^{p} - y^{p}})^{2} = [h(\sqrt[p]{x^{p} + y^{p}}) + h(\sqrt[p]{x^{p} - y^{p}})]L_{1}(x)h(y)$$

$$= [h(\sqrt[p]{2x^{p} + y^{p}}) + h(\sqrt[p]{2x^{p} - y^{p}})]h(y)$$

$$= [h(\sqrt[p]{y^{p} + 2x^{p}}) - h(\sqrt[p]{y^{p} - 2x^{p}})]h(y)$$

$$= L_{1}(y)h(\sqrt[p]{2}x)h(y).$$
(3.8)

The oddness of *h* imposes it to vanish at 0. Putting x = y in (3.7), we conclude with the previous result that

$$h(\sqrt[p]{2y}) = h(y)L_1(y).$$
(3.9)

The (3.8) by (3.9) arrives to the equation

$$h(\sqrt[p]{x^p + y^p})^2 - h(\sqrt[p]{x^p - y^p})^2 = h(\sqrt[p]{2}x)h(\sqrt[p]{2}y),$$

for all $x, y \in \mathbb{R}$, which, with $\sqrt[n]{2}$ -divisibility of \mathbb{R} , states conclusively (*S*^{*r*}).

In addition, if g satisfies (C^r) and L_1 forces 2g, then (3.7) forces that h and g satisfy (T_{gf}^r).

Theorem 2. Suppose that $f, g, h : \mathbb{R} \longrightarrow \mathbb{C}$ satisfy

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)h(y) \right| \le \varphi(x), \quad \forall x, y \in \mathbb{R},$$
(3.10)

Electronic Research Archive

which satisfies one of two cases g(0) = 0, $f(x)^2 = f(-x)^2$, where p is a positive odd integer.

Then, either h is bounded or g satisfies (S^r) . In addition, if h satisfies (C^r) , then g and h satisfy the p-power-radical Wilson type equation (W^r) : = $g\left(\sqrt[q]{x^p + y^p}\right) + g\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)h(y)$.

Proof. Let *h* be unbounded, then we can select a sequence $\{y_n\}$ in \mathbb{R} such that $h(\sqrt[p]{2}y_n) \to \infty$ as $n \to \infty$. With a minor change of the steps shown in the start part of the proof in Theorem 1, we can get

$$g(\sqrt[p]{2}x) = \lim_{n \to \infty} \frac{f\left(\sqrt[p]{x^p + y_n^p}\right)^2 - f\left(\sqrt[p]{x^p - y_n^p}\right)^2}{h(\sqrt[p]{2}y_n)}.$$
(3.11)

Replacing y by $\sqrt[p]{y^p + 2y_n^p}$ and $\sqrt[p]{-y^p + 2y_n^p}$ in (3.10), the same procedure of (3.5) and (3.6) allows, with (3.11), use to argue the existence of a limit function

$$L_{2}(y) := \lim_{n \to \infty} \frac{h(\sqrt[p]{y^{p} + 2y_{n}^{p}}) + h(\sqrt[p]{-y^{p} + 2y_{n}^{p}})}{h(\sqrt[p]{2}y_{n})},$$

where $L_2 : \mathbb{R} \to \mathbb{C}$ satisfies the equation

$$g(\sqrt[p]{x^p + y^p}) + g(\sqrt[p]{x^p - y^p}) = g(x)L_2(y), \quad \forall x, y \in \mathbb{R}.$$
(3.12)

Hence, from the definition of L_2 , L_2 is even and $L_2(0) = 2$.

Let's start with the case g(0) = 0. Then it leads to the conclusion, by (3.12), that g is odd. Putting y = x in (3.12), we obtain

$$g(\sqrt[q]{2x}) = g(x)L_2(x), \quad \forall x, \in \mathbb{R}.$$
(3.13)

From (3.12), the oddness of g and (3.13), we obtain the equation

$$g(\sqrt[p]{x^p + y^p})^2 - g(\sqrt[p]{x^p - y^p})^2 = g(x)L_2(y)[g(\sqrt[p]{x^p + y^p}) - g(\sqrt[p]{x^p - y^p})]$$

= $g(x)[g(\sqrt[p]{x^p + 2y^p}) - g(\sqrt[p]{x^p - 2y^p})]$
= $g(x)[g(\sqrt[p]{2y^p + x^p}) + g(\sqrt[p]{2y^p - x^p})]$
= $g(x)g(\sqrt[p]{2y}L_2(x))$
= $g(\sqrt[p]{2x})g(\sqrt[p]{2y})$

for all $x, y \in \mathbb{R}$, which, with $\sqrt[n]{2}$ -divisibility of \mathbb{R} , states conclusively (*S*^{*r*}).

Second, let's consider the case $f(x)^2 = f(-x)^2$. in this case, it is sufficient to show that g(0) = 0. Suppose that it is not the case. Then, without loss of generality, we may assume in following that

g(0) = c (constant).

Taking x = 0 in (3.10), from the above assumption, we get the inequality

$$|h(y)| \le \frac{\varphi(0)}{c}, \quad \forall y \in \mathbb{R}.$$

The above inequality indicates that h is globally bounded, which is a contradiction due to the assumption of unboundedness. Therefore the claimed g(0) = 0 holds, and the proof of the theorem is completed.

In addition, if h satisfies (C^r) and L_2 forces 2h, then (3.12) forces that g and h satisfy (W^r) : = $g(\sqrt[p]{x^p + y^p}) + g(\sqrt[p]{x^p - y^p}) = 2g(x)h(y).$

Electronic Research Archive

The following corollary follows from Theorems 1 and 2, immediately.

Corollary 1. Assume that $f, g, h : \mathbb{R} \to \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)h(y) \right| \le \min\{\varphi(x), \varphi(y)\}, \quad \forall x, y \in \mathbb{R},$$
(3.14)

where p is a positive odd integer.

Then

(i) either g is bounded or h satisfies (S^r) . Moreover, if g satisfies (C^r) , then h and g satisfy (T_{gf}^r) : = $h(\sqrt[q]{x^p + y^p}) - h(\sqrt[q]{x^p - y^p}) = g(x)h(y)$.

(ii) either h is bounded, or g satisfies (S^r) under g(0) = 0 or $f(x)^2 = f(-x)^2$. Moreover, if h satisfies (C^r) , then g and h satisfy the Wilson equation (W^r) : $= g(\sqrt[q]{x^p + y^p}) + g(\sqrt[q]{x^p - y^p}) = 2g(x)h(y)$.

4. Application to the superstability of the Eqs (S^r) , (S^r_{gg}) , (S^r_{gf}) and (S^r_{fg})

In this section, as corollaries, we obtain the superstability of the *p*-power-radical sine functional equation (S^r) from an approximation of (S^r) , and (S_{gf}^r) , (S_{fg}^r) and (S_{gg}^r) . Their proofs follow from Theorems 1 and 2, and Corollary 1.

4.1. Superstability of the Eq (S_{gg})

Corollary 2. Assume that $f, g : \mathbb{R} \longrightarrow \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)g(y) \right| \le \begin{cases} (i) \ \varphi(y) \\ (ii) \ \varphi(x) \\ (iii) \ \min\{\varphi(x), \varphi(y)\} \end{cases} \quad \forall x, y \in \mathbb{R},$$

where *p* is a positive odd integer.

Then, either g is bounded or g satisfies (S^r), respectively. In particular, the case (ii) holds under the condition g(0) = 0 or $f(x)^2 = f(-x)^2$.

4.2. Superstability of the Eq (S_{gf})

Corollary 3. Assume that $f, g : \mathbb{R} \to \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)f(y) \right| \le \varphi(y)$$

$$(4.1)$$

for all $x, y \in \mathbb{R}$, where p is a positive odd integer.

Then, either g is bounded or f satisfy (S^r) . Moreover, if g satisfies (C^r) , f and g satisfy (T_{gf}^r) : = $f\left(\sqrt[q]{x^p + y^p}\right) - f\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)f(y)$.

Corollary 4. Assume that $f, g : \mathbb{R} \to \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)f(y) \right| \le \varphi(x), \quad \forall x, y \in \mathbb{R}$$

$$(4.2)$$

Electronic Research Archive

which satisfies one of the cases g(0) = 0, $f(x)^2 = f(-x)^2$, where p is a positive odd integer.

Then, either f is bounded or g satisfies (S^r) . Additionally, if f satisfies (C^r) , g and f satisfy (W^r) : = $g\left(\sqrt[q]{x^p + y^p}\right) + g\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)f(y)$.

Corollary 5. Assume that $f, g : \mathbb{R} \to \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)f(y) \right| \le \min\{\varphi(x), \varphi(y)\}$$
(4.3)

for all $x, y \in \mathbb{R}$, where p is a positive odd integer.

Then

(i) either g is bounded or f and g satisfy (S^r) , respectively. Additionally, if g satisfies (C^r) , then f and g satisfy (T_{gf}^r) : = $f\left(\sqrt[q]{x^p + y^p}\right) - f\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)f(y)$;

(ii) either f is bounded or g satisfies (S^r) . Additionally, if f satisfies (C^r) , then g and f satisfy the Wilson equation (W^r) : = $g\left(\sqrt[q]{x^p + y^p}\right) + g\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)f(y)$.

Proof. It is sufficient to present that either g is bounded or g satisfies (S). The other cases follow from Corollaries 3 and 4, immediately.

The inequality (4.3) can also be presented equivalently as

$$|f\left(\sqrt[p]{x^p + y^p}\right)^2 - f\left(\sqrt[p]{x^p - y^p}\right)^2 - g(\sqrt[p]{2}x)f(\sqrt[p]{2}y)| \le \min\{\varphi(\sqrt[p]{2}x), \varphi(\sqrt[p]{2}y)\}, \quad \forall x, y \in \mathbb{R}.$$
(4.4)

First, if f is bounded, then $y_0 \in \mathbb{R}$ can be chosen such that $f(\sqrt[4]{2}y_0) \neq 0$. From this y_0 and (4.4), we get

$$\begin{split} |g(\sqrt[q]{2}x)| &- \left| \frac{f\left(\sqrt[p]{x^p + y_0^p}\right)^2 - f\left(\sqrt[p]{x^p - y_0^p}\right)^2}{f(\sqrt[q]{2}y_0)} \right| \\ &\leq \left| \frac{f\left(\sqrt[p]{x^p + y_0^p}\right)^2 - f\left(\sqrt[p]{x^p - y_0^p}\right)^2}{f(\sqrt[q]{2}y_0)} - g(\sqrt[q]{2}x) \right| \\ &\leq \frac{\min\{\varphi(\sqrt[q]{2}x), \varphi(\sqrt[q]{2}y_0)\}}{f(\sqrt[q]{2}y_0)} \leq \frac{\varphi(\sqrt[q]{2}y_0)}{f(\sqrt[q]{2}y_0)}. \end{split}$$

Thus, it implies that g is also bounded on \mathbb{R} . Namely, since an unboundedness of g exacts it of f, let run along the step of Theorem 2.

The process of Theorem 2 gives us the limit (3.11), which, since f satisfies (S^r) by Theorem 1, validates

$$g(\sqrt[p]{2x}) = f(\sqrt[p]{2x}), \qquad \forall x \in \mathbb{R}.$$

By the $\sqrt[n]{2}$ -divisibility of \mathbb{R} , we obtain g = f. Thus, it is true that g also satisfies (S^r) .

Electronic Research Archive

4.3. Superstability of the Eq (S_{fg})

Corollary 6. Assume that $f, g : \mathbb{R} \longrightarrow \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - f(\sqrt[p]{x})g(\sqrt[p]{y}) \right| \le \varphi(y), \tag{4.5}$$

where *p* is a positive odd integer.

Then, either f is bounded or g satisfies (S^r) . Additionally, if f satisfies (C^r) , then g and f satisfy $(T_{gf}^r) := g\left(\sqrt[q]{x^p + y^p}\right) - g\left(\sqrt[q]{x^p - y^p}\right) = 2f(x)g(y).$

Corollary 7. Assume that $f, g : \mathbb{R} \longrightarrow \mathbb{C}$ satisfy the inequality

$$f\left(\sqrt[p]{\frac{x^p+y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p-y^p}{2}}\right)^2 - f(\sqrt[q]{x})g(\sqrt[q]{y}) \le \varphi(x),$$

where *p* is a positive odd integer.

Then, either g is bounded or f satisfies (S^r) under one condition of the cases f(0) = 0, $f(x)^2 = f(-x)^2$. In addition, if g satisfies (C^r) , then f and g satisfy the Wilson equation (W^r) : = $f(\sqrt[q]{x^p + y^p}) + f(\sqrt[q]{x^p - y^p}) = f(x)g(y)$.

Corollary 8. Assume that $f, g : \mathbb{R} \longrightarrow \mathbb{C}$ satisfy the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - f(x)g(y) \right| \le \min\{\varphi(x), \varphi(y)\}$$

for all $x, y \in \mathbb{R}$, where p is a positive odd integer.

Then

(i) either f is bounded or g satisfies (S^r) . In addition, if f satisfies (C^r) , then g and f satisfy (T_{gf}^r) : = $g(\sqrt[q]{x^p + y^p}) - g(\sqrt[q]{x^p - y^p}) = 2f(x)g(y);$

(ii) either g is bounded or f and g satisfy (S^r) , respectively, under one condition of the cases f(0) = 0, $f(x)^2 = f(-x)^2$. In addition, if g satisfies (C^r) , then f and g satisfy the Wilson equation (W^r) : = $f(\sqrt[q]{x^p + y^p}) + f(\sqrt[q]{x^p - y^p}) = 2f(x)g(y)$.

4.4. Superstability of the p-power-radical sine functional equation (S^r)

As a corollary for all the obtained results, we obtain the superstability of the *p*-power-radical sine functional equation (S^r) .

Corollary 9. Assume that $f : \mathbb{R} \to \mathbb{C}$ satisfies the inequality

$$\left| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - f(x)f(y) \right| \le \begin{cases} (i) \ \varphi(y), \\ (ii) \ \varphi(x), \\ (iii) \ \min\{\varphi(x), \varphi(y)\}, \end{cases}$$

where *p* is a positive odd integer.

Then, either f is bounded or f satisfies (S^r)

Electronic Research Archive

6358

Proof. Replacing the functions g and h in Theorems 1 and 2 by f, in the case (ii), the assumption f(0) = 0 or $f(x)^2 = f(-x)^2$ can be eliminated (see [9, Theorem 5]).

Remark 1. (i) Applying $\varphi(x) = \varphi(y) = \varepsilon$ for all results in Sections 3 and 4, then they yield the superstability results bounded by constant (Hyers-sense).

(ii) Applying 'p = 1' to all the p-power-radical functional equations (S^r) , (S_{gf}^r) , (S_{gg}^r) , $(S_$

In addition, for all results of the (S)-types obtained above, applying again (i) $\varphi(x) = \varphi(y) = \varepsilon$, then they yield the additional results (Hyers-sense) for (S)-types.

(iii) Many results obtained for the (S)-types and p-power-radical (S^r)-types in (i) and (ii) are found in Cholewa [16], Badora [8], Badora and Ger [9], Kannappan and Kim [10], Kim and Dragomir [11], Kim [17, 18, 22] and in papers [8, 9, 13–15].

5. Extension of the stability to Banach algebras

All results in Sections 3 and 4 can be expanded to the stability on Banach algebras. The following theorem is based on Theorems 1 and 2, and Corollary 1. The remainder results also are represented as similar type as Theorem 3, respectively, their proofs will skip for the sake of brevity.

Theorem 3. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g, h : \mathbb{R} \longrightarrow E$ satisfy the inequality

$$\left\| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)h(y) \right\| \le \begin{cases} (i) \ \varphi(y), \\ (ii) \ \varphi(x), \\ (iii) \ \min\{\varphi(x), \varphi(y)\}, \end{cases}$$

where *p* is a positive odd integer.

Then, for an arbitrary linear multiplicative functional $x^* \in E^*$ *,*

(i) either the superposition $x^* \circ g$ is bounded or h satisfies (S^r) , In addition, if g satisfies (C^r) , then h and g satisfy $(T_{gf}^r) := h\left(\sqrt[q]{x^p + y^p}\right) - h\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)h(y);$

(ii) either the superposition $x^* \circ h$ under the cases g(0) = 0 or $f(x)^2 = f(-x)^2$ is bounded or g satisfies (S^r) . In addition, if h satisfies (C^r) , then g and h satisfy the Wilson equation $(W^r):=g\left(\sqrt[q]{x^p+y^p}\right)+g\left(\sqrt[q]{x^p-y^p}\right)=2g(x)h(y);$

(iii) the above (i) and (ii) hold. In addition, if the superposition $x^* \circ g$ is unbounded, then g satisfies (S^r)

Proof. (i) Assume that (i) holds and fix arbitrarily a linear multiplicative functional $x^* \in E$. As is well known, we have $||x^*|| = 1$, whence, for every $x, y \in \mathbb{R}$, we have

$$\varphi(y) \ge \left\| g(x)h(y) - f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 + f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 \right\|$$
$$= \sup_{\|y^*\|=1} \left| y^* \left(g(x)h(y) - f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 + f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 \right) \right|$$

Electronic Research Archive

$$\geq \left| x^*(g(x)) \cdot x^*(h(y)) - x^*\left(f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right) \right) + x^*\left(f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right) \right) \right|,$$

which states that the superpositions $x^* \circ g$ and $x^* \circ h$ produce a solution of stability inequality (3.1) of Theorem 1. Since, by assumption, the superposition $x^* \circ g$ is unbounded, an appeal to Theorem 1 forces that the function $x^* \circ h$ is a solution of (S^r) , that is,

$$(x^* \circ h) \left(\sqrt[p]{\frac{x^p + y^p}{2}} \right)^2 - (x^* \circ h) \left(\sqrt[p]{\frac{x^p - y^p}{2}} \right)^2 = (x^* \circ h)(x)(x^* \circ h)(y).$$
(5.1)

In other presents, by the linear multiplicativity of x^* , for all $x, y \in \mathbb{R}$, the difference $\mathcal{D}S^r : \mathbb{R} \times \mathbb{R} \to E$ defined by

$$\mathcal{D}S^{r}(x,y) := h \left(\sqrt[p]{\frac{x^{p} + y^{p}}{2}} \right)^{2} - h \left(\sqrt[p]{\frac{x^{p} - y^{p}}{2}} \right)^{2} - h(x)h(y)$$

falls into the kernel of x^* . Thus, in view of the unrestricted choice of x^* , we infer that

 $\mathcal{D}S^{r}(x, y) \in \bigcap \{ \ker x^{*} : x^{*} \text{ is a multiplicative member of } E^{*} \}$

for all $x, y \in \mathbb{R}$. Since the space *E* is a semisimple, $\bigcap \{ \ker x^* : x^* \in E^* \} = 0$, which means that *h* satisfies the claimed Eq (*S*^{*r*}).

In addition, if g satisfies (C^r), then it is trivial that h and g satisfy $h(\sqrt[q]{x^p + y^p}) - h(\sqrt[q]{x^p - y^p}) = 2g(x)h(y)$.

(ii) By assumption, the superposition $z^* \circ h$ with g(0) = 0 or $f(x)^2 = f(-x)^2$ is unbounded, an appeal to Theorem 2 shows that the results hold.

The superposition $x^* \circ g$ satisfies (5.1), that is a solution of the Eq (S^r).

As in (i), a linear multiplicativity of x^* and semisimplicity imply

$$g\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - g\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)g(y) \in \bigcap\{\ker x^* : x^* \in E^*\} = 0,$$

which means that g satisfies (S^r) . In addition, if h satisfies (C^r) , then it is trivial that g and h satisfy $g\left(\sqrt[q]{x^p + y^p}\right) + g\left(\sqrt[q]{x^p - y^p}\right) = 2g(x)h(y)$.

(iii) It follows from the above (i) and (ii), and the additional case of (iii) holds by Corollary 1.

Corollary 10. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g : \mathbb{R} \longrightarrow E$ satisfy the inequality

$$\left\| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)g(y) \right\| \le \begin{cases} (i) \ \varphi(x), \\ (ii) \ \varphi(y), \\ (iii) \ \min\{\varphi(x), \varphi(y)\} \end{cases}$$

where *p* is a positive odd integer.

For an arbitrary linear multiplicative functional $x^* \in E^*$, either the superposition $x^* \circ g$ is bounded or g satisfies (S^r). In particular, the case (ii) holds under the condition g(0) = 0 or $f(x)^2 = f(-x)^2$.

Electronic Research Archive

Corollary 11. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g : \mathbb{R} \longrightarrow E$ satisfy the inequality

1

$$\left\| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - g(x)f(y) \right\| \le \begin{cases} (i) \ \varphi(x), \\ (ii) \ \varphi(y), \\ (iii) \ \min\{\varphi(x), \varphi(y)\} \end{cases}$$

where *p* is a positive odd integer.

Then, for an arbitrary linear multiplicative functional $x^* \in E^*$,

(i) either the superposition $x^* \circ g$ is bounded or f satisfies (S^r) , In addition, if g satisfies (C^r) , then f and g satisfy $(T_{\sigma f}^r)$;

(ii) either the superposition $x^* \circ f$ under the cases g(0) = 0 or $f(x)^2 = f(-x)^2$ is bounded or g satisfies (S^r) . In addition, if f satisfies (C^r) , then g and f satisfy the Wilson equation (W^r) ;

(iii) the above (i) and (ii) hold. Also, additionally, if the superposition $x^* \circ g$ is unbounded, then g satisfies (S^r)

Corollary 12. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g : \mathbb{R} \longrightarrow E$ satisfy the inequality

$$\left\| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - f(x)g(y) \right\| \le \begin{cases} (i) \ \varphi(x), \\ (ii) \ \varphi(y), \\ (iii) \ \min\{\varphi(x), \varphi(y)\} \end{cases}$$

where *p* is a positive odd integer.

Then, for an arbitrary linear multiplicative functional $x^* \in E^*$ *,*

(i) either the superposition $x^* \circ f$ is bounded or g satisfy (S^r) . In addition, if f satisfies (C^r) , then g and f satisfy $(T_{\sigma f}^r)$;

(ii) either the superposition $x^* \circ g$ under the cases g(0) = 0 or $f(x)^2 = f(-x)^2$ is bounded or f satisfies (S^r) . In addition, if g satisfies (C^r) , then f and g satisfy (W^r) ;

(iii) the above (i) and (ii) hold. Also, additionally, if the superposition $x^* \circ g$ is unbounded, then g satisfies (S^r) ,

Corollary 13. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f : \mathbb{R} \longrightarrow E$ satisfies the inequality

$$\left\| f\left(\sqrt[p]{\frac{x^p + y^p}{2}}\right)^2 - f\left(\sqrt[p]{\frac{x^p - y^p}{2}}\right)^2 - f(x)f(y) \right\| \le \begin{cases} (i) \ \varphi(x), \\ (ii) \ \varphi(y), \\ (iii) \ \min\{\varphi(x), \varphi(y)\} \end{cases}$$

where *p* is a positive odd integer.

For an arbitrary linear multiplicative functional $x^* \in E^*$, either the superposition $x^* \circ f$ is bounded or f satisfies (S^r) .

Remark 2. Follow (i) and (ii) of Remark 1 for all results in Section 5, namely, (i) Apply $\varphi(x) = \varphi(y) = \varepsilon$ in all results. (ii) Apply 'p = 1' in all results. Next, apply (i) again in the results. Then, a number of the results are found in the same papers in (iii) of Remark 1.

Electronic Research Archive

6. Conclusions

In this paper, we studied solutions and creating of the p-power-radical functional equations arisen simultaneously from the trigonometric functions, hyperbolic function, exponential function and p-radical function.

We investigated the superstability bounded by a function (Găvruta sense) for the *p*-power-radical sine functional equation (S^r) from an approximation of the *p*-power-radical functional equations (S_{gh}^r) , and (S^r) , (S_{gf}^r) , (S_{fg}^r) , (S_{gg}^r) with *p* is a positive odd integer. Furthermore, the obtained results extended to Banach algebras. As a result, we have improved the previous stability results for (S)-type functional equations: (S), (S_{gf}) , (S_{gg}) , (S

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This study was supported by research fund from Chosun University, 2023.

Conflict of interest

The authors declare there are no conflicts of interest.

References

- 1. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
- 2. D. H. Hyers, On the stability of the linear functional equation, *Proc. Natl. Acad. Sci. U. S. A.*, **27** (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222
- 3. J. A. Baker, J. Lawrence, F. Zorzitto, The stability of the equation f(x + y) = f(x)f(y), *Proc. Am. Math. Soc.*, **74** (1979), 242–246. https://doi.org/10.1090/S0002-9939-1979-0524294-6
- 4. J. A. Baker, The stability of the cosine equation, *Proc. Am. Math. Soc.*, **80** (1980), 411–416. https://doi.org/10.1090/S0002-9939-1980-0580995-3
- 5. G. H. Kim, The stability of the d'Alembert and Jensen type functional equations, *J. Math. Anal. Appl.*, **325** (2007), 237–248. https://doi.org/10.1016/j.jmaa.2006.01.062
- 6. G. H. Kim, On the stability of mixed trigonometric functional equations, *Banach J. Math. Anal.*, **1** (2007), 227–236.
- 7. G. H. Kim, On the stability of trigonometric functional equations, *Adv. Differ. Equations*, **2007** (2008), 90405.
- 8. R. Badora, On the stability of cosine functional equation, *Rocz. Nauk. Dydaktyczny WSP Krakowie*, (1998), 1–14.

- 9. R. Badora, R. Ger, On some trigonometric functional inequalities, in *Functional Equations* Advances in Mathematics (eds. Z. Daróczy, Z. Páles), Springer, Boston, USA, (2002), 3–15.
- 10. P. Kannappan, G. H. Kim, On the stability of the generalized cosine functional equations, *Annates Acad. Paedagogicae Cracov.*, **2001** (2001), 49–58.
- G. H. Kim, S. S. Dragomir, On the the stability of generalized d'Alembert and Jensen functional equation, *Int. J. Math. Math. Sci.*, 2006 (2006), 043185. https://doi.org/10.1155/IJMMS/2006/43185
- B. Bouikhalene, E. Elquorachi, J. M. Rassias, The superstability of d'Alembert's functional equation on the Heisenberg group, *Appl. Math. Lett.*, 23 (2010), 105–109. https://doi.org/10.1016/j.aml.2009.08.013
- 13. P. de Place Friis, d'Alembert's and Wilson's equations on Lie groups, *Aequ. Math.*, **67** (2004), 12–25. https://doi.org/10.1007/s00010-002-2665-3
- 14. E. Elqorachi, M. Akkouchi, On Hyers-Ulam stability of the generalized Cauchy and Wilson equations, *Publ. Math. Debrecen*, **66** (2005), 283–301. https://doi.org/10.5486/PMD.2005.2956
- 15. P. Sinopoulos, Generalized sine equations, *III*, *Aeq. Math.*, **51** (1996), 311–327. https://doi.org/10.1007/BF01833286
- 16. P. W. Cholewa, The stability of the sine equation, *Proc. Amer. Math. Soc.*, **88** (1983), 631–634. https://doi.org/10.1090/S0002-9939-1983-0702289-8
- 17. G. H. Kim, A stability of the generalized sine functional equations, J. Math. Anal. Appl., **331** (2007), 886–894. https://doi.org/10.1016/j.jmaa.2006.09.037
- 18. G. H. Kim, On the stability of the generalized sine functional equations, *Acta Math. Sin. Engl. Ser.*, **25** (2009), 29–38.
- 19. M. E. Gordji, M. Parviz, On the Hyers-Ulam-Rassias stability of the functional equation $f(\sqrt{x^2 + y^2}) = f(x) + f(y)$, Nonlinear Funct. Anal. Appl., **14** (2009), 413–420.
- 20. M. Almahalebi, R. El Ghali, S. Kabbaj, C. Park, Superstability of *p*-radical functional equations related to Wilson-Kannappan-Kim functional equations, *Results Math.*, **76** (2021), 1–14. https://doi.org/10.1007/s00025-021-01409-2
- G. H. Kim, Superstability of the *p*-radical functional equations related to Wilson's and Kim's equation, *Int. J. Nonlinear Anal. Appl.*, **12** (2021), 571–582. https://doi.org/10.22075/IJNAA.2021.23376.2526
- 22. G. H. Kim, On the superstability of the *p*-power-radical sine functional equation, *Nonlinear Funct. Anal. Appl.*, **28** (2023), 801–812. https://doi.org/10.22771/nfaa.2023.28.03.14

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)