
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(10): 6347–6362.
DOI: 10.3934/era.2023321
Received: 03 June 2023
Revised: 09 September 2023
Accepted: 17 September 2023
Published: 25 September 2023

Research article

Superstability of the p-power-radical functional equation related to sine
function equation

Hye Jeang Hwang1 and Gwang Hui Kim2,*

1 Department of Mathematical Education, Chosun University, Chosundaegil 146, Dong-gu,
Gwangju 61452, Korea

2 Department of Mathematics, Kangnam University, Giheung-gu, Yongin-si, Gyeonggi-do 16979,
Korea

* Correspondence: Email: ghkim@kangnam.ac.kr.

Abstract: In this paper, we find solutions and investigate the superstability bounded by a function
(Gǎvruta sense) for the p-power-radical functional equation related to sine function equation:
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where p is a positive odd integer, and f , g and h are complex valued functions on R. Furthermore, the
obtained results are extended to Banach algebras.
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1. Introduction

The stability problem for the functional equation was conjectured by Ulam [1] in 1940. In the
following year, Hyers [2] presented a partial answer for the case of the additive mapping in this
problem: If f satisfies | f (x + y) − f (x) − f (y)| ≤ ε for some fixed ε > 0, then there is an additive
mapping g satisfying g(x + y) = g(x) + g(y) and | f (x) − g(x)| ≤ ε, which is called the
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Hyers-Ulam stability.
Baker et al. [3] announced, in 1979, the new concept for the superstability as follows: If f satisfies

| f (x + y) − f (x) f (y)| ≤ ε for some fixed ε > 0, then either f is bounded or f satisfies the exponential
functional equation f (x + y) = f (x) f (y).

Baker [4] showed the superstability of the cosine (also called d’Alembert) functional equation

f (x + y) + f (x − y) = 2 f (x) f (y). (C)

The cosine (d’Alembert) functional equation (C) was generalized to the following:

f (x + y) + f (x − y) = 2 f (x)g(y), (W)

f (x + y) + f (x − y) = 2g(x) f (y), (Kg f )

f (x + y) − f (x − y) = 2 f (x) f (y), (T)

f (x + y) − f (x − y) = 2g(x) f (y), (Tg f )

f (x + y) − f (x − y) = 2g(x)g(y), (Tgg)

f (x + y) − f (x − y) = 2g(x)h(y), (Tgh)

in which (W) is called the Wilson equation, (Kg f ) is called the Kim’s equation and remaining equations
are raised in Kim’s papers [5–7].

The superstability of the trigonometric (cosine (C), Wilson (W), Kim ((Kg f ), (T), (Tg f ) and (Tgh))
functional equations were founded in Badora [8], Badora and Ger [9], Kannappan and Kim [10], Kim
and Dragomir [11], Kim [5–7] and in papers [12–15].

In 1983, Cholewa [16] proved the superstability of the sine functional equation

f
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2
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2

)2
= f (x) f (y) (S )

under the stability inequality bounded by constant. This was improved to the condition bounded by a
function in Badora and Ger [9]. Their results were also further improved later by Kim [17, 18], who
obtained the superstability under the assumption that the stability inequality is bounded by a constant
or a function for the generalized sine functional equations:
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In 2009, Eshaghi Gordji and Parviz [19] introduced the quadratic-radical functional equation

f
( √

x2 + y2) = f (x) + f (y). (R)

related to the additive mapping and proved its stability.
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Recently, Almahalebi et al. [20], Kim [21, 22] obtained the superstability of p-radical functional
equations in relation with Wilson (W), Kim ((Kg f ), (Tg f ) and (Tgh)). In the concept of the p-radical,
the sine functional equation (S ) and (S)-type’s equations (S f g), (S g f ), (S gg), (S gh) are expressed as
follows:
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In the above, letting f (x) = F(xp), then F satisfies (S)-type equations. Hence, in this paper, they
will be reasonably called the p-power-radical equation. Since the function f (x) = sin xp is the solution
of the equation (S r), it will be called the p-power-radical sine functional equation.

Our aim of this paper is to find solutions and to investigate the superstability bounded by a function
(Gǎvruta sense) for the p-power-radical sine functional equation (S r) from an approximation of the
p-power-radical functional equation (S r

gh).
As a corollary, we obtain the superstability bounded by a constant and a function for the

p-power-radical sine functional equation (S r) from an approximation of the p-power-radical
functional equations (S r), (S r

g f ), (S r
f g), (S r

gg). Moreover, the obtained results are extended to Banach
algebras.

In this paper, let R be the field of real numbers, R+ = [0,∞) and C be the field of complex numbers.
We assume that f , g, h are nonzero functions, ε is a nonnegative real number, φ : R → R+ is a given
nonnegative function and p is a positive odd integer.

2. Solutions of the functional equations

Let’s recall the trigonometric formula, the p-power-radical functional equation’s forms for the
functional equations (cosine (d’Alembert) (C), Wilson (W), Kim (Tg f ), (Tgg) and (Tgh) are the
following:
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f
(

p
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xp + yp
)
− f

(
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xp − yp
)
= 2g(x)h(y). (T r

gh)

We can confirm that each equation has a solution as follows: (Cr) : f (x) = cos(xp), (Wr) : f (x) =
sin(xp), g(x) = cos(xp), (T r

g f ) : f (x) = sin(xp), g(x) = cos(xp), (T r
gg) : f (x) = cos(xp), g(x) = i sin(xp),

(T r
gh) : f (x) = cos(xp), g(x) = sin(xp), h(x) = − sin(xp).
In addition, the solution of each equation can also be found in perspective of the hyperbolic function,

exponential function and p-power function, simultaneously.
Letting p=1 in the above paragraph, we know that each original equation ((C), (W), (Tg f ), (Tgg),

(Tgh)) has the corresponding solution of the same form, respectively. They also are represented by the
hyperbolic function, exponential function and p-power function, simultaneously.

Now let’s consider the functional equations generated by the product of the above equations, then
we obtain the target equations: p-power-radical functional equation (S r) and (S r)-type’s equations
(S r

f g), (S r
g f ), (S r

gg) and (S r
gh).

1) (S r) has a solution as the p-power function f (x) = xp:
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2) When (S r) has a solution as the sine function, it also has simultaneously as an exponential
solution as follows: 1
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3) When (S r) has a solution as the hyperbolic sine function, it also has simultaneously as an
exponential solution as follows:1
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Although the mentioned all functional equations may have arisen from sine or cosine, as shown in
the previous, they have solutions as the p-power, the hyperbolic and the exponential function,
simultaneously. Hence, they can be considered as the p-power-radical, the p-power-radical
exponential and the p-power-radical hyperbolic functional equation, simultaneously.
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Letting p = 1 in the above items 1), 2) and 3), then (S r) arrives (S ). Hence, based on the above
reasons, the Eq (S ) well-known as the sine function equation can also be called as the p-power, the
exponential and the hyperbolic functional equation, simultaneously.

In the following lemma, we find the forms of solutions of the p-power-radical functional equations
(S r

gh), (S r
gg), (S r

f g).

Lemma 1. If f , g, h : R→ C satisfy (S r
gh), then, as one of the solutions of (S r

gh), f , g, h have the forms
f (x) = cos(xp), g(x) = sin(xp) and h(x) = − sin(xp) for all x ∈ R.
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In the next lemma, let’s find an exponential solution for (S r
f g).

Lemma 2. If f , g : R → C satisfy (S r
f g), then, as the solutions of (S r

f g), f , g have the following
two forms

(i) f (x) = exp
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for all x ∈ R,

(ii) f (x) = exp
, g(x) = 2 sinh(xp) for all x ∈ R.
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In the next lemma, let’s find a hyperbolic and trigonometric solution for (S r
gg).

Lemma 3. If f , g : R → C satisfy (S r
gg), then, as the solutions of (S r

gg), f , g have the following
two forms

(i) f (x) = cosh(xp), g(x) = sinh(xp),
(ii) f (x) = cos(xp), g(x) = i sin(xp).

Proof. For all x, y ∈ R,
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3. Superstability of (S r) from (S r
gh)

In Section 3, we study the superstability of the p-power-radical sine functional equation (S r) from
an approximation of the p-power-radical functional equation (S r

gh) related to (S ).

Theorem 1. Assume that f , g, h : R −→ C satisfy the inequality∣∣∣∣∣∣∣ f
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for all x, y ∈ R and n ∈ N. Consequently,

2φ(y)

|g( p√2xn)|
≥
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for all x, y ∈ R and n ∈ N. Taking n → ∞ in (3.6) and using (3.3) and (3.4), we reach a conclusion
that, for every x ∈ R, there exists the limit function
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n→∞
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,

where L1 : R→ C satisfies the equation as even
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xp − yp) = L1(x)h(y), ∀x, y ∈ R. (3.7)

From the definition of L1, we obtain the equality L1(0) = 2, which, jointly with (3.7), indicates that
h is odd. Keeping this in mind, through (3.7), we deduce the equality
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The oddness of h imposes it to vanish at 0. Putting x = y in (3.7), we conclude with the previous
result that

h(
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The (3.8) by (3.9) arrives to the equation
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for all x, y ∈ R, which, with p√2-divisibility of R, states conclusively (S r).
In addition, if g satisfies (Cr) and L1 forces 2g, then (3.7) forces that h and g satisfy (T r

g f ).
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which satisfies one of two cases g(0) = 0, f (x)2 = f (−x)2, where p is a positive odd integer.
Then, either h is bounded or g satisfies (S r). In addition, if h satisfies (Cr), then g and h satisfy the

p-power-radical Wilson type equation (Wr): = g
(

p
√

xp + yp
)
+ g

(
p
√

xp − yp
)
= 2g(x)h(y).

Proof. Let h be unbounded, then we can select a sequence {yn} in R such that h( p√2yn)| → ∞ as n→ ∞.
With a minor change of the steps shown in the start part of the proof in Theorem 1, we can get
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n→∞

f
(

p
√

xp + yp
n

)2
− f

(
p
√

xp − yp
n

)2

h( p√2yn)
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Replacing y by p
√
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n and p

√
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n in (3.10), the same procedure of (3.5) and (3.6) allows,
with (3.11), use to argue the existence of a limit function
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,

where L2 : R→ C satisfies the equation
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√
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√

xp − yp) = g(x)L2(y), ∀x, y ∈ R. (3.12)

Hence, from the definition of L2, L2 is even and L2(0) = 2.
Let’s start with the case g(0) = 0. Then it leads to the conclusion, by (3.12), that g is odd.
Putting y = x in (3.12), we obtain

g(
p√
2x) = g(x)L2(x), ∀x, ∈ R. (3.13)

From (3.12), the oddness of g and (3.13), we obtain the equation

g( p
√
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√
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√
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√
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√
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for all x, y ∈ R, which, with p√2-divisibility of R, states conclusively (S r).
Second, let’s consider the case f (x)2 = f (−x)2. in this case, it is sufficient to show that g(0) = 0.
Suppose that it is not the case. Then, without loss of generality, we may assume in following that

g(0) = c (constant).
Taking x = 0 in (3.10), from the above assumption, we get the inequality

|h(y)| ≤
φ(0)

c
, ∀ y ∈ R.

The above inequality indicates that h is globally bounded, which is a contradiction due to the
assumption of unboundedness. Therefore the claimed g(0) = 0 holds, and the proof of the theorem
is completed.

In addition, if h satisfies (Cr) and L2 forces 2h, then (3.12) forces that g and h satisfy (Wr): =
g( p
√

xp + yp) + g( p
√

xp − yp) = 2g(x)h(y).
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The following corollary follows from Theorems 1 and 2, immediately.

Corollary 1. Assume that f , g, h : R→ C satisfy the inequality∣∣∣∣∣∣∣ f
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where p is a positive odd integer.
Then
(i) either g is bounded or h satisfies (S r). Moreover, if g satisfies (Cr), then h and g satisfy (T r

g f ): =
h( p
√

xp + yp) − h( p
√

xp − yp) = g(x)h(y).
(ii) either h is bounded, or g satisfies (S r) under g(0) = 0 or f (x)2 = f (−x)2. Moreover, if h satisfies

(Cr), then g and h satisfy the Wilson equation (Wr): = g( p
√

xp + yp) + g( p
√

xp − yp) = 2g(x)h(y).

4. Application to the superstability of the Eqs (S r), (S r
gg), (S r

g f ) and (S r
f g)

In this section, as corollaries, we obtain the superstability of the p-power-radical sine functional
equation (S r) from an approximation of (S r), and (S r

g f ), (S r
f g) and (S r

gg). Their proofs follow from
Theorems 1 and 2, and Corollary 1.

4.1. Superstability of the Eq (S gg)

Corollary 2. Assume that f , g : R −→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x)g(y)

∣∣∣∣∣∣∣ ≤


(i) φ(y)
(ii) φ(x)
(iii) min{φ(x), φ(y)}

∀x, y ∈ R,

where p is a positive odd integer.
Then, either g is bounded or g satisfies (S r), respectively. In particular, the case (ii) holds under the

condition g(0) = 0 or f (x)2 = f (−x)2.

4.2. Superstability of the Eq (S g f )

Corollary 3. Assume that f , g : R→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x) f (y)

∣∣∣∣∣∣∣ ≤ φ(y) (4.1)

for all x, y ∈ R, where p is a positive odd integer.
Then, either g is bounded or f satisfy (S r). Moreover, if g satisfies (Cr), f and g satisfy (T r

g f ): =

f
(

p
√

xp + yp
)
− f

(
p
√

xp − yp
)
= 2g(x) f (y).

Corollary 4. Assume that f , g : R→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x) f (y)

∣∣∣∣∣∣∣ ≤ φ(x), ∀x, y ∈ R (4.2)
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which satisfies one of the cases g(0) = 0, f (x)2 = f (−x)2, where p is a positive odd integer.
Then, either f is bounded or g satisfies (S r). Additionally, if f satisfies (Cr), g and f satisfy (Wr):

= g
(

p
√

xp + yp
)
+ g

(
p
√

xp − yp
)
= 2g(x) f (y).

Corollary 5. Assume that f , g : R→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x) f (y)

∣∣∣∣∣∣∣ ≤ min{φ(x), φ(y)} (4.3)

for all x, y ∈ R, where p is a positive odd integer.
Then
(i) either g is bounded or f and g satisfy (S r), respectively. Additionally, if g satisfies (Cr), then f

and g satisfy (T r
g f ): = f

(
p
√

xp + yp
)
− f

(
p
√

xp − yp
)
= 2g(x) f (y);

(ii) either f is bounded or g satisfies (S r). Additionally, if f satisfies (Cr), then g and f satisfy the
Wilson equation (Wr): = g

(
p
√

xp + yp
)
+ g

(
p
√

xp − yp
)
= 2g(x) f (y).

Proof. It is sufficient to present that either g is bounded or g satisfies (S ). The other cases follow from
Corollaries 3 and 4, immediately.

The inequality (4.3) can also be presented equivalently as

| f
(

p
√

xp + yp
)2
− f

(
p
√

xp − yp
)2
− g(

p√
2x) f (

p√
2y)| ≤ min{φ(

p√
2x), φ(

p√
2y)}, ∀ x, y ∈ R. (4.4)

First, if f is bounded, then y0 ∈ R can be chosen such that f ( p√2y0) , 0. From this y0 and (4.4),
we get

|g(
p√
2x)| −

∣∣∣∣∣∣∣∣∣∣∣
f
(

p
√

xp + yp
0

)2
− f

(
p
√

xp − yp
0

)2

f ( p√2y0)

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣
f
(

p
√

xp + yp
0

)2
− f

(
p
√

xp − yp
0

)2

f ( p√2y0)
− g(

p√
2x)

∣∣∣∣∣∣∣∣∣∣∣
≤

min{φ( p√2x), φ( p√2y0)}

f ( p√2y0)
≤
φ( p√2y0)

f ( p√2y0)
.

Thus, it implies that g is also bounded on R. Namely, since an unboundedness of g exacts it of f ,
let run along the step of Theorem 2.

The process of Theorem 2 gives us the limit (3.11), which, since f satisfies (S r) by Theorem 1,
validates

g(
p√
2x) = f (

p√
2x), ∀x ∈ R.

By the p√2-divisibility of R, we obtain g = f . Thus, it is true that g also satisfies (S r).
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4.3. Superstability of the Eq (S f g)

Corollary 6. Assume that f , g : R −→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− f ( p√x)g( p
√

y)

∣∣∣∣∣∣∣ ≤ φ(y), (4.5)

where p is a positive odd integer.
Then, either f is bounded or g satisfies (S r). Additionally, if f satisfies (Cr), then g and f satisfy

(T r
g f ): = g

(
p
√

xp + yp
)
− g

(
p
√

xp − yp
)
= 2 f (x)g(y).

Corollary 7. Assume that f , g : R −→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− f ( p√x)g( p
√

y)

∣∣∣∣∣∣∣ ≤ φ(x),

where p is a positive odd integer.
Then, either g is bounded or f satisfies (S r) under one condition of the cases f (0) = 0, f (x)2 =

f (−x)2. In addition, if g satisfies (Cr), then f and g satisfy the Wilson equation (Wr): = f
(

p
√

xp + yp
)
+

f
(

p
√

xp − yp
)
= f (x)g(y).

Corollary 8. Assume that f , g : R −→ C satisfy the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− f (x)g(y)

∣∣∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ R, where p is a positive odd integer.
Then
(i) either f is bounded or g satisfies (S r). In addition, if f satisfies (Cr), then g and f satisfy (T r

g f ):

= g
(

p
√

xp + yp
)
− g

(
p
√

xp − yp
)
= 2 f (x)g(y);

(ii) either g is bounded or f and g satisfy (S r), respectively, under one condition of the cases
f (0) = 0, f (x)2 = f (−x)2. In addition, if g satisfies (Cr), then f and g satisfy the Wilson equation (Wr):
= f

(
p
√

xp + yp
)
+ f

(
p
√

xp − yp
)
= 2 f (x)g(y).

4.4. Superstability of the p-power-radical sine functional equation (S r)

As a corollary for all the obtained results, we obtain the superstability of the p-power-radical sine
functional equation (S r).

Corollary 9. Assume that f : R→ C satisfies the inequality∣∣∣∣∣∣∣ f
 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− f (x) f (y)

∣∣∣∣∣∣∣ ≤


(i) φ(y),
(ii) φ(x),
(iii) min{φ(x), φ(y)},

where p is a positive odd integer.
Then, either f is bounded or f satisfies (S r)
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Proof. Replacing the functions g and h in Theorems 1 and 2 by f , in the case (ii), the assumption
f (0) = 0 or f (x)2 = f (−x)2 can be eliminated (see [9, Theorem 5]).

Remark 1. (i) Applying φ(x) = φ(y) = ε for all results in Sections 3 and 4, then they yield the
superstability results bounded by constant (Hyers-sense).

(ii) Applying ‘p = 1’ to all the p-power-radical functional equations (S r), (S r
g f ), (S r

f g), (S r
gg), (S r

gh)
in Sections 3 and 4, then they yield the superstability results for all (S)-type functional equations: (S ),
(S g f ), (S f g), (S gg), (S gh).

In addition, for all results of the (S)-types obtained above, applying again (i) φ(x) = φ(y) = ε, then
they yield the additional results (Hyers-sense) for (S)-types.

(iii) Many results obtained for the (S)-types and p-power-radical (S r)-types in (i) and (ii) are found
in Cholewa [16], Badora [8], Badora and Ger [9], Kannappan and Kim [10], Kim and Dragomir [11],
Kim [17, 18, 22] and in papers [8, 9, 13–15].

5. Extension of the stability to Banach algebras

All results in Sections 3 and 4 can be expanded to the stability on Banach algebras. The following
theorem is based on Theorems 1 and 2, and Corollary 1. The remainder results also are represented as
similar type as Theorem 3, respectively, their proofs will skip for the sake of brevity.

Theorem 3. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume that f , g, h : R −→ E
satisfy the inequality

∥∥∥∥∥∥∥ f

 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x)h(y)

∥∥∥∥∥∥∥ ≤


(i) φ(y),
(ii) φ(x),
(iii) min{φ(x), φ(y)},

where p is a positive odd integer.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ g is bounded or h satisfies (S r), In addition, if g satisfies (Cr), then

h and g satisfy (T r
g f ):= h

(
p
√

xp + yp
)
− h

(
p
√

xp − yp
)
= 2g(x)h(y);

(ii) either the superposition x∗ ◦ h under the cases g(0) = 0 or f (x)2 = f (−x)2 is bounded or g
satisfies (S r). In addition, if h satisfies (Cr), then g and h satisfy the Wilson equation (Wr):=
g
(

p
√

xp + yp
)
+ g

(
p
√

xp − yp
)
= 2g(x)h(y);

(iii) the above (i) and (ii) hold. In addition, if the superposition x∗ ◦ g is unbounded, then g satisfies
(S r)

Proof. (i) Assume that (i) holds and fix arbitrarily a linear multiplicative functional x∗ ∈ E. As is well
known, we have ∥x∗∥ = 1, whence, for every x, y ∈ R, we have

φ(y) ≥

∥∥∥∥∥∥∥g(x)h(y) − f

 p

√
xp + yp

2

2

+ f

 p

√
xp − yp

2

2∥∥∥∥∥∥∥
= sup
∥y∗∥=1

∣∣∣∣∣∣∣y∗
g(x)h(y) − f

 p

√
xp + yp

2

2

+ f

 p

√
xp − yp

2

2
∣∣∣∣∣∣∣
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≥

∣∣∣∣∣∣∣x∗(g(x)) · x∗(h(y)) − x∗
 f

 p

√
xp + yp

2

 + x∗
 f

 p

√
xp − yp

2


∣∣∣∣∣∣∣ ,

which states that the superpositions x∗ ◦ g and x∗ ◦ h produce a solution of stability inequality (3.1)
of Theorem 1. Since, by assumption, the superposition x∗ ◦ g is unbounded, an appeal to Theorem 1
forces that the function x∗ ◦ h is a solution of (S r), that is,

(x∗ ◦ h)

 p

√
xp + yp

2

2

− (x∗ ◦ h)

 p

√
xp − yp

2

2

= (x∗ ◦ h)(x)(x∗ ◦ h)(y). (5.1)

In other presents, by the linear multiplicativity of x∗, for all x, y ∈ R, the differenceDS r : R×R→ E
defined by

DS r(x, y) := h

 p

√
xp + yp

2

2

− h

 p

√
xp − yp

2

2

− h(x)h(y)

falls into the kernel of x∗. Thus, in view of the unrestricted choice of x∗, we infer that

DS r(x, y) ∈
⋂
{ker x∗ : x∗ is a multiplicative member of E∗}

for all x, y ∈ R. Since the space E is a semisimple,
⋂
{ker x∗ : x∗ ∈ E∗} = 0, which means that h

satisfies the claimed Eq (S r).
In addition, if g satisfies (Cr), then it is trivial that h and g satisfy h

(
p
√

xp + yp
)
− h

(
p
√

xp − yp
)
=

2g(x)h(y).
(ii) By assumption, the superposition z∗◦h with g(0) = 0 or f (x)2 = f (−x)2 is unbounded, an appeal

to Theorem 2 shows that the results hold.
The superposition x∗ ◦ g satisfies (5.1), that is a solution of the Eq (S r).
As in (i), a linear multiplicativity of x∗ and semisimplicity imply

g

 p

√
xp + yp

2

2

− g

 p

√
xp − yp

2

2

− g(x)g(y) ∈
⋂
{ker x∗ : x∗ ∈ E∗} = 0,

which means that g satisfies (S r). In addition, if h satisfies (Cr), then it is trivial that g and h satisfy
g
(

p
√

xp + yp
)
+ g

(
p
√

xp − yp
)
= 2g(x)h(y).

(iii) It follows from the above (i) and (ii), and the additional case of (iii) holds by Corollary 1.

Corollary 10. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume that f , g : R −→ E
satisfy the inequality

∥∥∥∥∥∥∥ f

 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x)g(y)

∥∥∥∥∥∥∥ ≤


(i) φ(x),
(ii) φ(y),
(iii) min{φ(x), φ(y)},

where p is a positive odd integer.
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition x∗ ◦ g is bounded

or g satisfies (S r). In particular, the case (ii) holds under the condition g(0) = 0 or f (x)2 = f (−x)2.
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Corollary 11. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume that f , g : R −→ E
satisfy the inequality∥∥∥∥∥∥∥ f

 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− g(x) f (y)

∥∥∥∥∥∥∥ ≤


(i) φ(x),
(ii) φ(y),
(iii) min{φ(x), φ(y)},

where p is a positive odd integer.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ g is bounded or f satisfies (S r), In addition, if g satisfies (Cr), then

f and g satisfy (T r
g f );

(ii) either the superposition x∗ ◦ f under the cases g(0) = 0 or f (x)2 = f (−x)2 is bounded or g
satisfies (S r). In addition, if f satisfies (Cr), then g and f satisfy the Wilson equation (Wr);

(iii) the above (i) and (ii) hold. Also, additionally, if the superposition x∗ ◦ g is unbounded, then g
satisfies (S r)

Corollary 12. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume that f , g : R −→ E
satisfy the inequality∥∥∥∥∥∥∥ f

 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− f (x)g(y)

∥∥∥∥∥∥∥ ≤


(i) φ(x),
(ii) φ(y),
(iii) min{φ(x), φ(y)},

where p is a positive odd integer.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ f is bounded or g satisfy (S r). In addition, if f satisfies (Cr), then g

and f satisfy (T r
g f );

(ii) either the superposition x∗ ◦ g under the cases g(0) = 0 or f (x)2 = f (−x)2 is bounded or f
satisfies (S r). In addition, if g satisfies (Cr), then f and g satisfy (Wr);

(iii) the above (i) and (ii) hold. Also, additionally, if the superposition x∗ ◦ g is unbounded, then g
satisfies (S r),

Corollary 13. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume that f : R −→ E
satisfies the inequality∥∥∥∥∥∥∥ f

 p

√
xp + yp

2

2

− f

 p

√
xp − yp

2

2

− f (x) f (y)

∥∥∥∥∥∥∥ ≤


(i) φ(x),
(ii) φ(y),
(iii) min{φ(x), φ(y)},

where p is a positive odd integer.
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition x∗ ◦ f is bounded

or f satisfies (S r).

Remark 2. Follow (i) and (ii) of Remark 1 for all results in Section 5, namely,
(i) Apply φ(x) = φ(y) = ε in all results.
(ii) Apply ‘p = 1’ in all results. Next, apply (i) again in the results.
Then, a number of the results are found in the same papers in (iii) of Remark 1.
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6. Conclusions

In this paper, we studied solutions and creating of the p-power-radical functional equations arisen
simultaneously from the trigonometric functions, hyperbolic function, exponential function and p-
radical function.

We investigated the superstability bounded by a function (Gǎvruta sense) for the p-power-radical
sine functional equation (S r) from an approximation of the p-power-radical functional equations (S r

gh),
and (S r), (S r

g f ), (S r
f g), (S r

gg) with p is a positive odd integer. Furthermore, the obtained results extended
to Banach algebras. As a result, we have improved the previous stability results for (S)-type functional
equations: (S ), (S g f ), (S f g), (S gg), (S gh) to that of the p-power-radical equations: (S r), (S r

g f ), (S r
f g),

(S r
gg), (S r

gh).
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10. P. Kannappan, G. H. Kim, On the stability of the generalized cosine functional equations, Annates
Acad. Paedagogicae Cracov., 2001 (2001), 49–58.

11. G. H. Kim, S. S. Dragomir, On the the stability of generalized d’Alembert
and Jensen functional equation, Int. J. Math. Math. Sci., 2006 (2006), 043185.
https://doi.org/10.1155/IJMMS/2006/43185

12. B. Bouikhalene, E. Elquorachi, J. M. Rassias, The superstability of d’Alembert’s
functional equation on the Heisenberg group, Appl. Math. Lett., 23 (2010), 105–109.
https://doi.org/10.1016/j.aml.2009.08.013

13. P. de Place Friis, d’Alembert’s and Wilson’s equations on Lie groups, Aequ. Math., 67 (2004),
12–25. https://doi.org/10.1007/s00010-002-2665-3

14. E. Elqorachi, M. Akkouchi, On Hyers-Ulam stability of the generalized Cauchy and Wilson
equations, Publ. Math. Debrecen, 66 (2005), 283–301. https://doi.org/10.5486/PMD.2005.2956

15. P. Sinopoulos, Generalized sine equations, III, Aeq. Math., 51 (1996), 311–327.
https://doi.org/10.1007/BF01833286

16. P. W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc., 88 (1983), 631–634.
https://doi.org/10.1090/S0002-9939-1983-0702289-8

17. G. H. Kim, A stability of the generalized sine functional equations, J. Math. Anal. Appl., 331
(2007), 886–894. https://doi.org/10.1016/j.jmaa.2006.09.037

18. G. H. Kim, On the stability of the generalized sine functional equations, Acta Math. Sin. Engl.
Ser., 25 (2009), 29–38.

19. M. E. Gordji, M. Parviz, On the Hyers-Ulam-Rassias stability of the functional equation
f (

√
x2 + y2) = f (x) + f (y), Nonlinear Funct. Anal. Appl., 14 (2009), 413–420.

20. M. Almahalebi, R. El Ghali, S. Kabbaj, C. Park, Superstability of p-radical functional
equations related to Wilson-Kannappan-Kim functional equations, Results Math., 76 (2021), 1–14.
https://doi.org/10.1007/s00025-021-01409-2

21. G. H. Kim, Superstability of the p-radical functional equations related to
Wilson’s and Kim’s equation, Int. J. Nonlinear Anal. Appl., 12 (2021), 571–582.
https://doi.org/10.22075/IJNAA.2021.23376.2526

22. G. H. Kim, On the superstability of the p-power-radical sine functional equation, Nonlinear Funct.
Anal. Appl., 28 (2023), 801–812. https://doi.org/10.22771/nfaa.2023.28.03.14

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 10, 6347–6362.

http://dx.doi.org/https://doi.org/10.1155/IJMMS/2006/43185
http://dx.doi.org/https://doi.org/10.1016/j.aml.2009.08.013
http://dx.doi.org/https://doi.org/10.1007/s00010-002-2665-3
http://dx.doi.org/https://doi.org/10.5486/PMD.2005.2956
http://dx.doi.org/https://doi.org/10.1007/BF01833286
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1983-0702289-8
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.09.037
http://dx.doi.org/https://doi.org/10.1007/s00025-021-01409-2
http://dx.doi.org/https://doi.org/10.22075/IJNAA.2021.23376.2526
http://dx.doi.org/https://doi.org/10.22771/nfaa.2023.28.03.14
http://creativecommons.org/licenses/by/4.0

	Introduction
	Solutions of the functional equations
	Superstability of ( Sr) from ( Srgh)
	Application to the superstability of the Eqs ( Sr), ( Srgg), ( Srgf) and ( Srfg)
	Superstability of the Eq (Sgg)
	Superstability of the Eq (Sgf)
	Superstability of the Eq (Sfg)
	Superstability of the p-power-radical sine functional equation ( Sr)

	Extension of the stability to Banach algebras
	Conclusions

