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1. Introduction

A 2-(v, k, λ) design D is a pair (P,B), where P is a set of v points, and B is a set of k-subsets of
P called blocks, such that any 2 points are contained in exactly λ blocks. A flag is a point-block pair
(α, B) with α ∈ B. The Fisher’s inequality in [8, 1.3.8] shows that the number of blocks is at least v.
Design D is said to be non-symmetric if v < b and non-trivial if 2 < k < v − 1. We always assume
D to be non-trivial and non-symmetric in this paper. An automorphism of D is a permutation of P
that leaves B invariant. All automorphisms of the designD form a group called the full automorphism
group ofD, denoted by Aut(D). Let G ≤ Aut(D). The designD is called point (block, flag)-transitive
if G acts transitively on the set of points (blocks, flags) and point-primitive if G acts primitively on P,
that is, G does not preserve a partition of P in classes of size c with 1 < c < v.

For decades, works have been done on the classification of 2-designs admitting a transitive
automorphism group. In 1988, Buekenhout, Delandtsheer, and Doyen first proved in [5] that the
flag-transitive automorphism group of a 2-(v, k, 1) design must be of affine or almost simple type.
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Then, the classification of flag-transitive 2-(v, k, 1) designs was given in [6] by a six-person team,
except for the case of the one-dimensional affine type. In recent years, some researchers have focused
on into classifying 2-(v, k, λ) designs with general λ admitting flag-transitive automorphism group,
such as [1, 3, 12, 16, 25–27]. Moreover, some of the works also considered classification of such
designs admitting automorphism groups in a weaker condition, namely, block-transitive rather than
flag-transitive [21–24].

The current paper tackles the 2-(v, k, λ) designs where λ is a prime. In [25], Zhang and Chen
reduced the flag-transitive, point-primitive automorphism groups of such 2-designs either to the affine
type (with an elementary abelian p-group as socle) or to the almost simple type (with a nonabelian
simple socle). Hence, it is possible to classify such 2-designs based on the classification of simple
groups. The aim of this paper is to consider the case when the socle of the automorphism group G is
an exceptional simple group of Lie type. Note that groups G2(2), 2G2(3), 2B2(2), and 2F4(2) are not
simple, so they are not under consideration in this work. It is also worth noting that the symmetric 2-
designs with exceptional simple socle have been studied in [1, 2, 20]. The main result of the current
paper is the following:

Theorem 1.1. Let D be a non-symmetric 2-(v, k, λ) design with λ prime and G a flag-transitive
automorphism group ofD. If the socle T of G is an exceptional Lie type simple group in characteristic
p, then one of the following holds:

(1) T is 2B2(q) with q = 22n+1 > 2 and (v, k, λ) = (q2 + 1, q, q − 1), where q − 1 is a Mersenne prime;
(2) T is G2(q), and (v, k, λ) = ( q3(q3−1)

2 , q3

2 , q + 1) where q > 2 is even and q + 1 is a Fermat prime.

Remark 1.1. For the parameters in Theorem 1.1(1), the design D is described in [26]. For the
parameters in Theorem 1.1(2), the existence of such a design remains uncertain at this time.

2. Preliminaries

We begin with some well-established results about the parameters of 2-(v, k, λ) designs and the
automorphism groups of them. For any point α, we denote by r the number of blocks that contain α,
as it is a constant.

Lemma 2.1. ([8]) For a 2-(v, k, λ) designD, it is well known that

(1) bk = vr;
(2) λ(v − 1) = r(k − 1);
(3) λv < r2.

Lemma 2.2. ( [8, Section 1.2]) Assume that G is an automorphism group of D. Then the flag-
transitivity of G is equivalent to one of the following:

(1) G is point-transitive, and the point stabilizer Gα is transitive on all blocks that contain α;
(2) G is block-transitive, and the block stabilizer GB is transitive on the k points in block B.

Lemma 2.3. ( [7]) Assume that G is a flag-transitive automorphism group of D, and T is the socle of
G. Then, we have

(1) r | |Gα|, where Gα is the point-stabilizer of G;
(2) r | λdi, where di is any nontrivial subdegree of G.
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3. Proof of Theorem 1.1

Assume that λ is a prime. Then either (λ, r) = 1 or λ | r. For the former case, by the results of [26],
we immediately obtain the following Lemma:

Lemma 3.1. Assume that G andD satisfy the hypothesis of Theorem 1.1. If (λ, r) = 1, then T = 2B2(q)
with q = 22n+1 ≥ 8, andD is a 2-(q2+1, q, q−1) design with q−1 a Mersenne prime. In particular, 2n+1
is prime.

Therefore, we always assume λ | r in the remaining content. Let r0 = r
λ
. We get the following from

Lemmas 2.1 and 2.3.

Lemma 3.2. Assume that D is a 2-(v, k, λ) design where λ is a prime divisor of r, and G is a flag-
transitive automorphism group ofD. Then we have

(1) v < λr2
0;

(2) r0 divides the greatest common divisor of |Gα|, v − 1 and all nontrivial subdegrees of G.

3.1. Parabolic maximal subgroups

Since G is point-primitive, the point stabilizer Gα is a maximal subgroup of G. In this section, we
first deal with the case when Gα is a maximal parabolic subgroup of G.

Lemma 3.3. Assume that T = 2B2(q) with q = 22n+1 > 2. Then Gα cannot be the maximal parabolic
subgroup of G.

Proof. If Gα is a maximal parabolic subgroup of G, we know that |Gα| = f q2(q − 1) with f | (2n + 1)
from [19], and hence v = q2 + 1. Then, according to (1) and (2) in Lemma 2.1 and the fact λ | r, we
further get k − 1 | q2 and b =

λq2(q2+1)
k(k−1) . Since G is flag-transitive, Lemma 2.2 implies that |GB| =

|G|
b =

f k(k−1)(q−1)
λ

. All maximal subgroups of G can be read off from [19], and let M be any one of them with
GB ≤ M. The fact that |GB| divides |M| implies that M is the maximal parabolic subgroup of G, and
k(k − 1) divides λq2. This forces k = λ, for otherwise k(k − 1) | q2, which is a contradiction. It follows
that GB is primitive on B, and so TB is transitive on B. Namely, |TB : Tγ,B| = k for any point γ ∈ B. On
the other hand, since M is parabolic, there exists a point α such that M = Gα. That is to say, TB ≤ Tα

and therefore Tγ,B ≤ Tγ,α for γ ∈ B. Since the stabilizer of any two points in 2B2(q) is a cyclic group of
order q − 1 by [9, p.187], |Tγ,B| divides (q − 1). Also, |T : Tγ,α| divides bk by the flag-transitivity of G.
It follows that (k − 1) | λ, which holds only when λ = k = 2, for it has been proved that k = λ above.
This is impossible asD is nontrivial. �

Lemma 3.4. Assume that T = 2G2(q) with q = 32n+1 > 3. Then Gα cannot be the maximal parabolic
subgroup of G.

Proof. If Gα is the maximal parabolic subgroup of G, then we know that |Gα| = f q3(q − 1) with
f | (2n + 1) from [11], and so v = q3 + 1. Similar as to Lemma 3.3, we have

b =
λv(v − 1)
k(k − 1)

=
λq3(q3 + 1)

k(k − 1)
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and k − 1 | q3. Let f1 be a divisor of f such that |GB : TB| = f1. Then by the flag-transitivity of G, we
get

|TB| =
f (q − 1)k(k − 1)

f1λ
.

Here, we also consider the maximal subgroups M of 2G2(q) such that TB ≤ M. From [11], either M is
parabolic, or M � Z2 × PS L2(q).

If M is a parabolic subgroup, then k(k − 1) | λq3. Since k − 1 | q3, we have k | λ and therefore λ = k.
It follows that λ − 1 | q3 and λ = 3n1 + 1, which forces λ = k = 2, for λ is prime. However, now we
get b = q3(q3 + 1) >

(
v
2

)
, which is obviously impossible. Hence, in the remaining part of the proof, we

assume that TB ≤ Z2 × PS L2(q).
According to the list of the maximal subgroups of PS L2(q) in [4, Tables 8.1 and 8.2], TB is

isomorphic to a subgroup of Z2 × A4, Z2 ×Dq±1, Z2 × ([q] : Z q−1
2

) or Z2 × PS L2(q0) with q`0 = q = 32n+1.
Obviously, the former two cases are impossible as k − 1 | q3. Then, if TB . Z2 × ([q] : Z q−1

2
), we also

have λ = k, a contradiction again. For the last case, the condition that |TB| divides |Z2×PS L2(q0)| forces
q0 = q, which implies that TB is isomorphic to Z2×PS L2(q) or PS L2(q). Then, by |T : TB| | b, we have
k(k−1) | q(q + 1)λ. This, together with k−1 | q2, implies that k−1 | q when λ , 3, and k−1 | 3q when
λ = 3. Furthermore, the facts that q + 1 is the smallest degree of non-trivial action of PS L2(q) since q
is an odd power of 3 and that |TB : Tα,B| divides k imply k = q + 1. Hence, |TB| =

f k(k−1)(q−1)
f1λ

=
q(q2−1)

a ,
with a = 1 or 2 when TB is Z2 × PS L2(q) or PS L2(q), respectively. It follows that λ | f when TB is
Z2 × PS L2(q), or λ = 2 when TB is PS L2(q).

Let R be the Ree unital of order q (which is a 2-(q3 + 1, q + 1, 1) design). For the former case, let
σ be the central involution of Z2 × PS L2(q). It can be deduced from [15] that σ fixes a block ` of R
pointwise and preserves a point-partition Sσ of R \ ` into q2 − q blocks, each of them invariant by σ.
Now, Z2 × PS L2(q) induces PS L2(q) on Sσ ∪ {`}, and PS L2(q) preserves ` acting on this one in its
natural 2-transitive action of degree q+1. Further, PS L2(q) partitions Sσ into two orbits each of length
q2−q

2 . Thus, ` is the unique Z2×PS L2(q)-orbit of points of R of length q + 1. Note that k = q + 1, which
means B = `. This means that |BG| = |`G| = q2(q2 − q + 1) by [6], and so λ = 1, which contradicts
with λ being prime. For the latter case, the block stabilizer T` for the Ree unital is Z2 × PS L2(q), and
Z2 fixed all points in `. However, since αTB ⊆ αT` and |αTB | = |αT` | = q + 1, we have αTB = αT` . This
means that Z2 fixed all points in B, and so Z2 ∈ TB, an obvious contradiction. �

For the remaining possibility of T in T , where

T = {2F4(q), 3D4(q),G2(q), F4(q), Eε
6(q), E7(q), E8(q)},

we use the following Lemma from [14] to prove that Gα cannot be the maximal parabolic subgroup.
Note that in the following we denote by np the p-part of n and np′ the p′-part of n, i.e., np = pt where
pt | n but pt+1 - n, and np′ = n/np.

Lemma 3.5. ([14]) Assume that T is a simple group of Lie type in characteristic p and acts on the
set of cosets of a maximal parabolic subgroup. Then T has a unique subdegree which is a power of p
except when T is Ld(q), Ω+

2m(q) (m is odd) or E6(q).

Lemma 3.6. If T ∈ T , then Gα cannot be a parabolic subgroup of G.
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Proof. By Lemma 3.5, for all cases where T ∈ T \ {E6(q)}, there is a unique subdegree which is a
power of p. Then, Lemma 3.2 implies that r0 divides |v−1|p. Since we also have λ divides |Gα|, we can
easily check that r0 is too small to satisfy the condition v < λr2

0. Therefore, we assume that T = E6(q).
If G contains a graph automorphism, or Gα ∩ T is P2 or P4, then there is also a unique subdegree that
is a power of p. However, r0 is too small again. If Gα ∩ T is P3 with type A1A4, we have λ ≤ q5−1

q−1 by
λ | |Gα| and

v =
(q3 + 1)(q4 + 1)(q9 − 1)(q6 + 1)(q4 + q2 + 1)

(q − 1)
.

Moreover, from [1, Proposition 6.3], we know that there exist two nontrivial subdegrees: q13 q5−1
q−1 and

q(q5−1)(q4−1)
(q−1)2 . Lemma 3.2 then implies that r divides λqq5−1

q−1 . However, the condition v < λr2
0 cannot be

satisfied again. If Gα ∩ T is P1 with type D5, then

v =
(q8 + q4 + 1)(q9 − 1)

q − 1
,

and there exist two nontrivial subdegrees (see [13]): q(q3+1)(q8−1)
(q−1) and q8(q4+1)(q5−1)

(q−1) . It follows that r |
λq(q4 + 1). This, together with λ | |Gα|, implies that r2 < λ2q2(q4 + 1)2 < λv, which is contradictive
with Lemma 2.1. �

3.2. Non-parabolic maximal subgroups

In this section, we assume that Gα is a non-parabolic maximal subgroup of G.

Lemma 3.7. Assume that G andD satisfy the hypothesis of Theorem 1.1. Then, |G| < |Gα|
3.

Proof. From Lemma 2.3, we know that r divides every nontrivial subdegree of G, and so r divides |Gα|.
Since v < r2 by (3) of Lemma 2.1, it follows that |G| < |Gα|

3. �

Lemma 3.7 implies that Gα is a large maximal non-parabolic subgroup of G. The type of Gα can be
read from [1, Table 2]. Note that Theorem 1.1(2) just corresponds to the non-parabolic case here, with
T = G2(q) and the type of Gα being S Lε3(q).2.

Lemma 3.8. Assume that G and D satisfy the hypothesis of Theorem 1.1. If T = G2(q) and the type
of Gα is S Lε3(q).2 with ε = ±, then ε = −, T is flag-transitive on D, and the parameters of D are
(v, b, r, k, λ) = ( q3(q3−1)

2 , (q + 1)(q6 − 1), (q + 1)(q3 + 1), q3

2 , q + 1), where q is even, and λ = q + 1 is a
Fermat prime.

Proof. It is obvious that |Tα| = 2q3(q2 − 1)(q3 − ε1), and hence v = 1
2q3(q3 + ε1). We first deal with

the case when q is even. Since G2(2) is not simple (G2(2) � PS U3(3) : 2), we assume that q > 2.
From [17, Section 3, Case 8], we know that r divides λ(q3 − ε1). Then, the equality λ(v− 1) = r(k − 1)
from Lemma 2.1 implies that there exists an odd integer t dividing (q3 − ε1) such that

k = t
(q3 + ε2)

2
+ 1 and r =

λ(q3 − ε1)
t

.

Obviously, the fact that k < r implies t < λ. Moreover, by Lemma 2.1 we have

b =
λv(v − 1)
k(k − 1)

=
λq3(q6 − 1)(q3 + ε2)

4k(k − 1)
=
λq3(q6 − 1)

2kt
. (3.1)
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Note also that (2k, q3 − ε1) | 3t + ε2, (2k, q3 + 1) | t + ε2, (k, q3

2 ) | t + ε1, and therefore (2k, q2 − 1) |
(t + ε2)(3t + ε2). Since b is an integer, it follows from (3.1) that k | λq3

2 (q3 − ε1)(q3 + ε1). Hence, we
have

t(q3 + ε2)
2

+ 1 | λ(t + ε2)(t + ε1)(3t + ε2). (3.2)

Since 3t + ε2 ≤ 5t, it follows that q3 + ε2 < 10λ(t + ε2)(t + ε1) except when t = 1 and ε = −. When
t , 1, the above together with t < λ further implies that λ cannot be a prime divisor of |Out(T )|, and
hence λ divides |S Lε3(q).2|.

In the following, we prove that t = 1. Obviously, t , 2, for t is odd. When t ≥ 3, we have
r
λ
≤ 1

3 (q3−ε1) and 3t
2 < λ by t (q3+ε2)

2 < k ≤ r ≤ λ (q3−ε1)
3 . Now, assume that λ | k. Then λ divides (2q3(q2−

1)(q3 − ε1), 2k), and it follows that λ | 4(t + ε1)(t + ε2)(3t + ε2)2. Since 3
2 t < λ, we have λ = 3t + ε2, or

ε = + and λ = 3t+2
2 . If λ = 3t + 2ε, then k < r forces (t, λ, ε) = (5, 17,+), (5, 13,−), (3, 11,+), (3, 7,−),

or (1, 5,+). Note that k | λ(t + ε2)(t + ε1)(3t + ε2), and we check each case and know that it is
impossible. If λ = 3t+2

2 , then we get (t, λ) = (4, 7), which can be ruled out similarly. Hence, λ - k, and
it follows (3.2) that t > q. On the other hand, since |T : TB| | b, there exists an integer f1 dividing f
such that f1|T : TB| = b and

|TB| =
2 f1q3(q2 − 1)k

λt
.

Since λ - k and λ > t > q ≥ 2, λ is a divisor of f1, (q − 1), q + 1, or q, and so λ ≤ q + 1. Since
q < t < 2

3λ, we get a contradiction. Therefore, t = 1 as we claim.

Let t = 1. Then, r
λ

= (q3 − ε1), and k =
(q3+2ε)

2 + 1 with q even. If ε = +, then r = λ(q3 − 1), and
k =

q3+4
2 . Since b is an integer, we get that q3 + 4 divides λq3(q6 − 1). It follows that q3 + 4 | 60λ,

and so λ divides q3 + 4, which is impossible as λ is a prime divisor of 2q3(q2 − 1)(q3 − 1). We now
assume that ε = −. Then, k =

q3

2 and b = λ(q6 − 1), and r = λ(q3 + 1) for q ≥ 4. Moreover, in
this case |TB| =

f1q6(q2−1)
λ

and we further find that TB is contained in a maximal parabolic subgroup
M = q5 : GL2(q) of G2(q). Since G is flag-transitive, Lemma 2.2 implies that |S U3(q).2 : Tα,B| divides
λ(q3 + 1). Using the maximal subgroup list for S U3(q) provided in [4, Tables 8.5 and 8.6], we get that
Tα,B is isomorphic to a subgroup of M1 = q3 : Cq2−1.2. If Tα,B = M1 or λ - q2 − 1, then Tα,B contains a
cyclic group of order q2−1, which contradicts Tα,B ≤ TB ≤ q5 : GL2(q). Hence, |M1 : Tα,B| = λ divides
q2 − 1. This also implies that T is flag-transitive, and so |T : M||M : TB| = λ(q6 − 1). It follows that
|M : TB| = |GL2(q) : TB ∩ GL2(q)| = λ(q − 1), which gives |TB ∩ GL2(q)| = q (q2−1)

λ
. Then, using the

list of maximal subgroups of S L(2, q) provided in [4, Tables 8.1 and 8.2], we get that λ - q − 1, and
so λ | q + 1, which further implies that λ = q + 1. This is to say, if such design exists, then the design
parameters tuple is (v, b, r, k, λ) = ( q3(q3−1)

2 , (q + 1)(q6 − 1), (q + 1)(q3 + 1), q3

2 , q + 1), where λ = q + 1 is
a Fermat prime.

Now, we assume that q is odd. Then, we conclude that r divides λ (q3−ε1)
2 from [17, Section 4, Case 1,

i = 1]. Let rt = λ (q3−ε1)
2 . Similar as in the even case, we also have t = 1. That is to say, k = q3 + ε2 + 1

and r = λ (q3−ε1)
2 . When ε = +, the fact of k dividing λq3(q6 − 1) q3 + 3 implies that q3 + 3 divides 24λ,

and so λ divides q3 + 3, which is impossible as λ is a prime divisor of 2q3(q2 − 1)(q3 − 1). If ε = −, we
have k = q3 − 1, and so b =

λq3(q3+1)
4 . We consider a maximal subgroup M containing TB. It is proven

later that M � TB � S L3(q).2 and hence that is unique. The fact that |T : M| | b implies that M is
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S L3(q).2 by [4, Tables 8.41 and 8.42] and that |T : M| = q3(q3+1)
2 . It follows that 2|M : TB| | λ, which

forces λ = 2 and M = TB � S L3(q).2. Since Tα � S U3(q).2 and r = q3 + 1, we have Tα,B � q3.Cq2−1.2
or q3.Cq2−1. According to the maximal subgroups of S L3(q) in [4, Tables 8.3 and 8.4], we know that
Tα,B is isomorphic to a subgroup of q2.GL2(q).2, which is impossible. �

All other types of Gα in [1, Table 2], except two cases which we will discuss in Lemma 3.10, can
be ruled out using the method stated below. First, for each possibility of Gα, the order of Gα and the
value of v can be determined. We can hence get an upper bound of λ according to λ | |Gα|. Then, to
get an upper bound of r0, we consider the divisors of |Gα| in two parts:

∏i1
i=1 Φi for which Φi divides

v, and
∏i2

j=1 Ψ j = |Gα|/
∏i1

i=1 Φi. Obviously, all Φi are coprime with v − 1. For each Ψ j, we calculate
the remainder Ψ̄ j of Ψ j divided by v− 1. This implies that (|Gα|, v− 1) divides |Out(T )|

∏i2
j=1 Ψ̄ j, which

implies that r0 ≤ |Out(T )|
∏i2

j=1 Ψ̄ j. Finally, one can check that the values of r0 for all these cases are
too small to satisfy the condition that v < λr2

0. That is, no new designs arise in these cases. To be more
explicit, we take T = E8(q) as an example.

Lemma 3.9. Assume that G and D satisfy the hypothesis of Theorem 1.1. If T = E8(q) with q = pe,
then Gα cannot be a non-parabolic maximal subgroup of G.

Proof. Let T = E8(q). Then, it follows from [1, Table 2] that the type of Gα is one of the following:

{A1(q)E7(q), D8(q), E8(q
1
2 ), E8(q

1
3 ), Aε

2(q)Eε
6(q) }.

For the case that Gα is of type A1(q)E7(q), we have λ < q8 since λ | |Gα| and v = q56(q6 + 1)(q10 +

1)(q12 + 1)q30−1
q2−1 by v = |G : Gα|. Obviously, q(q6 + 1) | v and q30−1

q2−1 | v, which also implies q6−1
q2−1 | v and

q10−1
q2−1 | v. This means (|Gα|, v−1) divides |Out(T )|(q2−1)5(q8−1)(q14−1)(q18−1). Since r0 | (|Gα|, v−1),
we have r0 < q51. However, Lemma 3.2 shows q112 < v < λr2

0 < q110, a contradiction.
For the case that Gα is of type D8(q), we have λ < q7 and

v = q64(q12 + q6 + 1)(q16 + q8 + 1)
(q10 + 1)(q30 − 1)

q4 − 1
.

Since v− 1 ≡ 2(mod q4 + 1), (v− 1, q4 + 1) = 2 or 1. This, together with q | v and q30−1
q2−1 | v, implies that

(|Gα|, v−1) divides 4|Out(T )|(q2−1)3(q4−1)3(q12−1)(q14−1). It follows that r0 ≤ 4|Out(T )|q44 < 4q45,
and q128 < v < λr2

0 < 4q97, which is a contradiction.
Assume that Gα is of type E8(q

1
2 ). Then, λ ≤ q15 and v = q60(q + 1)(q4 + 1)(q6 + 1)(q7 + 1)(q9 +

1)(q10 + 1)(q12 + 1)(q15 + 1). Since q, q3 + 1, q4 + 1, q5 + 1, and q6 + 1 are divisors of v, we get that
(|Gα|, v − 1) divides |Out(T )|(q − 1)2(q3 − 1)2(q5 − 1)(q7 − 1)(q9 − 1)(q15 − 1). It follows that r0 < q45,
and so q124 < v < λr2

0 < q105, a contradiction again.
Assume that Gα is of type Aε

2(q)Eε
6(q) or E8(q

1
3 ). Then, since Gα is non-parabolic, the Tits lemma

in [18, 1.6] implies that p divides v = |G : Gα|, and so (|Gα|, v − 1) is coprime with p. It follows that
r0 ≤ |Gα|p′ as r0 divides (|Gα|, v − 1). This implies that v < λ|Out(T )|2|Tα|

2
p′ by Lemma 3.2, which

cannot be satisfied when Gα is of type Aε
2(q)Eε

6(q) or E8(q
1
3 ). �
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Lemma 3.10. Assume that G andD satisfy the hypothesis of Theorem 1.1. Then the type of Gα cannot
be either (q − ε1)Dε

5(q) when T = Eε
6(q) or (q − ε1)Eε

6(q) when T = E7(q).

Proof. Assume that T is Eε
6(q) and Gα is of type (q − ε1)Dε

5(q). Then, λ < 2q4 as λ divides |Gα|

and v =
q16(q9−ε1)(q12−1)

(3,q−1)(q−ε1)(q4−1) . In addition, we know from [1, Theorem 4.1] that there exist two subdegrees:
q8(q5 − ε)(q4 + 1) and q10(q3 + ε)(q8 − 1). Since r0 divides the greatest common divisors of every
non-trivial subdegree and v − 1 (Lemma 2.3), we have (r0, p) = 1, and so r0 | 2(q − ε1)(q4 + 1), which
implies that r0 is too small to satisfy v < λr2

0 again.
If T is E7(q) and Gα is of type (q−ε1)Eε

6(q), we have λ ≤ 2q6 and v = q27(q5 +ε1)(q9 +ε1) (q14−1)
q−ε1 . [1,

Theorem 4.1] shows that there exist two subdegrees, which divide q12(q5 − ε)(q9 − ε) and(4, qm −

1ε)q16(q5 − ε)( q12−1
q4−1 ), respectively. However, by Lemma 2.3 we know that r0 is too small again. �

Proof of Theorem 1.1. It follows immediately from Lemmas 3.1–3.10. �

4. Conclusions

In this paper, we figure out all possible parameters of 2-(v, k, λ) designs D (with λ prime) that
admit flag-transitive point-primitive automorphism groups with an exceptional Lie type socle. Our
work contributes to the classification of flag-transitive 2-(v, k, λ) designs. In addition, the cases that the
automorphism groups of such designs with classical socle will be the main focus in our future work.
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