This work studies a coupled non-linear Schrödinger system with a singular source term. First, we investigate the question of the local existence of solutions. Second, one proves the existence of global solutions which scatter in some Sobolev spaces. Finally, one establishes the existence of non-global solutions. The main difficulty here is to overcome the regularity problem in the non-linearity. Indeed, because of the singularity of the source term, the classical contraction method in the energy space fails in such a regime. So, this paper is to fill such a gap in the literature. The argument follows ideas in T. Cazenave and I. Naumkin (Comm. Contemp. Math., 19 (2017), 1650038). This consists to remark that the singularity problem is only near the origin. So, one needs to impose that the solution stays away from zero. This is not trivial, since there is no maximum principle for the Schrödinger equation. The existence of global solutions which scatter follows with the pseudo-conformal transformation via the existence of local solutions. Finally, the existence of non-global solutions follows with the classical variance method.
Citation: Saleh Almuthaybiri, Tarek Saanouni. On coupled non-linear Schrödinger systems with singular source term[J]. AIMS Mathematics, 2024, 9(10): 27871-27895. doi: 10.3934/math.20241353
[1] | Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254 |
[2] | Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400 |
[3] | Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307 |
[4] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar . On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018 |
[5] | Amnah E. Shammaky, Eslam M. Youssef . Analytical and numerical techniques for solving a fractional integro-differential equation in complex space. AIMS Mathematics, 2024, 9(11): 32138-32156. doi: 10.3934/math.20241543 |
[6] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[7] | Salah Boulaaras, Abdelbaki Choucha, Bahri Cherif, Asma Alharbi, Mohamed Abdalla . Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions. AIMS Mathematics, 2021, 6(5): 4664-4676. doi: 10.3934/math.2021274 |
[8] | Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893 |
[9] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[10] | Yuan Shan, Baoqing Liu . Existence and multiplicity of solutions for generalized asymptotically linear Schrödinger-Kirchhoff equations. AIMS Mathematics, 2021, 6(6): 6160-6170. doi: 10.3934/math.2021361 |
This work studies a coupled non-linear Schrödinger system with a singular source term. First, we investigate the question of the local existence of solutions. Second, one proves the existence of global solutions which scatter in some Sobolev spaces. Finally, one establishes the existence of non-global solutions. The main difficulty here is to overcome the regularity problem in the non-linearity. Indeed, because of the singularity of the source term, the classical contraction method in the energy space fails in such a regime. So, this paper is to fill such a gap in the literature. The argument follows ideas in T. Cazenave and I. Naumkin (Comm. Contemp. Math., 19 (2017), 1650038). This consists to remark that the singularity problem is only near the origin. So, one needs to impose that the solution stays away from zero. This is not trivial, since there is no maximum principle for the Schrödinger equation. The existence of global solutions which scatter follows with the pseudo-conformal transformation via the existence of local solutions. Finally, the existence of non-global solutions follows with the classical variance method.
This paper considers the Cauchy problem for the coupled non-linear Schrödinger system, shortened to CNLS,
{i∂tuj+Δuj=τ(∑1≤k≤najk|uk|σ)|uj|σ−2uj;u|t=0=u0. | (CNLS) |
Here and hereafter, for j∈[1,n], uj is a complex valued function of the variable (t,y)∈R+×RN, and u:=(u1,…,un). The constant 0≠τ∈C and the coupling parameters satisfy:
ajk=akj≥0 and ajj>0for anyj,k∈[1,n]. |
The coupled Schrödinger system (CNLS) models many physical phenomena, such as the propagation in birefringent optical fibers, Kerr-like photorefractive media in optic and Bose-Einstein condensates [1,4,7], see also [2,3,5,6]. The passage of a light beam with two components along an optical fiber produces the decomposition of the ray into two. Then, the model of a scalar Schrödinger equation can be improved by a system of coupled Shrödinger equations [8]. As a consequence, new kinds of solutions appear, first observed by Manakov [9] in a Kerr medium.
In mathematical point of view, many authors focused their attention on coupled nonlinear equations of Schrödinger type. So, the list of references is necessarily incomplete. The local well-posedness in the energy space was proved in [10,11]. The existence of ground states was investigated in [12,13,14]. The scattering of defocusing global solutions was treated in [15]. The scattering in the repulsive regime with small data was obtained in [16,17]. See also [18,19,20,21] for the inhomogeneous case and [22] for the case of harmonic potential and [23] for the parabolic context.
To the author's knowledge, the above works treat only the case σ≥2 in (CNLS). This is to avoid a singularity of the source term for σ<2. The contribution of this paper is to try to fill in this gap in the literature.
The purpose of this paper is to prove the existence of a local solution to the coupled Schrödinger problem (CNLS) in the case 32<σ<2. Then, one establishes the existence of global solutions which scatter in some Sobolev spaces and the existence of non-global solutions with finite variance.
The paper is organized as follows: Section 2 contains the main results and some standard estimates needed in the sequel. Section 3 proves the local existence of solutions to (CNLS). Section 4 establishes the scattering of global solutions and the existence of non-global solutions to (CNLS).
Throughout this paper, we denote the spaces and norms
Ws,p:=Ws,p(RN),Hs:=Ws,2,Lr:=Lr(RN);‖⋅‖r:=‖⋅‖Lr,‖⋅‖:=‖⋅‖2;‖(u1,…,un)‖p:=(∑1≤j≤n‖uj‖pp)1p,‖(u1,…,un)‖:=‖(u1,…,un)‖2. |
Lastly, T∗>0 denotes the lifespan for an eventual solution to (CNLS).
In this section, we give the main results and some standard estimates.
Solutions of (CNLS) formally satisfy the conservation of the following real quantities, respectively the mass and the energy
M(u):=∑1≤j≤n∫RN|uj(t,y)|2dy;E(u):=∑1≤j≤n(|uj(t,y)|2+|∇uj(t,y)|2dy+τσ∑1≤k≤najk|uj(t,y)uk(t,y)|σ)dy. |
Let the non-linear terms
F:=F(u):=[(∑1≤k≤na1k|uk|σ)|u1|σ−2u1,…,(∑1≤k≤nank|uk|σ)|un|σ−2un];Fj:=Fj(u):=(∑1≤k≤najk|uk|σ)|uj|σ−2uj;Fj,k:=Fj,k(u):=|uk|σ|uj|σ−2uj. |
Take for s∈R,
⟨y⟩2:=1+|y|2andIγ:=(1−Δ)s2. |
Here and hereafter, one defines some real numbers
2−σ<α<min{σ−N2m,p−1}; | (2.1) |
max{N4(σ−1),N2(σ−1−α),N2}<m<N2(2−σ); | (2.2) |
M0>N+m; | (2.3) |
M>4E[N2]+5+m, | (2.4) |
where E[⋅] refers to the integer part. Take the Banach space
Y:={u∈(H−N+M0+M)n,‖u‖Y:=∑1≤j≤n(∑|α|≤E[N2]‖⟨y⟩m∂αuj‖∞+∑E[N2]<|α|≤M‖⟨y⟩m∂αuj‖+∑M<|α|≤−N+M0+M‖∂αuj‖)<∞}. |
Let the centered ball of radius R>0, denoted by BT(R):={u∈CT(Y),‖u‖L∞T(Y)≤R}, and for ν>0, take
Bν,T(R):={u∈BT(R),2inft,x|⟨y⟩muj(t,y)|≥ν,∀j∈[1,n]}. |
Finally, we define the vector Schrödinger group
ei⋅Δ(u1,…,un):=(ei⋅Δu1,…,ei⋅Δun). |
In what follows, we list the results proved in this paper. The first purpose of this note is to prove the existence of local solutions to (CNLS).
Theorem 2.1. Let N≥1, 32<σ<2, and u0∈Y, satisfying
infx∈RN|⟨y⟩mu0(x)|>0. | (2.5) |
Then, there are T>0 and a unique solution to (CNLS) denoted by u∈CT(Y). Moreover, the flow is locally continuous.
Remarks 2.1.
1)The condition σ>32, which seems to be technical, is necessary in order to have (2.1);
2) the continuity of the flow follows with standard arguments;
3) assumption (2.5) avoids in some meaning the singularity of the source term for σ<2;
4) the proof follows ideas in [24], where the scalar case is treated;
5) some tools needed in the proof are taken from [25];
6) the proof is based on a Picard fixed point argument.
The second result is about the scattering of global solutions to (CNLS) in some Sobolev spaces.
Theorem 2.2. Let N≥2 and max{1+1N,32}<σ<2. Take v0∈Y satisfying (2.5), and u0:=eiκt|x|24v0 for some real number κ≫1. Take 0≤s<m−N2. Then, there is a unique global solution to (CNLS) in C(R+,Hs)∩⟨y⟩−N2L∞(R+×RN), which scatters in Hs.
Remarks 2.2.
1)The proof is based on the pseudo-conformal transformation [26] and Theorem 2.1;
2) a similar result was first proved [24] in the scalar case;
3) a part of the proof is omitted because it follows [25];
4) the real number κ depends on ν,‖v0‖Y,N,m.
Finally, one proves the existence of non-global solutions to (CNLS).
Proposition 2.1. Take the assumptions of Theorem 2.1, m>1+1N and τ<0. Then, the solution to (CNLS) is non-global if one of the following statements holds:
1)p≥1+2N and E(u0)<0;
2) E(u0)<d and I(u)<0.
Remarks 2.3.
1)The blow-up in the first case follows with classical variance method;
2) the second case follows like [18,Theorem 2.8];
3) d denotes the ground state energy d:=inf0≠u∈(H1)m{E(u),I(u)=0}, where I(u):=BE(u)−(B−2)‖∇u‖2 and B:=N(σ−1).
Some intermediate results are listed in what follows.
In order to investigate the blow-up of solutions, one needs the next variance identity [27].
Proposition 2.2. Assume that u∈CT([H1]n) is a solution to (CNLS) for τ=−1, and satisfies xuj(t)∈L2, for any 1≤j≤n. Then,
18(∑1≤j≤n‖xuj‖2)″=∑1≤j≤n‖∇uj‖2−B2σ∑1≤j,k≤najk∫RN(|ukuj|)σdy. |
The following estimate will be useful [25,Lemma 2.9].
Lemma 2.1. Let α≥0. Then, for all real number: t, we have
‖⟨y⟩αeitΔu‖≤cα⟨t⟩α(‖Iαu‖+‖⟨y⟩αu‖). |
Recall also [25,Proposition 2.10].
Lemma 2.2. Let α≥0, k,K∈N, and s≥2k+K+3+E[N2]+α. Then, for any t∈R and any |μ|≤K,
‖⟨y⟩α∂μeitΔu‖∞≲⟨t⟩k∑|γ|≤k‖⟨y⟩α∂γu‖∞+⟨t⟩1+k+α(‖Isu‖+∑k<|γ|≤2k+K+3+E[N2]‖⟨y⟩α∂γu‖). |
One recalls the nonlinear estimates [25,Proposition 3.1].
Lemma 2.3. Let α≥0, u∈Bν,T(R), and r∈[1,∞]. Then, for all |μ|≤−N+M0+M, we have
1)
‖⟨y⟩α∂μ(|u|σ)‖L∞((0,T),Lr)≲Rσ‖⟨y⟩α−mσ‖r+∑1≤k≤|μ|ν−(2k−σ)R2k−1(R‖⟨y⟩α−mσ‖r+∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(1−σ)∂γu‖L∞((0,T),Lr)). |
2)
‖⟨y⟩α∂μ(|u|σ−2u)‖L∞((0,T),Lr)≲∑0≤k≤|μ|ν−(2k+2−σ)R2k(R‖⟨y⟩α−m(σ−1)‖r+∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(2−σ)∂γu‖L∞((0,T),Lr)). |
Finally, let us give some nonlinear estimates [25,Proposition 3.2].
Lemma 2.4. Let α≥0, u,v∈Bν,T(R), and r∈[1,∞]. Then, for all |μ|≤−N+M0+M, we have
1)
‖⟨y⟩α∂μ(|u|σ−|v|σ)‖L∞((0,T),Lr)≲(Rσ−1+ν−2(3−σ)R5−σ)‖⟨y⟩α−mσ‖r‖u−v‖L∞T(Y)+∑1≤k≤|μ|ν−2(2k−σ)R4k−σ−2(R‖⟨y⟩α−mσ‖r+∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(1−σ)∂γ(u−v)‖L∞((0,T),Lr))+∑1≤k≤|μ|ν−(2k−σ)(R2k−1[‖u−v‖L∞T(Y)‖⟨y⟩α−mσ‖r+∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(1−σ)∂γ(u−v)‖L∞((0,T),Lr)]+R2(k−1)‖u−v‖L∞T(Y)[∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(1−σ)∂γu‖L∞((0,T),Lr)+‖⟨y⟩α+m(1−σ)∂γv‖L∞((0,T),Lr)]); |
2)
‖⟨y⟩α∂μ(|u|σ−2u−|v|σ−2v)‖L∞T(L2)≲ν−2(3−σ)R4−σ‖⟨y⟩α−mσ‖r‖u−v‖L∞T(Y)+∑1≤k≤|μ|ν−2(2k+2−σ)R4k−σ+1(R‖⟨y⟩α−m(σ−1)‖r+∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(2−σ)∂γ(u−v)‖L∞((0,T),Lr))+∑1≤k≤|μ|ν−(2(1+k)−σ)(R2k[‖u−v‖L∞T(Y)‖⟨y⟩α−m(σ−1)‖r+∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(2−σ)∂γ(u−v)‖L∞((0,T),Lr)]+R2k−1‖u−v‖L∞T(Y)[∑E[N2]<|γ|≤|μ|‖⟨y⟩α+m(2−σ)∂γu‖L∞((0,T),Lr)+‖⟨y⟩α+m(2−σ)∂γv‖L∞((0,T),Lr)]). |
This section is devoted to Theorem 2.1, which deals with the existence of a unique solution of (CNLS) in CT(Y). Take the function
f(u):=ei⋅Δu0−iτ∫⋅0ei(⋅−s)ΔFds:=(f1(u),…,fm(u)), |
where u0:=(u0,1,…,u0,n), and
fj(u):=ei⋅Δu0,j−iτ∫⋅0ei(⋅−s)ΔFjds. |
Let us prove that f(Bν,T(R))⊂Bν,T(R). By Lemma 2.2, for the choice
k:=E[N2],s=−N+M0+M:=K+2k+3+E[N2]+M0−N, |
and for |α|≤E[N2], we have
‖⟨y⟩m∂αfj(u(t,y))‖L∞T(L∞)≲⟨T⟩E[N2]+1+m(∑|γ|≤E[N2]‖⟨y⟩m∂γu0‖∞+‖I−N+M0+Mu0‖+∑E[N2]<|γ|≤M‖⟨y⟩m∂γu0‖)+T⟨T⟩E[N2]+1+m(∑|γ|≤E[N2]‖⟨y⟩m∂γF‖L∞T(L∞)+‖I−N+M0+MF‖L∞T(L2)+∑E[N2]<|γ|≤M‖⟨y⟩m∂γF‖L∞T(L2)). |
Because p≥1, by Lemma 2.3, for |γ1|≤E[N2], we have
‖⟨y⟩m(2−σ)∂γ1(|uk|σ)‖L∞T(L∞)≲Rσ‖⟨y⟩−2m(σ−1)‖∞+∑1≤l≤E[N2]ν−(2l−σ)R2l−1(R‖⟨y⟩−2m(σ−1)‖∞+∑E[N2]<|γ|≤|γ1|‖⟨y⟩m(3−2σ)∂γuk‖L∞T(L∞))≲Rσ+∑1≤l≤E[N2]ν−(2l−σ)R2l. |
Also, by Lemma 2.3, we get
‖⟨y⟩m(σ−1)∂γ2(|uj|σ−2uj)‖L∞T(L∞)≲∑0≤l≤E[N2]ν−(2l+2−σ)R1+2l. |
Thus, with the Leibniz rule, if |γ|≤E[N2], we get
‖⟨y⟩m∂γF‖L∞T(L∞)≲n∑j,k=1∑γ=γ1+γ2‖⟨y⟩m(2−σ)∂γ1(|uk|p)‖L∞T(L∞)‖⟨y⟩m(σ−1)∂γ2(|uj|σ−2uj)‖L∞T(L∞)≲(Rσ+∑1≤l≤E[N2]ν−(2l−σ)R2l)(∑0≤l≤E[N2]ν−(2l+2−σ)R1+2l). | (3.1) |
Now, with the Leibniz rule via Lemma 2.3, for E[N2]≤|γ|≤M, 12=1r1+1r2, and α∈R,
‖⟨y⟩m∂γF‖L∞T(L2)≲n∑j,k=1∑γ=γ1+γ2,|γ2|≤N‖⟨y⟩mα∂γ1(|uk|p)‖L∞((0,T),Lr1)‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj)‖L∞((0,T),Lr2)+n∑j,k=1∑γ=γ1+γ2,|γ2|≥N‖⟨y⟩mα∂γ1(|uk|p)‖L∞((0,T),Lr1)‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj)‖L∞((0,T),Lr2):=(I|γ2|≤N)+(I|γ2|≥N). |
Now, (2.2) enables to take 2−σ<α<σ−N2m, r1=2, and r2=∞. This implies that ⟨y⟩m(α−σ)∈L2. Thus, we have
(I|γ2|≤N)≲n∑j,k=1∑γ=γ1+γ2[Rσ‖⟨y⟩m(α−σ)‖+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R‖⟨y⟩m(α−σ)‖+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(α+1−σ)∂μuk‖L∞T(L2))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R‖⟨y⟩m(2−α−σ)‖∞+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μuj‖L∞T(L∞)]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m∂μuk‖L∞T(L2))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m∂μuj‖L∞T(L∞))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤|γ2|+E[N2]+1‖⟨y⟩m∂μuj‖L∞T(L2))]. |
Assuming that |γ2|≤N, M≥N+E[N2]+1 gives
(I|γ2|≤N)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤|γ2|+E[N2]+1‖⟨y⟩m∂μuj‖L∞T(L2))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l][∑1≤l≤|γ2|ν−(2l+1−σ)R2l(R+∑E[N2]<|μ|≤M‖⟨y⟩m∂μuj‖L∞T(L2))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤Mν−(2l−σ)R2l][∑0≤l≤Nν−(2l+2−σ)R1+2l]. | (3.2) |
Now, we assume that |γ2|≥N, thus |γ1|≤M−N≤M−E[N2]−1. Since by (2.2) we have m>N2(σ−1−α) and ‖⟨y⟩m(1+α−σ)‖<∞. So, with Lemma 2.3, we get
(I|γ2|≥N)≲n∑j,k=1∑γ=γ1+γ2[Rσ‖⟨y⟩m(α−σ)‖∞+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R‖⟨y⟩m(α−σ)‖∞+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(α+1−σ)∂μuk‖L∞T(L∞))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R‖⟨y⟩m(1+α−σ)‖+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μuj‖L∞T(L2))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(α+1−σ)∂μuk‖L∞T(L∞))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μuj‖L∞T(L2))]. |
So,
(I|γ2|≥N)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l(R+∑1+2E[N2]<|μ|≤M‖∂μuk‖L∞T(L2))][∑0≤l≤|γ2|ν−(2l+2−σ)R1+2l]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤Mν−(2l−σ)R1+2l][∑0≤l≤Mν−(2l+2−σ)R1+2l]. |
It follows that
‖⟨y⟩m∂γF‖L∞T(L2)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤Mν−(2l−σ)R1+2l][∑0≤l≤Mν−(2l+2−σ)R1+2l]. | (3.3) |
We break down the next term as follows:
‖∂γF‖L∞T(L2)≲n∑j,k=1∑γ=γ1+γ2,|γ1|<N‖⟨y⟩m(2−σ)∂γ1(|uk|p)‖L∞T(L∞)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L2)+n∑j,k=1∑γ=γ1+γ2,N≤|γ1|≤M‖⟨y⟩m(2−σ)∂γ1(|uk|p)‖L∞T(L2)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L∞)+n∑j,k=1∑γ=γ1+γ2,M<|γ1|≤−N+M0+M‖∂γ1(|uk|p)‖L∞T(L2)‖∂γ2(|uj|σ−2uj)‖L∞T(L∞):=(A|γ1|<N)+(AN≤|γ1|≤M)+(AM<|γ1|≤−N+M0+M). | (3.4) |
Now, with the Leibniz rule and Lemma 2.3, for |γ|≤−N+M0+M, we have
(A|γ1|<N)≲n∑j,k=1∑γ=γ1+γ2‖⟨y⟩m(2−σ)∂γ1(|uk|p)‖L∞T(L∞)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L2)≲n∑j,k=1∑γ=γ1+γ2[Rσ‖⟨y⟩2m(1−σ)‖∞+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R‖⟨y⟩2m(1−σ)‖∞+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R‖⟨y⟩−m‖+∑E[N2]<|μ|≤|γ2|‖∂μuj‖L∞T(L2)]. | (3.5) |
(2.2) gives ⟨y⟩−m∈L2, and
(A|γ1|<N)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤M‖⟨y⟩m∂μuj‖L∞T(L2)+∑M<|μ|≤−N+M0+M‖∂μuj‖L∞T(L2))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞))][∑0≤l≤|γ2|ν−(2l+2−σ)R1+2l]. | (3.6) |
By Sobolev injection, we have
‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞)≲‖∂μuk‖L∞T(L∞)≲‖∂μuk‖L∞((0,T),˙H1+E[N2]). |
Thus, by (2.2), we get
(A|γ1|<N)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑1+2E[N2]<|μ|≤1+N+E[N2]‖∂μuk‖L∞T(L2))][∑0≤l≤|γ2|ν−(2l+2−σ)R1+2l]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤Nν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]. | (3.7) |
Now, with Lemma 2.3, we have
(AN≤|γ1|≤M)≲n∑j,k=1∑γ=γ1+γ2‖⟨y⟩m(2−σ)∂γ1(|uk|p)‖L∞T(L2)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L∞)≲n∑j,k=1∑γ=γ1+γ2[Rσ‖⟨y⟩2m(1−σ)‖+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R‖⟨y⟩2m(1−σ)‖+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L2))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R‖⟨y⟩−m‖∞+∑E[N2]<|μ|≤|γ2|‖∂μuj‖L∞T(L∞)]. |
Moreover, (2.2) gives ⟨y⟩2m(1−σ)∈L2, and so
(AN≤|γ1|≤M)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑E[N2]<|μ|≤M‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L2))][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤|γ2|‖∂μuj‖L∞T(L∞))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤1+E[N2]+|γ2|‖∂μuj‖L∞T(L2))]. | (3.8) |
Since N+|γ2|≤|γ1|+|γ2|≤−N+M0+M, we have |γ2|≤M+M0−2N, and
(AN≤|γ1|≤M)≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤1+E[N2]+|γ2|‖∂μuj‖L∞T(L2))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l][∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤−N+M0+M‖∂μuj‖L∞T(L2))]≲n∑j,k=1∑γ=γ1+γ2[Rσ+∑1≤l≤Mν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]. | (3.9) |
Finally, assume that M<|γ1|≤−N+M0+M. Thus, |γ2|≤M0−N≤M−E[N2]−1. So, with Sobolev injections via Lemma 2.3, we have
(AM<|γ1|≤−N+M0+M)≲n∑j,k=1∑γ=γ1+γ2‖∂γ1(|uk|p)‖L∞T(L2)‖∂γ2(|uj|σ−2uj)‖L∞T(L∞)≲[Rσ‖⟨y⟩−mσ‖+∑1≤k≤|γ1|ν−(2k−σ)R2k−1(R‖⟨y⟩−mσ‖+∑E[N2]<|γ|≤|γ1|‖⟨y⟩m(1−σ)∂γu‖L∞T(L2))][∑0≤k≤|γ2|ν−(2k+2−σ)R2k(R‖⟨y⟩−m(σ−1)‖∞+∑E[N2]<|γ|≤|γ2|‖⟨y⟩m(2−σ)∂γu‖L∞T(L∞))]≲[Rσ+∑1≤k≤|γ1|ν−(2k−σ)R2k−1(R+∑E[N2]<|γ|≤|γ1|‖⟨y⟩m(1−σ)∂γu‖L∞T(L2))][∑0≤k≤|γ2|ν−(2k+2−σ)R2k(R+∑E[N2]<|γ|≤|γ2|+1+E[N2]‖⟨y⟩m∂γu‖L∞T(L2))]. |
Thus,
(AM<|γ1|≤−N+M0+M)≲[Rσ+∑1≤k≤|γ1|ν−(2k−σ)R2k−1(R+∑E[N2]<|γ|≤M‖⟨y⟩m∂γu‖L∞T(L2)+∑M<|γ|≤−N+M0+M∂γu‖L∞T(L2))][∑0≤k≤M−E[N2]−1ν−(2k+2−σ)R1+2k]≲[Rσ+∑1≤k≤−N+M0+Mν−(2k−σ)R2k][∑0≤k≤M−E[N2]−1ν−(2k+2−σ)R1+2k]. | (3.10) |
Collecting (3.7), (3.9), and (3.10), we get
‖IM+M0−NF‖L∞T(L2)≲[Rσ+∑1≤k≤−N+M0+Mν−(2k−σ)R2k][∑0≤k≤−N+M0+Mν−(2k+2−σ)R1+2k]. | (3.11) |
Thus, with (3.1)–(3.3) and (3.11), we get
‖⟨y⟩m∂αfj(u)‖L∞T(L∞)≲⟨T⟩E[N2]+1+m(∑|γ|≤E[N2]‖⟨y⟩m∂γu0‖∞+‖I−N+M0+Mu0‖+∑E[N2]<|γ|≤M‖⟨y⟩m∂γu0‖)+T⟨T⟩E[N2]+1+m[Rσ+∑1≤l≤−N+M0+Mν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]. |
Now, by Lemma 2.1, (3.3), and (3.11), we write
‖⟨y⟩m∂αfj(u)‖L∞T(L2)≲⟨T⟩m(‖I−N+M0+Mu0‖+‖⟨y⟩m∂αu0‖)+T⟨T⟩m(‖I−N+M0+MF‖L∞T(L2)+‖⟨y⟩m∂αF‖L∞T(L2))≲⟨T⟩m(‖I−N+M0+Mu0‖+‖⟨y⟩m∂αu0‖)+T⟨T⟩m[Rσ+∑1≤l≤−N+M0+Mν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]. | (3.12) |
Moreover, with Lemma 2.1 and (3.11), for |α|≤−N+M0+M, yields
‖∂αfj(u)‖L∞T(L2)≲‖I−N+M0+Mu0‖+T‖∂αF‖L∞T(L2)≲‖u0‖H−N+M0+M+T[Rσ+∑1≤l≤−N+M0+Mν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]. |
So, taking R:=2c‖u0‖Y, we get
‖f(u)‖L∞T(Y)≤c⟨T⟩E[N2]+1+m‖u0‖Y+cT⟨T⟩E[N2]+1+m[Rσ+∑1≤l≤−N+M0+Mν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]≤⟨T⟩E[N2]+1+mR2+cT⟨T⟩E[N2]+1+m[Rσ+∑1≤l≤−N+M0+Mν−(2l−σ)R2l][∑0≤l≤−N+M0+Mν−(2l+2−σ)R1+2l]:=⟨T⟩E[N2]+1+mR2+cT⟨T⟩E[N2]+1+mF1(ν,R)F2(ν,R). | (3.13) |
Then, choosing 0<T<<1, it follows that f(BT(R))⊂BT(R). Now, we prove that
2inf(t,y)∈[0,T]×RN|⟨y⟩mf(u(t,y))|≥ν. |
Using the time derivative identity (eitΔ)(k)=(iΔ)keitΔ, we get
eitΔ=∑0≤k≤E[N2](it)kk!Δk+i1+E[N2](E[N2])!∫t0(t−s)E[N2]Δ1+E[N2](eisΔ)ds. |
Thus, with Lemma 2.1 and Sobolev injections via (2.2), we write
‖⟨y⟩m(eitΔu0−u0)‖∞≲∑1≤j≤n∑1≤k≤E[N2]tk‖⟨y⟩mΔku0,j‖∞+∫t0(t−s)E[N2]‖⟨y⟩mΔ1+E[N2](eisΔu0,j)‖∞ds≲t⟨t⟩E[N2](∑1≤|α|≤E[N2]‖⟨y⟩m∂αu0‖∞+∑E[N2]<|α|≤N‖⟨y⟩m∂αu0‖∞)+∫t0(t−s)E[N2]‖⟨y⟩mΔ1+E[N2](eisΔu0)‖∞ds≲t⟨t⟩E[N2](∑1≤|α|≤E[N2]‖⟨y⟩m∂αu0‖∞+∑E[N2]<|α|≤M‖⟨y⟩m∂αu0‖)+∫t0(t−s)E[N2]‖⟨y⟩mΔ1+E[N2](eisΔu0)‖∞ds. |
Now, by Lemma 2.2, for s=5+m+5E[N2] and K=2(1+E[N2]),
‖⟨y⟩mΔ1+E[N2](eisΔu0)‖∞≲⟨t⟩E[N2]∑|γ|≤E[N2]‖⟨y⟩m∂γu‖∞+⟨t⟩1+E[N2]+m(‖Isu‖+∑E[N2]<|γ|≤2(1+E[N2])+3+3E[N2]‖⟨y⟩m∂γu‖). |
Now, since M≥4E[N2]+5+m and M0−N>m>N2, we get
‖⟨y⟩mΔ1+E[N2](eisΔu0)‖∞≲⟨t⟩E[N2]∑|γ|≤E[N2]‖⟨y⟩m∂γu‖∞+⟨t⟩1+E[N2]+m(‖I−N+M0+Mu‖+∑E[N2]<|γ|≤5+5E[N2]‖⟨y⟩m∂γu‖)≲⟨t⟩E[N2]∑|γ|≤E[N2]‖⟨y⟩m∂γu‖∞+⟨t⟩1+E[N2]+m(‖I−N+M0+Mu‖+∑E[N2]<|γ|≤M‖⟨y⟩m∂γu‖). |
Thus,
‖⟨y⟩m(eitΔu0−u0)‖∞≲t⟨t⟩E[N2](∑1≤|α|≤E[N2]‖⟨y⟩m∂αu0‖∞+∑E[N2]<|α|≤M‖⟨y⟩m∂αu0‖)+t⟨t⟩E[N2][⟨t⟩E[N2]∑|γ|≤E[N2]‖⟨y⟩m∂γu‖∞+⟨t⟩1+E[N2]+m(‖I−N+M0+Mu‖+∑E[N2]<|γ|≤M‖⟨y⟩m∂γu‖)]. |
Now, with Lemma 2.2 with (3.13),
‖⟨y⟩m(f(u)−eitΔu0)‖L∞T(L∞)≤cT⟨T⟩E[N2]+1+mF1(ν,R)F2(ν,R). |
Thus, there is C(T)→0 as T→0 such that
|⟨y⟩mf(u)|≥|⟨y⟩meitΔu0|−|⟨y⟩m(eitΔu0−u0)|−|⟨y⟩m(f(u)−eitΔu0)|≥ν−C(T). | (3.14) |
So, taking 0<T<<1, we get
inf{(t,y)∈[0,T]×RN}|⟨y⟩mf(u)|≥ν2. |
Thus, f(Bν,T(R))⊂Bν,T(R). Now, we prove that f is a contraction. For u,v∈CT(Y) and w:=u−v, we have
‖f(u)−f(v)‖L∞T(Y)=‖∫⋅0ei(⋅−s)Δ[F(u)−F(v)]ds‖L∞T(Y)≲‖∫⋅0ei(⋅−s)Δ[(|uk|σ|u1|σ−2u1−|vk|σ|v1|σ−2v1,…,|uk|σ|un|σ−2un−|vk|σ|vn|σ−2vn)]ds‖L∞T(Y)≲∑1≤j≤n(∑|α|≤E[N2]‖∫⋅0⟨y⟩m∂αei(⋅−s)Δ[(|uk|σ|uj|σ−2uj−|vk|σ|vj|σ−2vj)]‖L∞T(L∞)+∑E[N2]<|α|≤M‖∫⋅0⟨y⟩m∂αei(⋅−s)Δ[(|uk|σ|uj|σ−2uj−|vk|σ|vj|σ−2vj)]‖L∞T(L2)+∑M<|α|≤−N+M0+M‖∫⋅0∂αei(⋅−s)Δ[(|uk|σ|uj|σ−2uj−|vk|σ|vj|σ−2vj)]‖L∞T(L2)). |
Let us control the three above terms. By Lemma 2.2 via (2.4), we have
(I):=∑|α|≤E[N2]‖∫⋅0⟨y⟩m∂αei(⋅−s)Δ[(|uk|σ|uj|σ−2uj−|vk|σ|vj|σ−2vj)]‖L∞T(L∞)≲T⟨T⟩E[N2]+1+m(∑|γ|≤E[N2]‖⟨y⟩m∂γ(Fj(u)−Fj(v))‖L∞T(L∞)+‖I−N+M0+M(Fj(u)−Fj(v))‖L∞T(L2)+∑E[N2]<|γ|≤M‖⟨y⟩m∂γ(Fj(u)−Fj(v))‖L∞T(L2)). |
Let |γ|≤E[N2], and write
(I1):=‖⟨y⟩m∂γ(Fj(u)−Fj(v))‖L∞T(L∞)=‖⟨y⟩m∂γ((|uk|σ−|vk|σ)|uj|σ−2uj+|vk|σ(|uj|σ−2uj−|vj|σ−2vj))‖L∞T(L∞)≲∑γ=γ1+γ2(‖⟨y⟩m∂γ1(|uk|σ−|vk|σ)∂γ2(|uj|σ−2uj)‖L∞T(L∞)+‖⟨y⟩m∂γ1|vk|σ∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞))≲∑γ=γ1+γ2(‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)‖⟨y⟩m(σ−1)∂γ2(|uj|σ−2uj)‖L∞T(L∞)+‖⟨y⟩m(2−σ)∂γ1|vk|σ‖L∞T(L∞)‖⟨y⟩m(σ−1)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)). |
Taking account of Lemma 2.4, we have
‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)≲(Rσ−1+ν−2(3−σ)R5−σ)‖⟨y⟩2m(1−σ)‖∞‖w‖L∞T(Y)+∑1≤k≤E[N2]ν−2(2k−σ)R4k−σ−1‖⟨y⟩2m(1−σ)‖∞‖w‖L∞T(Y)+∑1≤k≤E[N2]ν−(2k−σ)R2k−1‖⟨y⟩2m(1−σ)‖∞‖w‖L∞T(Y)+∑1≤k≤E[N2]ν−(2k−σ)R2(k−1)‖w‖L∞T(Y)≲[Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤E[N2](ν−2(2k−σ)R4k−σ−1+ν−(2k−σ)R2k−1)]‖w‖L∞T(Y). |
Moreover, also with Lemma 2.4, we have
‖⟨y⟩m(σ−1)∂γ2(|uk|σ−2uk−|vk|σ−2vk)‖L∞T(L∞)≲[ν−2(3−σ)R4−σ+∑1≤k≤E[N2](ν−2(2(1+k)−σ)R4k−σ+2+ν−(2(1+k)−σ)R2k)]‖w‖L∞T(Y). |
Now, by (3.1), it follows that
(I1)≲([Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤E[N2](ν−2(2k−σ)R4k−σ−1+ν−(2k−σ)R2k−1)]F2(ν,R)+[ν−2(3−σ)R4−σ+∑1≤k≤E[N2](ν−2(2(1+k)−σ)R4k−σ+2+ν−(2(1+k)−σ)R2k)]F1(ν,R))‖w‖L∞T(Y). | (3.15) |
Let E[N2]<γ≤M. Then,
(I2):=‖⟨y⟩m∂γ(Fj(u)−Fj(v))‖L∞T(L2)=‖⟨y⟩m∂γ((|uk|σ−|vk|σ)|uj|σ−2uj+|vk|σ(|uj|σ−2uj−|vj|σ−2vj))‖L∞T(L2)≲∑γ=γ1+γ2(‖⟨y⟩m∂γ1(|uk|σ−|vk|σ)∂γ2(|uj|σ−2uj)‖L∞T(L2)+‖⟨y⟩m∂γ1|vk|σ∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L2))≲∑γ=γ1+γ2(‖⟨y⟩mα∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj)‖L∞T(L∞)+‖⟨y⟩mα∂γ1|vk|σ‖L∞T(L2)‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)). |
Now, by Lemma 2.4 and using (2.1), we get
‖⟨y⟩mα∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)≲(Rσ−1+ν−2(3−σ)R5−σ)‖⟨y⟩m(α−σ)‖‖w‖L∞T(Y)+∑1≤k≤Mν−2(2k−σ)R4k−σ−2(R‖⟨y⟩m(α−σ)‖+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(1+α−σ)∂μuk‖L∞T(L2))‖w‖L∞T(Y)+∑1≤k≤Mν−(2k−σ)(R2k−1(‖⟨y⟩m(α−σ)‖‖w‖L∞T(Y)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(1+α−σ)∂μ(uk−vk)‖L∞T(L2))+R2(k−1)(∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(1+α−σ)∂μuk‖L∞T(L2)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(1+α−σ)∂μvk‖L∞T(L2))‖w‖L∞T(Y))≲(Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤Mν−2(2k−σ)R4k−σ−1+∑1≤k≤Mν−(2k−σ)R2k−1)‖w‖L∞T(Y). | (3.16) |
Assume that |γ2|≤N, thus, M≥N+E[N2]+1 gives by Sobolev embedding and Lemma 2.3 via (2.1), we get
‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj)‖L∞T(L∞)≲∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R‖⟨y⟩m(2−α−σ)‖∞+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μuj‖L∞T(L∞))≲∑0≤l≤|γ2|ν−(2l+2−σ)R2l(R+∑E[N2]<|μ|≤|γ2|+1+E[N2]‖⟨y⟩m∂μuj‖L∞T(L2))≲∑0≤l≤Mν−(2l+2−σ)R1+2l≲F2(ν,R). |
Moreover, with Lemma 2.4, we write
‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)≲ν−3(2−σ)R4−σ‖⟨y⟩m(2−α−σ)‖∞‖w‖L∞T(Y)+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+1(R‖⟨y⟩m(2−α−σ)‖∞+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μuk‖L∞T(L∞))‖w‖L∞T(Y)+∑1≤k≤Mν−(2(1+k)−σ)(R2k(‖⟨y⟩m(2−α−σ)‖∞‖w‖L∞T(Y)+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μ(uk−vk)‖L∞T(L∞)+R2k−1(∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μuk‖L∞T(L∞)+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m(3−α−σ)∂μvk‖L∞T(L∞))‖w‖L∞T(Y)). |
So, with Sobolev embeddings,
‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)≲ν−3(2−σ)R4−σ‖w‖L∞T(Y)+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+1(R+∑E[N2]<|μ|≤|γ2|+1+E[N2]‖⟨y⟩m∂μuk‖L∞T(L2))‖w‖L∞T(Y)+∑1≤k≤Mν−(2(1+k)−σ)(R2k(‖w‖L∞T(Y)+∑E[N2]<|μ|≤|γ2|+1+E[N2]‖⟨y⟩m∂μ(uk−vk)‖L∞T(L2)+R2k−1(∑E[N2]<|μ|≤|γ2|+1+E[N2]‖⟨y⟩m∂μuk‖L∞T(L2)+∑E[N2]<|μ|≤|γ2|+1+E[N2]‖⟨y⟩m∂μvk‖L∞T(L2))‖w‖L∞T(Y))≲(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)‖w‖L∞T(Y). | (3.17) |
Finally, with Lemma 2.3, we have
‖⟨y⟩mα∂γ1|vk|σ‖L∞T(L2)≲Rσ‖⟨y⟩m(α−σ)‖+∑1≤k≤|γ1|ν−(2k−σ)R2k−1(R‖⟨y⟩m(α−σ)‖+∑E[N2]<|γ|≤|γ1|‖⟨y⟩m(1+α−σ)∂γu‖L∞T(L2))≲Rσ+∑1≤k≤|γ1|ν−(2k−σ)R2k−1(R+∑E[N2]<|γ|≤|γ1|‖⟨y⟩m(1+α−σ)∂γu‖L∞T(L2))≲Rσ+∑1≤k≤|γ1|ν−(2k−σ)R2k≲F1(ν,R). |
Collecting the above estimates, we get
∑γ=γ1+γ2,|γ2|≤N(‖⟨y⟩mα∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj)‖L∞T(L∞)+‖⟨y⟩mα∂γ1|vk|σ‖L∞T(L2)‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞))≲[(Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤Mν−2(2k−σ)R4k−σ−1+∑1≤k≤Mν−(2k−σ)R2k−1)F2(ν,R)+F1(ν,R)(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)]‖w‖L∞T(Y). | (3.18) |
Now, assume that M≥|γ2|≥N. Thus, arguing as in (3.3), we have
∑γ=γ1+γ2,M≥|γ2|≥N(‖⟨y⟩mα∂γ2(|uk|σ−|vk|σ)‖L∞T(L2)‖⟨y⟩m(1−α)∂γ1(|uj|σ−2uj)‖L∞T(L∞)+‖⟨y⟩mα∂γ2|vk|σ‖L∞T(L2)‖⟨y⟩m(1−α)∂γ1(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞))≲∑γ=γ1+γ2,M≥|γ2|≥N(‖⟨y⟩mα∂γ2(|uk|σ−|vk|σ)‖L∞T(L2)F2(ν,R)+‖⟨y⟩m(1−α)∂γ1(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)F1(ν,R)). |
Moreover, since |γ1|≤M−N≤M−E[N2]−1, by (3.16) and (3.17), we write
∑γ=γ1+γ2,M≥|γ2|≥N(‖⟨y⟩mα∂γ2(|uk|σ−|vk|σ)‖L∞T(L2)‖⟨y⟩m(1−α)∂γ1(|uj|σ−2uj)‖L∞T(L∞)+‖⟨y⟩mα∂γ2|vk|σ‖L∞T(L2)‖⟨y⟩m(1−α)∂γ1(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞))≲∑γ=γ1+γ2((Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤Mν−2(2k−σ)R4k−σ−1+∑1≤k≤Mν−(2k−σ)R2k−1)F2(ν,R)‖w‖L∞T(Y)+(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)F1(ν,R))‖w‖L∞T(Y). | (3.19) |
Now, with the Leibniz rule via Lemma 2.3, for |γ|≤−N+M0+M, we have
(I3):=‖∂γ(Fj(u)−Fj(v))‖L∞T(L2)≲∑γ=γ1+γ2(‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L2)+‖⟨y⟩m(2−σ)∂γ1|vk|σ‖L∞T(L2)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)). |
Let us start with estimating the first term. By (3.6),
(A1):=‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L2)≲‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)F2(ν,R). |
With Lemma 2.4, we get
‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)≲(Rσ−1+ν−2(3−σ)R5−σ)‖⟨y⟩2m(1−σ)‖∞‖w‖L∞T(Y)+∑1≤k≤Mν−2(2k−σ)R4k−σ−2(R‖⟨y⟩2m(1−σ)‖∞+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞))‖w‖L∞T(Y)+∑1≤k≤Mν−(2k−σ)(R2k−1(‖⟨y⟩2m(1−σ)‖∞‖w‖L∞T(Y)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μ(uk−vk)‖L∞T(L∞)+R2(k−1)(∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μvk‖L∞T(L∞))‖w‖L∞T(Y)). |
Since σ>32, we get
‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L∞)≲(Rσ−1+ν−2(3−σ)R5−σ)‖w‖L∞T(Y)+∑1≤k≤Mν−2(2k−σ)R4k−σ−2(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞))‖w‖L∞T(Y)+∑1≤k≤Mν−(2k−σ)(R2k−1(‖w‖L∞T(Y)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μ(uk−vk)‖L∞T(L∞)+R2(k−1)(∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L∞)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μvk‖L∞T(L∞))‖w‖L∞T(Y)). |
If |γ1|<N, we write by Sobolev injections,
∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μ(uk−vk)‖L∞T(L∞)≲∑E[N2]<|μ|≤N+1+E[N2]‖∂μ(uk−vk)‖L∞T(L2)≲∑E[N2]<|μ|≤−N+M0+M‖⟨y⟩m∂μ(uk−vk)‖L∞T(L2)≲‖w‖L∞T(Y). | (3.20) |
Thus,
(A1)≲(Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤Mν−2(2k−σ)R4k−σ−1+∑1≤k≤Mν−(2k−σ)R2k−1)F2(ν,R)‖u−v‖L∞T(Y). | (3.21) |
If |γ1|≥N, it is sufficient to estimate the term
(A′1):=‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj)‖L∞T(L∞)≲‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)F2(ν,R), |
where we used (3.9). Moreover, Lemma 2.4 via (2.2) gives
‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)≲(Rσ−1+ν−2(3−σ)R5−σ)‖u−v‖L∞T(Y)+∑1≤k≤Mν−2(2k−σ)R4k−σ−2(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L2))‖u−v‖L∞T(Y)+∑1≤k≤Mν−(2k−σ)(R2k−1(‖u−v‖L∞T(Y)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μ(uk−vk)‖L∞T(L2))+R2(k−1)(∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L2)+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μvk‖L∞T(L2))‖u−v‖L∞T(Y)). |
Using the fact that
∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μuk‖L∞T(L2)≲∑E[N2]<|μ|≤M‖⟨y⟩m∂μuk‖L∞T(L2)+∑M<|μ|≤−N+M0+M‖∂μuk‖L∞T(L2), |
we have
‖⟨y⟩m(2−σ)∂γ1(|uk|σ−|vk|σ)‖L∞T(L2)≲(Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤Mν−2(2k−σ)R4k−σ−1+∑1≤k≤Mν−(2k−σ)R2k−1)‖u−v‖L∞T(Y). |
Thus,
(A′1)≲(Rσ−1+ν−2(3−σ)R5−σ+∑1≤k≤Mν−2(2k−σ)R4k−σ−1+∑1≤k≤Mν−(2k−σ)R2k−1)F2(ν,R)‖u−v‖L∞T(Y). | (3.22) |
By (3.9), let us estimate the term
(A2):=‖⟨y⟩m(2−σ)∂γ1|vk|σ‖L∞T(L2)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)≲F1(ν,R)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞). |
If |γ2|≤N, by a similar reasoning to (3.17), (for α=3−σ), we have
‖⟨y⟩m(1−α)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L∞)≲(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)‖u−v‖L∞T(Y). |
It follows that
(A2)≲(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)(Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l)‖u−v‖L∞T(Y). |
If |γ2|≥N, it is sufficient to estimate the term
(A′2):=‖⟨y⟩m(2−σ)∂γ1|vk|σ‖L∞T(L∞)‖⟨y⟩−m(2−σ)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L2). | (3.23) |
Moreover, with Lemma 2.4 via (2.2), we write
‖⟨y⟩−m(σ−2)∂γ2(|uj|σ−2uj−|vj|σ−2vj)‖L∞T(L2)≲ν−3(2−σ)R4−σ‖u−v‖L∞T(Y)+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+1(R+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m∂μuk‖L∞T(L2))‖u−v‖L∞T(Y)+∑1≤k≤Mν−(2(1+k)−σ)(R2k(‖u−v‖L∞T(Y)+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m∂μ(uk−vk)‖L∞T(L2)+R2k−1(∑E[N2]<|μ|≤|γ2|‖⟨y⟩m∂μuk‖L∞T(L2)+∑E[N2]<|μ|≤|γ2|‖⟨y⟩m∂μvk‖L∞T(L2))‖u−v‖L∞T(Y))≲(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)‖u−v‖L∞T(Y). |
Since N+|γ1|≤|γ1|+|γ2|≤−N+M0+M, we have |γ1|≤M+M0−2N. So, arguing as in (3.6), we get
‖⟨y⟩m(2−σ)∂γ1(|vk|p)‖L∞T(L∞)≲Rσ+∑1≤l≤|γ1|ν−(2l−σ)R2l−1(R+∑E[N2]<|μ|≤|γ1|‖⟨y⟩m(3−2σ)∂μvk‖L∞T(L∞))≲F1(ν,R). |
Then,
(A′2)≲(ν−3(2−σ)R4−σ+∑1≤k≤Mν−2(2(1+k)−σ)R4k−σ+2+∑1≤k≤Mν−(2(1+k)−σ)R2k)F1(ν,R)‖u−v‖L∞T(Y). | (3.24) |
Taking (3.15), (3.18), (3.19), (3.21), (3.22), (3.23), and (3.24), we get
(I1)+(I2)+(I3)≲F(ν,R)‖u−v‖L∞T(Y). | (3.25) |
Now, taking Lemma 2.1, (3.2), (3.3), and (3.11) via the estimates of (I), we write
‖⟨y⟩m∂α(fj(u)−fj(v))‖L∞T(L2)≲T⟨T⟩m(‖I−N+M0+M(Fj(u)−Fj(v))‖L∞T(L2)+‖⟨y⟩m∂α(Fj(u)−Fj(v))‖L∞T(L2))≲T⟨T⟩mF(ν,R)‖u−v‖L∞T(Y). |
Moreover, taking Lemma 2.1, and the estimate of (I3), for |α|≤−N+M0+M, we get
‖∂α(fj(u)−fj(v))‖L∞T(L2)≲T‖∂α(Fj(u)−Fj(v))‖L∞T(L2)≲TF(ν,R)‖u−v‖L∞T(Y). |
Finally, f is a contraction of BT(R) for small T>0, and the result follows with a classical Picard argument.
In this section, we prove Theorem 2.2 and Proposition 2.1.
Let us start with the next auxiliary result.
Proposition 4.1. Let max{1+1N,32}<σ≤2, κ≫1, and v0∈Y such that infRN|v0(x)|≥ν. Then, there is a unique v∈C([0,1κ],Y) solution to
ivj+Δvj=τ(1−κt)−(2−N(σ−1))(∑1≤k≤najk|vk|σ)|vj|σ−2vj,∀j∈[1,n]. | (4.1) |
Proof of Proposition 4.1: For simplicity and without loss of generality, let us fix τ=1. One applies a Picard fixed point argument. Let the function
g(v):=ei⋅Δv0+i∫⋅0(1−κs)−(2−N(σ−1))ei(⋅−s)ΔFds:=(g1(v),…,gm(v)), |
on the space Bν,1κ(R). Taking (3.1), (3.3), and (3.11), via σ>1+1N, we write
‖g(v)‖L∞T(Y)≲⟨κ−1⟩E[N2]+1+m‖v0‖Y+κ−1⟨κ−1⟩E[N2]+1+mF1(ν,R)F2(ν,R). |
Moreover, arguing as in (3.14), we write
|⟨y⟩mg(v)|≥ν−cκ−1⟨κ−1⟩E[N2]+1+m‖v0‖Y−cκ−1⟨κ−1⟩E[N2]+1+mF1(ν,R)F2(ν,R). |
Moreover, arguing as in (3.25), and the last lines of the previous section, we get
‖g(u)−g(v)‖L∞T(Y)≤cκ−1⟨κ−1⟩E[N2]+1+mF(ν,R)‖u−v‖L∞T(Y). |
This implies that, for large κ≫1, an application of the Picard Theorem finishes the proof.
Take the pseudo conformal transformation [26],
vj(t,y):=(1−κt)−N2eiκ|x|24(1−κt)uj(t1−κt,x1−κt),∀j∈[1,n]. |
Here, 0<T<1κ, and v, given by Proposition 4.1, is a solution to (4.1). Thus, u resolves (CNLS). Now, let define u+j:=eiκ|x|24−iκΔvj(1κ,⋅). So, following [25,Section 4], we have uj∈C(R+,Hs)∩L∞(R+×RN,⟨y⟩N2dydt), and
limt→+∞‖e−itΔuj(t)−u+j‖Hs=0. |
Here, one proves Proposition 2.1. Let u∈CT(Y) be a solution to (CNLS). Thus, m>1+N2 implies that ⟨y⟩1−m∈L2, and
‖⟨y⟩u‖≤‖⟨y⟩mu‖∞‖⟨y⟩1−m‖≲‖⟨y⟩mu‖∞. |
This implies that the solution has a finite variance ∫RN|u(t,y)|2|x|2dy. Let us check that the energy is well-defined. Indeed,
‖ˉujFj,k‖1=‖|uk|σ|uj|p‖1=‖⟨y⟩−2mσ⟨y⟩2mσ|uk|σ|uj|p‖1≤‖⟨y⟩−mσ‖2‖⟨y⟩mu‖2σ∞≲‖u‖2σL∞T(Y). |
Thus, one can apply [18,Theorem 2.8].
This work examines the singular coupled non-linear Schrödinger system (CNLS) with three main objectives. First, it investigates the local existence of solutions. Second, it establishes the existence of global solutions that scatter in certain Sobolev spaces. Finally, it demonstrates the existence of non-global solutions. The primary difficulty arises from the condition σ<2, which introduces a singularity in the term |uj|σ−2 near zero. This singularity renders the classical contraction method in the energy space ineffective. This paper aims to address this gap in the literature by leveraging ideas from [24]. The approach highlights that the singularity issue is localized near zero, requiring the solution to avoid this region, see assumption (2.5). This is challenging because the Schrödinger equation lacks a maximum principle. The global solutions that scatter are obtained through a pseudo-conformal transformation based on the local solutions. Lastly, the existence of non-global solutions is demonstrated using the classical variance method.
Saleh Almuthybri and Tarek Saanouni: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation. All authors have read and approved the final version of the manuscript for publication.
The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).
On behalf of all authors, the corresponding author states that there is no conflict of interest. No data-sets were generated or analyzed during the current study.
[1] |
N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661. https://doi.org/10.1103/PhysRevLett.82.2661 doi: 10.1103/PhysRevLett.82.2661
![]() |
[2] |
H. A. Alkhidhr, Closed-form solutions to the perturbed NLSE with Kerr law nonlinearity in optical fibers, Results Phys., 22 (2021), 103875. https://doi.org/10.1016/j.rinp.2021.103875 doi: 10.1016/j.rinp.2021.103875
![]() |
[3] | A. Hasegawa, Y. Kodama, Solitons in optical communications, Oxford: Oxford University Press, 1995. https://doi.org/10.1093/oso/9780198565079.001.0001 |
[4] |
A. Hasegawa, F. Tappert, Transmission of stationary non-linear optical pulses in dispersive dielectric fibers II, Appl. Phys. Lett., 23 (1973), 142–144. https://doi.org/10.1063/1.1654836 doi: 10.1063/1.1654836
![]() |
[5] |
S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755
![]() |
[6] |
S. Shen, Z. Yang, X. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005
![]() |
[7] |
V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190–194. https://doi.org/10.1007/BF00913182 doi: 10.1007/BF00913182
![]() |
[8] |
C. Weilnau, M. Ahles, J. Petter, D. Träger, J. Schröder, C. Denz, Spatial optical (2+1)-dimensional scalar and vector-solitons in saturable nonlinear media, Ann. Phys., 514 (2002), 573–629. https://doi.org/10.1002/andp.20025140802 doi: 10.1002/andp.20025140802
![]() |
[9] | S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys.-JETP, 38 (1974), 248–253. |
[10] |
N. V. Nguyen, R. S. Tian, B. Deconinck, N. Sheils, Global existence for a coupled system of Schrödinger equations with power-type non-linearities, J. Math. Phys., 54 (2013), 011503. https://doi.org/10.1063/1.4774149 doi: 10.1063/1.4774149
![]() |
[11] |
T. Saanouni, A note on coupled focusing non-linear Schrödinger equations, Appl. Anal., 95 (2016), 2063–2080. https://doi.org/10.1080/00036811.2015.1086757 doi: 10.1080/00036811.2015.1086757
![]() |
[12] |
A. Ambrosetti, E. Colorado, Bound and ground states of coupled non-linear Schrödinger equations, CR Math., 342 (2006), 453–458. https://doi.org/10.1016/j.crma.2006.01.024 doi: 10.1016/j.crma.2006.01.024
![]() |
[13] |
A. Ambrosetti, E. Colorado, Standing waves of some coupled non-linear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67–82. https://doi.org/10.1112/jlms/jdl020 doi: 10.1112/jlms/jdl020
![]() |
[14] |
T.-C. Lin, J. C. Wei, Ground state of N coupled non-linear Schrödinger equations in Rn, n≤3, Commun. Math. Phys., 255 (2005), 629–653. https://doi.org/10.1007/s00220-005-1313-x doi: 10.1007/s00220-005-1313-x
![]() |
[15] |
B. Cassano, M. Tarulli, H1-Scattering for systems of N-defocusing weakly coupled NLS equations in low space dimensions, J. Math. Anal. Appl., 430 (2015), 528–548. https://doi.org/10.1016/j.jmaa.2015.05.008 doi: 10.1016/j.jmaa.2015.05.008
![]() |
[16] |
T. Saanouni, Scattering threshold for a coupled focusing nonlinear Schrödinger system, Appl. Anal., 101 (2022), 2418–2445. https://doi.org/10.1080/00036811.2020.1808201 doi: 10.1080/00036811.2020.1808201
![]() |
[17] |
T. Saanouni, Scattering threshold for the focusing coupled Schrödinger system revisited, Nonlinear Differ. Equ. Appl., 28 (2021), 44. https://doi.org/10.1007/s00030-021-00706-7 doi: 10.1007/s00030-021-00706-7
![]() |
[18] |
R. Ghanmi, H. Hezzi, T. Saanouni, A note on inhomogeneous coupled Schrödinger equations, Ann. Henri Poincaré, 21 (2020), 2775–2814. https://doi.org/10.1007/s00023-020-00942-0 doi: 10.1007/s00023-020-00942-0
![]() |
[19] |
R. Ghanmi, T. Saanouni, Energy-critical scattering for focusing inhomogeneous coupled Schrödinger systems, Math. Method. Appl. Sci., 47 (2024), 9109–9136. https://doi.org/10.1002/mma.10062 doi: 10.1002/mma.10062
![]() |
[20] |
T. Saanouni, R. Ghanmi, Inhomogeneous coupled non-linear Schrödinger systems, J. Math. Phys., 62 (2021), 101508. https://doi.org/10.1063/5.0047433 doi: 10.1063/5.0047433
![]() |
[21] |
T. Saanouni, R. Ghanmi, Coupled inhomogeneous nonlinear Schrödinger system with potential in three space diemensions, Math. Method. Appl. Sci., 47 (2024), 5392–5413. https://doi.org/10.1002/mma.9869 doi: 10.1002/mma.9869
![]() |
[22] |
H. Hezzi, M. M. Nour, T. Saanouni, Coupled non-linear Schrödinger equations with harmonic potential, Arab. J. Math., 7 (2018), 195–218. https://doi.org/10.1007/s40065-017-0192-2 doi: 10.1007/s40065-017-0192-2
![]() |
[23] |
Z. Jiao, I. Jadlovská, T. X. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equations, 411 (2024), 227–267. https://doi.org/10.1016/j.jde.2024.07.005 doi: 10.1016/j.jde.2024.07.005
![]() |
[24] |
T. Cazenave, I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038. https://doi.org/10.1142/S0219199716500383 doi: 10.1142/S0219199716500383
![]() |
[25] |
A. K. Arora, O. Riaño, S. Roudenko, Well-posedness in weighted spaces for the generalized Hartree equation with p<2, Commun. Contemp. Math., 24 (2022), 2150074. https://doi.org/10.1142/S0219199721500747 doi: 10.1142/S0219199721500747
![]() |
[26] | T. Cazenave, Semilinear Schrödinger equations, Providence: American Mathematical Society, 2003. |
[27] |
R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the non-linear Schrödinger equation, J. Math. Phys., 18 (1977), 1794–1797. https://doi.org/10.1063/1.523491 doi: 10.1063/1.523491
![]() |