This work studies a coupled non-linear Schrödinger system with a singular source term. First, we investigate the question of the local existence of solutions. Second, one proves the existence of global solutions which scatter in some Sobolev spaces. Finally, one establishes the existence of non-global solutions. The main difficulty here is to overcome the regularity problem in the non-linearity. Indeed, because of the singularity of the source term, the classical contraction method in the energy space fails in such a regime. So, this paper is to fill such a gap in the literature. The argument follows ideas in T. Cazenave and I. Naumkin (Comm. Contemp. Math., 19 (2017), 1650038). This consists to remark that the singularity problem is only near the origin. So, one needs to impose that the solution stays away from zero. This is not trivial, since there is no maximum principle for the Schrödinger equation. The existence of global solutions which scatter follows with the pseudo-conformal transformation via the existence of local solutions. Finally, the existence of non-global solutions follows with the classical variance method.
Citation: Saleh Almuthaybiri, Tarek Saanouni. On coupled non-linear Schrödinger systems with singular source term[J]. AIMS Mathematics, 2024, 9(10): 27871-27895. doi: 10.3934/math.20241353
This work studies a coupled non-linear Schrödinger system with a singular source term. First, we investigate the question of the local existence of solutions. Second, one proves the existence of global solutions which scatter in some Sobolev spaces. Finally, one establishes the existence of non-global solutions. The main difficulty here is to overcome the regularity problem in the non-linearity. Indeed, because of the singularity of the source term, the classical contraction method in the energy space fails in such a regime. So, this paper is to fill such a gap in the literature. The argument follows ideas in T. Cazenave and I. Naumkin (Comm. Contemp. Math., 19 (2017), 1650038). This consists to remark that the singularity problem is only near the origin. So, one needs to impose that the solution stays away from zero. This is not trivial, since there is no maximum principle for the Schrödinger equation. The existence of global solutions which scatter follows with the pseudo-conformal transformation via the existence of local solutions. Finally, the existence of non-global solutions follows with the classical variance method.
[1] | N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661. https://doi.org/10.1103/PhysRevLett.82.2661 doi: 10.1103/PhysRevLett.82.2661 |
[2] | H. A. Alkhidhr, Closed-form solutions to the perturbed NLSE with Kerr law nonlinearity in optical fibers, Results Phys., 22 (2021), 103875. https://doi.org/10.1016/j.rinp.2021.103875 doi: 10.1016/j.rinp.2021.103875 |
[3] | A. Hasegawa, Y. Kodama, Solitons in optical communications, Oxford: Oxford University Press, 1995. https://doi.org/10.1093/oso/9780198565079.001.0001 |
[4] | A. Hasegawa, F. Tappert, Transmission of stationary non-linear optical pulses in dispersive dielectric fibers II, Appl. Phys. Lett., 23 (1973), 142–144. https://doi.org/10.1063/1.1654836 doi: 10.1063/1.1654836 |
[5] | S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755 |
[6] | S. Shen, Z. Yang, X. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005 |
[7] | V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190–194. https://doi.org/10.1007/BF00913182 doi: 10.1007/BF00913182 |
[8] | C. Weilnau, M. Ahles, J. Petter, D. Träger, J. Schröder, C. Denz, Spatial optical (2+1)-dimensional scalar and vector-solitons in saturable nonlinear media, Ann. Phys., 514 (2002), 573–629. https://doi.org/10.1002/andp.20025140802 doi: 10.1002/andp.20025140802 |
[9] | S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys.-JETP, 38 (1974), 248–253. |
[10] | N. V. Nguyen, R. S. Tian, B. Deconinck, N. Sheils, Global existence for a coupled system of Schrödinger equations with power-type non-linearities, J. Math. Phys., 54 (2013), 011503. https://doi.org/10.1063/1.4774149 doi: 10.1063/1.4774149 |
[11] | T. Saanouni, A note on coupled focusing non-linear Schrödinger equations, Appl. Anal., 95 (2016), 2063–2080. https://doi.org/10.1080/00036811.2015.1086757 doi: 10.1080/00036811.2015.1086757 |
[12] | A. Ambrosetti, E. Colorado, Bound and ground states of coupled non-linear Schrödinger equations, CR Math., 342 (2006), 453–458. https://doi.org/10.1016/j.crma.2006.01.024 doi: 10.1016/j.crma.2006.01.024 |
[13] | A. Ambrosetti, E. Colorado, Standing waves of some coupled non-linear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67–82. https://doi.org/10.1112/jlms/jdl020 doi: 10.1112/jlms/jdl020 |
[14] | T.-C. Lin, J. C. Wei, Ground state of N coupled non-linear Schrödinger equations in $ \mathbb{R}^n$, $n \leq 3$, Commun. Math. Phys., 255 (2005), 629–653. https://doi.org/10.1007/s00220-005-1313-x doi: 10.1007/s00220-005-1313-x |
[15] | B. Cassano, M. Tarulli, $H^1$-Scattering for systems of $N$-defocusing weakly coupled NLS equations in low space dimensions, J. Math. Anal. Appl., 430 (2015), 528–548. https://doi.org/10.1016/j.jmaa.2015.05.008 doi: 10.1016/j.jmaa.2015.05.008 |
[16] | T. Saanouni, Scattering threshold for a coupled focusing nonlinear Schrödinger system, Appl. Anal., 101 (2022), 2418–2445. https://doi.org/10.1080/00036811.2020.1808201 doi: 10.1080/00036811.2020.1808201 |
[17] | T. Saanouni, Scattering threshold for the focusing coupled Schrödinger system revisited, Nonlinear Differ. Equ. Appl., 28 (2021), 44. https://doi.org/10.1007/s00030-021-00706-7 doi: 10.1007/s00030-021-00706-7 |
[18] | R. Ghanmi, H. Hezzi, T. Saanouni, A note on inhomogeneous coupled Schrödinger equations, Ann. Henri Poincaré, 21 (2020), 2775–2814. https://doi.org/10.1007/s00023-020-00942-0 doi: 10.1007/s00023-020-00942-0 |
[19] | R. Ghanmi, T. Saanouni, Energy-critical scattering for focusing inhomogeneous coupled Schrödinger systems, Math. Method. Appl. Sci., 47 (2024), 9109–9136. https://doi.org/10.1002/mma.10062 doi: 10.1002/mma.10062 |
[20] | T. Saanouni, R. Ghanmi, Inhomogeneous coupled non-linear Schrödinger systems, J. Math. Phys., 62 (2021), 101508. https://doi.org/10.1063/5.0047433 doi: 10.1063/5.0047433 |
[21] | T. Saanouni, R. Ghanmi, Coupled inhomogeneous nonlinear Schrödinger system with potential in three space diemensions, Math. Method. Appl. Sci., 47 (2024), 5392–5413. https://doi.org/10.1002/mma.9869 doi: 10.1002/mma.9869 |
[22] | H. Hezzi, M. M. Nour, T. Saanouni, Coupled non-linear Schrödinger equations with harmonic potential, Arab. J. Math., 7 (2018), 195–218. https://doi.org/10.1007/s40065-017-0192-2 doi: 10.1007/s40065-017-0192-2 |
[23] | Z. Jiao, I. Jadlovská, T. X. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equations, 411 (2024), 227–267. https://doi.org/10.1016/j.jde.2024.07.005 doi: 10.1016/j.jde.2024.07.005 |
[24] | T. Cazenave, I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038. https://doi.org/10.1142/S0219199716500383 doi: 10.1142/S0219199716500383 |
[25] | A. K. Arora, O. Riaño, S. Roudenko, Well-posedness in weighted spaces for the generalized Hartree equation with $p < 2$, Commun. Contemp. Math., 24 (2022), 2150074. https://doi.org/10.1142/S0219199721500747 doi: 10.1142/S0219199721500747 |
[26] | T. Cazenave, Semilinear Schrödinger equations, Providence: American Mathematical Society, 2003. |
[27] | R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the non-linear Schrödinger equation, J. Math. Phys., 18 (1977), 1794–1797. https://doi.org/10.1063/1.523491 doi: 10.1063/1.523491 |