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1. Introduction

In this paper, we consider the following cubic-focusing energy-critical nonlinear Schrödinger
system on R4 i∂tu j(t, x) + ∆u j(t, x) = −F j(u),

u(0, x) = u0 = (u1,0, u2,0) ∈ (Ḣ1
x(R4))2,

(1.1)

where j = 1, 2,u = u(t, x) =
(
u1(t, x), u2(t, x)

)
: R × R4 → C2 is the unknown function and the

nonlinear term F j(u) is given by the relation

F j(u) :=
(
|u j(t, x)|2u j(t, x) + |uk(t, x)|2u j(t, x)

)
,

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.20241254


25660

where k = 1, 2, and k , j.
The nonlinear Schrödinger system (1.1) enjoys the following conservation laws.

1) Mass conservation

M
(
u1(t), u2(t)

)
=

∫
R4

(
|u1(t, x)|2 + |u2(t, x)|2

)
dx = M

(
u1(0), u2(0)

)
. (1.2)

2) Energy conservation

E(u1(t), u2(t)) =
1
2

∫
R4

(|∇u1(t, x)|2 + |∇u2(t, x)|2)dx −
1
4

∫
R4

(
|u1(t, x)|2 + |u2(t, x)|2

)2
dx

= E(u1(0), u2(0)).
(1.3)

System (1.1) is called energy-critical since a solution (u1, u2) to system (1.1) is invariant under the
scaling (

u1(t, x), u2(t, x)
)
7→ λ
(
u1(λ2t, λx), u2(λ2t, λx)

)
.

We first briefly recall the results of the Cauchy problem for the single nonlinear Schrödinger
equation i∂tu + ∆u = µ f (u),

u(0, x) = u0 ∈ Ḣ1(Rd),
(1.4)

where dimension d ≥ 3, µ = ±1, f (u) = |u|
4

d−2 u, and u(t, x) : R × Rd → C. By rescaling the values of
u, it is possible to restrict attention to the case µ = −1 or µ = 1; these are known as the focusing and
defocusing equations, respectively.

There is a large number of works on problem (1.4). In the defocusing case, Bourgain [3] first
proved the global well-posedness and scattering for radial initial data in dimensions (d = 3, 4) by
introducing the induction on energy method. Grillakis [13] demonstrated global regularity for the
three-dimensional energy-critical defocusing NLS with spherically symmetric initial data, that is, he
proved that smooth spherically symmetric initial data lead to a globally smooth solution. This result
can be deduced a posteriori from [3]; however, the argument in [13] is rather different. Further
advancements in the spherically symmetric case were made by Tao [32], who extended the result to
higher dimensions. For non-radial initial data, Colliander et al. [5] achieved a significant breakthrough
by proving the global well-posedness and scattering for d = 3, introducing a wealth of new ideas and
tools to the problem. Specifically, the authors utilized an interaction Morawetz inequality (introduced
in [4]), which is more suitable for the non-radial case than the Morawetz inequality used in previous
works. Subsequently, Ryckman and Visan [28] extended the argument from [5] to d = 4, and Visan [34]
obtained global well-posedness and scattering for d ≥ 5. Interested readers can refer to [8, 19, 35] for
an easier understanding of the global well-posedness and scattering for d = 3, 4, 5 using the long-time
Strichartz estimate of Dodson [10].

In the focusing case, Kenig and Merle [17] established global well-posedness and scattering when
d = 3, 4, 5 for radial initial data, where they first put forward the concentration compactness/rigidity
method. Killip and Visan [18] extended this to global well-posedness and scattering for non-radial
initial data when d ≥ 5. Later, Dodson [11] obtained global well-posedness and scattering for non-
radial initial data in d = 4. However, it seems difficult to solve the problem for d = 3 due to the fact
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that the stationary solution W(x) of problem (1.4) does not belong to L2(Rd) when d = 3, 4. Here, W(x)
denotes the ground state. Therefore, the case (d = 3) remains an open question.

We can summarize the above research results in the following theorem.

Theorem 1.1. Let u0 ∈ Ḣ1(Rd), when µ = 1, the corresponding solution u to problem (1.4) is global
for d ≥ 3.

When µ = −1 and E(u0) < E(W), the following results hold.

1) If ∥∇u0∥L2(Rd) < ∥∇W∥L2(Rd), then the solution u of problem (1.4) is global for d ≥ 4, and this is also
true for d = 3 in the radial case.

2) If ∥∇u0∥L2(Rd) > ∥∇W∥L2(Rd), and if either u0 ∈ L2(Rd) or u0 ∈ H1(Rd) is radial, then the solution u
of problem (1.4) blows up in finite time for d ≥ 3.

Furthermore, the global solution scatters in Ḣ1(Rd).
When µ = −1, there exists global solution to problem (1.4) that does not scatter, that is,

W(t, x) = W(x) :=
1(

1 + |x|2
d(d−2)

) d−2
2

, (1.5)

which solves the nonlinear elliptic equation

∆W + |W |
4

d−2 W = 0, (1.6)

then W(t, x) = W(x) is a stationary solution to problem (1.4). Moreover, the energy of ground state W
is

E(W) =
1
2
∥∇W∥2L2(Rd) −

d − 2
2d
∥W∥

2d
d−2

L
2d

d−2 (Rd)
= d−1C−d

d .

Here, the sharp constant

C−d
d = ∥∇W∥2L2(Rd) = ∥W∥

2d
d−2

L
2d

d−2 (Rd)
, (1.7)

comes from the Sobolev embedding inequality

∥u∥
L

2d
d−2 (Rd)

≤ Cd∥∇u∥L2(Rd). (1.8)

By following the arguments in [1, 31], we obtain W is a maximizer in the sharp Sobolev embedding
inequality.

There are also some results on the nonlinear Schrödinger equation of fourth order. Miao et al. [26]
considered the focusing energy-critical nonlinear Schrödinger equation of fourth order iut + ∆

2u =
|u|

8
d−4 u with d ≥ 5. They proved that if a maximal-lifespan radial solution u : I × Rd → C obeys

supt∈I ∥∆u(t)∥2 ≤ ∥∆W∥2, then it is global and scatters both forward and backward in time. In addition,
if a solution has both energy and kinetic energy lower than those of the ground state W at some point in
time, then the solution is global and scatters. After that, they considered the defocusing energy-critical
nonlinear Schrödinger equation of fourth order iut +∆

2u = −|u|
8

d−4 u in [25]. They proved that any finite
energy solution is global and scatters both forward and backward in time in dimensions d ≥ 9.
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Some results on nonlinear Schrödinger system were also obtained. For example, Cheng et al. [9]
obtained the global well-posedness and scattering of the cubic focusing infinite coupled nonlinear
Schrödinger system on R2 below the threshold in L2

xh
1(R2 × Z). Gao and Wang [14] proved a

concentration result for blow-up solutions of the coupled Schrödinger equations with non-spherically
symmetric initial data in H1(R2). There are also some papers on other types of nonlinear Schrödinger
systems, for instance, [21, 36, 37]. Compared to the single nonlinear Schrödinger equation, results on
the nonlinear Schrödinger system is relatively short.

The main motivation of this article is to provide a satisfactory answer to the following Theorem 1.2
and to extend the results of single nonlinear Schrödinger (NLS) equation to a class of coupled systems,
which contributes to a better understanding of the long-time evolution between systems. Such finite
coupled nonlinear Schrödinger system has already been applied in nonlinear optics; see [2] and the
references therein. It provides a useful approximation for describing the propagation of self-trapped,
mutually incoherent wave packets in nonlinear optics. In order to prove the following Theorem 1.2, we
first establish the variational characterization of the ground state and determine the threshold for global
well-posedness and scattering, which is a pivotal initial step. Subsequently, we employ the approach
developed by Kenig and Merle [17], utilizing concentration-compactness/rigidity method to reduce
the problem of global well-posedness and scattering to the exclusion of almost periodic solutions. In
other words, we need to exclude the existence of almost periodic solutions to system (1.1) that satisfy
K =

∫
R

N(t)−2dt < ∞ and K =
∫
R

N(t)−2dt = ∞. We prove the global well-posedness and scattering
of the four-dimensional cubic focusing energy-critical nonlinear Schrödinger system below the ground
state. Our main results are listed as follows.

Theorem 1.2. If the initial data u0 ∈ (Ḣ1
x(R4))2 satisfies

E(u0) < E(W), ∥u0∥(Ḣ1(R4))2 < ∥W∥(Ḣ1(R4))2 ,

where W = ( 1
√

2
W, 1

√
2
W),W is shown in (1.5), then the corresponding solution u to system (1.1) is

globally well-posed and scatters for both time directions.

Remark 1.3. If not otherwise specified, the following W = ( 1
√

2
W, 1

√
2
W),W denotes ground state and

is the stationary solution to problem (1.4), when µ = −1. The specific characterizations of ground state
W can be attained in Section 3.

The proof of Theorem 1.2 is based on the following three theorems.

Theorem 1.4. (Reduction to almost periodic solution, [17, 18]) If system (1.1) is not globally well-
posed and scattering for all data satisfying E(u0) < E(W), ∥u0∥(Ḣ1(R4))2 < ∥W∥(Ḣ1(R4))2 , then there exists
a non-zero solution u to system (1.1) that is almost periodic for the entire time of its existence.

So far, reducing almost periodic solutions has become a standard technique in the analysis of
dispersive equations at critical regularity. Their existence was first established by Keraani [15] in
the context of the mass-critical nonlinear Schrödinger equation, and was initially employed by Kenig,
Merle [17] as a tool to prove global well-posedness. As mentioned above, Theorem 1.4 has been
proven in [17, 18].

Next, is the definition of almost periodicity in Theorem 1.4.
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Definition 1.5. If there exists N(t) : I → (0,∞) and x(t) : I → R4 such that for all t ∈ I, 1
N(t)u( x−x(t)

N(t) )
lies in a compact set K ⊂ Ḣ1(R4), then u is almost periodic for all t ∈ I, where I is the maximal interval
of its existence.

Theorem 1.6. The only almost periodic solution on the maximal interval of its existence I satisfying
∥∇u(t)∥(L∞t L2

x(I×R4))2 < ∥∇W∥(L2(R4))2 is u ≡ 0.

Theorem 1.7. To prove Theorem 1.6, it suffices to show that the only global, almost periodic solution
to system (1.1) on R satisfying

N(t) ≥ 1,N(0) = 1,

is u ≡ 0.
The outline of the paper is as follows. In Section 2, we present the local well-posedness of system

(1.1) and some analytic tools. In Section 3, we establish variational characterizations of the ground
state. In Section 4, we give that the non-scattering is equivalent to the existence of almost periodic
solutions. In Section 5, we prove the long time Strichartz estimate, which plays a pivotal role in
proving the main results. In Section 6, we first preclude the almost periodic solution to system (1.1)
satisfying K =

∫
R

N(t)−2dt < ∞ (see Theorem 6.1). Second, we exclude the almost periodic solution to
system (1.1) with K =

∫
R

N(t)−2dt = ∞ (see Theorem 6.2). Our study excursion comes to an end with
the provided conclusion in Section 7.

2. Notation and preliminaries

In this section, we will briefly recall the local well-posedness theory of system (1.1) and some basic
results.

2.1. Some notations

We use the following notations throughout this paper. We will use X ≲ Y whenever there exists
some constant C > 0 such that X ≤ CY. Similarly, we use X ∼ Y if X ≲ Y ≲ X. For any space-time slab
I × R4, we use (Lq

t Lr
x(I × R

4))2 to denote the Banach space time of function u : I × R4 → C2 whose
norm is

∥u∥(Lq
t Lr

x(I×R4))2 := (
∫

I
∥u∥q(Lr

x(R4))2dt)
1
q

with the usual modifications when q or r are equal to infinity. When q = r, we abbreviate Lq
t Lr

x as Lq
t,x.

We define the Fourier transform on R4 to be

F f(ξ) := (2π)−d/2
∫
R4

e−ixξf(x)dx.

For s ∈ R, we define the fractional differentiation/integral operator

F (|∇|sf(ξ)) := |ξ|sF f(ξ),

which in turn define the homogeneous Sobolev norm

∥f∥(Ḣs(R4))2 := ∥|∇|sf∥(L2(R4))2 .
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2.2. Local theory and analytic tools

In this subsection, we will review local well-posedness and some important estimates. We first give
the precise definition of solution in the energy spaces.

Definition 2.1. A function u : I × R4 → C2 on a nonempty time interval t0 ∈ I ⊂ R is a strong Ḣ1

solution of system (1.1) if it lies in the class C0
t Ḣ1

x(K × R4)
⋂

L6
t,x(K × R

4) for all compact K ⊂ I, and
obeys the Duhamel formula

u j(t1) = ei(t1−t0)∆u j,0 + i
∫ t1

t0
ei(t1−t)∆F j(u(t))dt

for all t1 ∈ I and j = 1, 2. We refer to the interval I as the lifespan of u. It is said that u is a maximal-
lifespan solution if the solution cannot be extended to any strictly larger interval, and that u is a global
solution if I = R.

Next, we will give the definition of scattering size and blow up.

Definition 2.2. The scattering size of a solution to system (1.1) on a time interval I by

S I(u) :=
∫

I

∫
R4
|u(t, x)|6dxdt.

Definition 2.3. A solution u to system (1.1) blows up forward in time if there exists a time t1 ∈ I such
that

S [t1,sup I)(u) = ∞,

and that u blows up backward in time if there exists a time t1 ∈ I such that

S (inf I,t1](u) = ∞.

Let eit∆ be the free Schrödinger evolution. From the explicit formula

eit∆f(x) =
1

(4πit)2

∫
R4

ei|x−y|2/4tf(y)dy,

one easily obtains the standard dispersive inequality

∥eit∆f∥(L∞(R4))2 ≲ |t|−2∥f∥L1(R4))2 ,

for all t , 0.
A different way to express the dispersive effect of the operator eit∆ is in terms of space-time

integrability. To state the estimates, we first need the following definition.

Definition 2.4. (Admissible pairs) For d ≥ 3, a pair of exponents (q, r) is an admissible pair if

2
q
+

d
r
=

d
2
, 2 ≤ q, r ≤ ∞,

and (d, q, r) , (2, 2,∞).
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For a fixed space-time slab I × Rd, we define the Strichartz norm

∥u∥(S 0(I))2 := sup ∥u∥(Lq
t Lr

x(I×Rd))2 , ∥u∥(Ṡ s(I))2 := ∥|∇|su∥(S 0(I))2 ,

where (q, r) is an admissible pair and s ∈ R. We write S 0(I) for the closure of all test functions under
this norm and denote by N0(I) the dual of S 0(I).

Now, we are ready to state the standard Strichartz estimates.

Theorem 2.5. (Strichartz estimates) Let I be a compact time interval, and let u : I × R4 → C2 be a
solution to the forced Schrödinger system

i∂tu j(t, x) + ∆u j(t, x) = −F j(u),

then for any t0 ∈ I
∥∇u j∥S 0(I) ≲ ∥u j(t0)∥Ḣ1(Rd) + ∥∇F j∥N0(I).

Proof. We treat the non-endpoint case following [12, 29]. For the endpoint (q, r) = (2, 2d
d−2 ) in

dimensions d ≥ 3, see [16]. For failure of the d = 2 endpoint, see [27]. □

Theorem 2.6. (Littlewood-Paley) For any 1 < p < ∞,∥∥∥∥(ΣN |PNf|2
)1/2∥∥∥∥

(Lp(R4))2
∼p,d ∥f∥(Lp(R4))2 .

Theorem 2.7. (Sobolev embedding, [33]) For 1 ≤ p ≤ q ≤ ∞,N ∈ Z,

∥PNf∥(Lq(R4))2 ≲ 24N( 1
p−

1
q )
∥PNf∥(Lp(R4))2 .

Theorem 2.8. (Bernstein’s estimate) For any s ∈ R,N ∈ Z, 1 < p < ∞,

2Ns∥PNf∥(Lp(R4))2 ∼ ∥|∇|sPNf∥(Lp(R4))2 .

Theorem 2.9. (Maximal Strichartz estimate) Suppose t, t0 ∈ I, and

v j(t) =
∫ t

t0
ei(t−s)∆F j(s)ds,

then for d = 4, q > 4, j = 1, 2,∥∥∥∥ sup 2N( 4
q−2)
∥PNv j(t)∥Lq

x(R4)

∥∥∥∥
L2

t (I)
≲q ∥F j∥L2

t L1
x(I×R4).

With the aid of Theorem 2.5, the following local well-posedness theory is obtained. Because the
proof is relatively standard, we do not review it here and refer interested readers to [6, 7].

Theorem 2.10. (Local well-posedness) Assume u0 ∈ (Ḣ1(R4))2 and t0 ∈ R, there exists a unique
maximal-lifespan u : I × R4 → C2 to system (1.1) with initial data u(t0) = u0. This solution has the
following properties

1) Local existence: I is an open neighborhood of t0.
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2) Blow-up criterion: If sup I < ∞, then S [t1,sup I)(u) = ∞. Similarly, if inf I < ∞, then S (inf I,t1](u) = ∞.

3) Scattering: If sup I = ∞, and u does not blow up forward in time, then u scatters forward in time,
that is, there exists a unique u+ ∈ (Ḣ1(R4))2 such that

lim
t→∞
∥u(t) − eit∆u+∥(Ḣ1(R4))2 = 0.

4) Small data global existence: If ∥∇u0∥(L2(R4))2 is sufficiently small, then u is a global solution, which
does not blow up either forward or backward in time. Indeed, in this case, S R(u) ≤ ∥∇u0∥

6
(L2(R4))2 .

3. Variational characterization of the ground state

In this section, we mainly study the variational characterizations of the ground state. Let us first
define the ground state to the system (1.1).

Set ground state W = (W1,W2) of the system (1.1), that is W, is stationary solution of system (1.1),
and W solves the following elliptic system∆W1 = −|W1|

2W1 − |W2|
2W1,

∆W2 = −|W2|
2W2 − |W1|

2W2,
(3.1)

then by subtracting the second equation from the first equation of (3.1), we obtain

∆(W1 −W2) =
(
|W1|

2 + |W2|
2
)(

W2 −W1

)
. (3.2)

Multiplying the Eq (3.2) by
(
W1 −W2

)
, it follows that

(W1 −W2)∆(W1 −W2) = −
(
|W1|

2 + |W2|
2
)(

W1 −W2

)2
. (3.3)

Then, integrating by parts over R4, we have∫
R4

∣∣∣∣∇(W1 −W2)
∣∣∣∣2dx = −

∫
R4

(
|W1|

2 + |W2|
2
)(

W1 −W2

)2
dx, (3.4)

which implies W1 = W2 in Ḣ1(R4). Hence, the system (3.1) can be reduced to the single nonlinear
elliptic equation

∆W̃ = −2|W̃ |2W̃. (3.5)

The positive solution of (3.5) is known as radially symmetric and unique up to translation and dilation
(see [22]) and is identified by

W(t, x) = W(x) :=
1

1 + |x|
2

8

, (3.6)

which uniquely solves (1.6) (see [31]). As we all know, the solution of (3.5) minimizes the
corresponding energy functional (see [30]), and W obtains the best constant of the Sobolev embedding
equality (1.8), that is (1.7), is shown.
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The ground state is associated with the best constant in the vector-valued sharp Gagliardo-Nirenberg
inequality:

2
∫
R4

(|u1|
2 + |u2|

2)2dx −
∫
R4

(|u1|
4 + |u2|

4)dx ≤ Cres

( ∫
R4

(|u1|
2 + |u2|

2)dx
)( ∫

R4
(|∇u1|

2 + |∇u2|
2)dx
)
,

we define the Weinstein functional

F(u) :=
2
∫
R4(|u1|

2 + |u2|
2)2dx −

∫
R4(|u1|

4 + |u2|
4)dx( ∫

R4(|u1|
2 + |u2|

2)dx
)( ∫
R4(|∇u1|

2 + |∇u2|
2)dx
) .

By standard variational argument, a maximizer W = (W1,W2) of the Weinstein functional F(u) weakly
solves the system (3.1), if it exists.

If a maximizer W = (W1,W2) exists and we assume it is non-negative, then by a standard argument
using the maximum principle, each component W j of such a non-negative maximizer is indeed strictly
positive. In addition, due to strict positivity of each W j and (3.4), we can derive W1 = W2.

Therefore, under spatial translation and dilation, W = (W1,W2) = ( 1
√

2
W, 1

√
2
W) is the unique

positive solution of (3.1) that minimizes the corresponding energy functional.

4. Reduction to the almost periodic solution

In this section, we will show that the non-scattering is equivalent to the existence of almost periodic
solutions. For any 0 ≤ E ≤ ∥∇W∥(L2(R4))2 , we define

L(E) := sup
{
S R(u)

∣∣∣∣∥u∥(L∞t Ḣ1
x )2 ≤ E

}
,

thus, L :
[
0, ∥∇W∥(L2(R4))2

]
→
[
0,∞
]

is a nondecreasing function with L
(
∥∇W∥(L2(R4))2

)
= ∞, and

by [18, Lemma 1.4], we see that L is continuous.
To prove system (1.1) is globally well-posed, and scatters satisfying E(u0) < E(W) and

∥u0∥(Ḣ1(R4))2 < ∥W∥(Ḣ1(R4))2 , it suffices to prove that L(E) < ∞ for E < ∥∇W∥(L2(R4))2 . Therefore, if
Theorem 1.2 does not hold, then by the continuity of L(E), there exists Ec < ∥∇W∥(L2(R4))2 such that
L(Ec) = ∞, and according to L is nondecreasing function, L(E) < ∞ for all E < Ec. Ec is called
minimal energy. If we can prove Ec = ∥∇W∥(L2(R4))2 , then the global well-posedness, and scattering
are established. Suppose Ec < ∥∇W∥(L2(R4))2 , by following the concentration-compactness/rigidity
arguments in [17, 18], we obtain the following theorem.

Theorem 4.1. Assume Ec < ∥∇W∥(L2(R4))2 , there exists a solution u ∈ C0
t Ḣ1

x(K × R4)
⋂

L6
t,x(K × R

4)
of system (1.1) with supt∈I ∥∇u(t)∥2(L2(R4))2 = Ec, which is almost periodic in the sense that exists(
N(t), x(t)

)
∈ R+ × R4 such that for any η > 0, there exists C(η) < ∞ satisfying for any t ∈ I,∫

|x−x(t)>C(η)
N(t)

|∇u(t, x)|2dx +
∫
|ξ|>C(η)N(t)

|ξ|2|û(t, ξ)|2dξ < η. (4.1)

Remark 4.2. Note that we have the freedom to modify N(t) by any bounded function of t, provided that
we also modify compactness modulus function C accordingly. In particular, one could restrict N(t) to
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be a constant locally if one wishes to. Thus, recall that [20, Lemma 5.21], one can choose N(t) such
that

|N′(t)| ≲ N(t)3, (4.2)

and ∫
I
N(t)2dt ≲u

∫
I

∫
R4
|u(t, x)|6dxdt ≲u 1 +

∫
I
N(t)2dt. (4.3)

Sketch of proof of Theorem 1.7. Suppose u(t) is an almost periodic solution to system (1.1), one can
take a limit of u(tn) in Ḣ1/G (G is a symmetry group) and deduce a solution to system (1.1) satisfying
either

N(t) ≥ 1,N(0) = 1,

or that u(t) blows up in finite time.
First, at t = 0 and by time reversal symmetry, suppose u(t) blows up as t → 0, then by (4.2) and

(4.3), N(t)→ ∞ as t → 0.
The next step is to prove that

∫
R4 |u(t, x)|2dx = 0 for any t > 0, which implies the solution u is

identically zero, thus contradicting that u blows up in finite time.
For any R > 0, we define

MR(t) :=
∫
R4
ϕ
( x
R

)2
|u(t, x)|2dx,

where ϕ is a smooth, radial function, such that

ϕ(r) =
{

1 |r| ≤ 1,
0 |r| ≥ 2.

By (4.1) and Hölder’s inequality, we obtain

lim
t→0

MR(t) = 0. (4.4)

Moreover, by integration by parts, one has

∂tMR(t) ≤
1
R

∫
R4
ϕ′
( x
R

)
ϕ
( x
R

)
|∇u(t, x)||u(t, x)|dx ≤

1
R

(
MR(t)

)1/2
∥∇u(t, x)∥2(L2(R4))2 . (4.5)

Therefore, (4.4) combined with the fundamental theorem of calculus and (4.5) implies∫
R4
|u(t, x)|2dx = 0

for any t > 0, then according to conservation of mass (1.2), it implies u ≡ 0, which contradicts u
blowing up in finite time. Hence, Theorem 1.2 has been reduced to Theorem 1.7.

5. Long-time Strichartz estimate

The main result of this section is a long-time Strichartz estimate; since the usual interaction
Morawetz estimate is not positive definite in the focusing case, we will rely on long-time Strichartz
estimate based on K =

∫
I
N(t)−2dt.
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Theorem 5.1. (Long-time Strichartz estimate) Suppose I is an interval and given above K, then for
any l ∈ Z, (∑

k≤l

∥uk∥
2
(Ṡ 1(I×R4))2

)1/2
+ 22l
∥∥∥∥ sup

k≥l
2−2k∥uk∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2
≲ (1 + 24lK)1/2. (5.1)

Remark: To simplify notation, it is convenient to write uk instead of Pku.

Proof. It follows from Theorem 2.7, Strichartz estimate, and Theorem 2.8 that

24l
∑
k≥l

2−4k∥ei(t−t0)∆uk(t0)∥2(L2
t L∞x (I×R4))2 ≲ 24l

∑
k≥l

2−2k∥ei(t−t0)∆uk(t0)∥2(L2
t L4

x(I×R4))2

≲ 22l∥u≥l(t0)∥2(L2(R4))2 ≲ ∥∇u(t0)∥2(L2(R4))2 ≲ 1,
(5.2)

and ∑
k≤l

∥∇ei(t−t0)∆uk(t0)∥2(L2
t L4

x(I×R4))2 ≲ ∥∇u(t0)∥2(L2(R4))2 ≲ 1. (5.3)

Let
∥u∥(Y(I×R4))2 = sup

l
22l(1 + 24lK)−1/2

∥∥∥∥ sup
k≥l

2−2k∥ul(t)∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2

+ sup
l

(1 + 24lK)−1/2
(∑

k≤l

22k∥uk(t)∥2(L2
t L4

x(I×R4))2

)1/2
.

(5.4)

Our goal is to use (5.2), (5.3) and the smallness of u away from the scale N(t) to prove an estimate of
the form

∥u∥(Y(I×R4))2 ≲ 1 + η∥u∥(Y(I×R4))2 . (5.5)

To this end, we decompose

F(u) = F(u≥l) + O(u2
≥lu≤l) + O(u2

≤lu≥l) + F(u≤l). (5.6)

By (4.1), it is possible to choose c(η) > 0 such that

∥u≤c(η)N(t)∥(L∞t Ḣ1
x (R×R4))2 ≤ η. (5.7)

Step 1. Estimation for F(u≥l).
By Bernstein’s inequality, we obtain

∥P≤cN(t)u≥l∥
3
(L6

t L3
x(I×R4))2

≲
∥∥∥∥ ∑

l≤k1≤k2≤k3

∥P≤cN(t)uk1∥(L∞x (R4))2∥P≤cN(t)uk2∥(L2
x(R4))2∥P≤cN(t)uk3∥(L2

x(R4))2

∥∥∥∥
(L2

t (I))2

≲ ∥P≤cN(t)u∥2(L∞t Ḣ1
x (R×R4))2

∥∥∥∥ sup
k≥l

2−2k∥uk∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2

≲ η22−2l(1 + 24lK)1/2∥u∥(Y(I×R4))2 ,

(5.8)

and

∥P≥cN(t)u∥3(L6
t L3

x(I×R4))2 ≲
( ∫

I
∥u≥cN(t)∥

2
(L2

x(R4))2∥u∥4(L4
x(R4))2dt

)1/2
≲ ∥u∥4(L∞t Ḣ1

x (R×R4))2

( ∫
I
c−2N(t)−2dt

)1/2
≲ c−1K1/2.

(5.9)
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Then, combining (5.8) with (5.9), we see that

∥u3
≥l∥(L2

t L1
x(I×R4))2 ≲ η22−2l(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/2. (5.10)

It follows from Theorem 2.9 and (5.10) that∥∥∥∥ sup
k≥l

2−2k∥Pk

∫ t

t0
ei(t−τ)∆F(u≥l)dτ∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2
≲ ∥u3

≥l∥(L2
t L1

x(I×R4))2

≲ η22−2l(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/2.

(5.11)

Therefore,

(∑
k≤l

22k∥Pk

∫ t

t0
ei(t−τ)∆F(u≥l)dτ∥2(L2

t L4
x(I×R4))2

)1/2
≲
(∑

k≤l

24k
)1/2
∥u3
≥l∥(L2

t L1
x(I×R4))2

≲ η2(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/222l.

(5.12)

Step 2. Estimation for O(u2
≥lu≤l).

By Sobolev embedding theorem, Littlewood-Paley theorem, and interpolation, then,

∥u≤l∥(L6
t,x(I×R4))2 ≲ ∥∇u≤l∥(L6

t L12/5
x (I×R4))2

≲ ∥∇u≤l∥
2/3
(L∞t L2

x(I×R4))2

(∑
k≤l

22k∥uk∥
2
(L2

t L4
x(I×R4))2

)1/6
≲ (1 + 24lK)1/6∥u∥1/3(Y(I×R4))2 .

(5.13)

By Hölder’s inequality, Theorem 2.7, (5.10), and (5.13), one has

∥u2
≥lu≤l∥(L2

t L4/3
x (I×R4))2 ≲ ∥u≥l∥

2
(L6

t L3
x(I×R4))2∥u≤l∥(L6

t L12
x (I×R4))2

≲ 2l/3∥u≥l∥
2
(L6

t L3
x(I×R4))2∥u≤l∥(L6

t,x(I×R4))2

≲ 2l/3
(
η22−2l(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/2

)2/3
(1 + 24lK)1/6∥u∥1/3(Y(I×R4))2 .

(5.14)

Theorem 2.7, Strichartz estimate, and (5.14) imply∥∥∥∥ sup
k≥l

2−2k∥Pk

∫ t

t0
ei(t−τ)∆O(u2

≥lu≤l)dτ∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2

≲ 2−l
∥∥∥∥ ∫ t

t0
ei(t−τ)∆O(u2

≥lu≤l)dτ
∥∥∥∥

(L2
t L4

x(I×R4))2

≲ 2−l∥u2
≥lu≤l∥(L2

t L4/3
x (I×R4))2

≲ 2−2l/3
(
η22−2l(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/2

)2/3
(1 + 24lK)1/6∥u∥1/3(Y(I×R4))2

≲ 2−2lη4/3(1 + 24lK)1/2∥u∥(Y(I×R4))2 + 2−2l/3c−2/3K1/3(1 + 24lK)1/6∥u∥1/3(Y(I×R4))2 .

(5.15)
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It follows from Strichartz estimate and (5.15) that(∑
k≤l

22k∥Pk

∫ t

t0
ei(t−τ)∆O(u2

≥lu≤l)dτ∥2(L2
t L4

x(I×R4))2

)1/2
≲ 2l∥u2

≥lu≤l∥(L2
t L4/3

x (I×R4))2

≲ η4/3(1 + 24lK)1/2∥u∥(Y(I×R4))2 + 24l/3c−2/3K1/3(1 + 24lK)1/6∥u∥1/3(Y(I×R4))2 .

(5.16)

Step 3. Estimation for F(u≤l).
By Hölder’s inequality, Sobolev embedding theorem, and (4.1), one has∥∥∥∥(P≤cN(t)u≤l)

∥∥∥∥2
(L2

t L4
x(I×R4))2

≲ ∥u≤l∥(L2
t L∞x (I×R4))2∥u≤cN(t)∥(L∞t L4

x(I×R4))2

≲ ∥∇u≤l∥(L2
t L4

x(I×R4))2∥u≤cN(t)∥(L∞t L4
x(I×R4))2

≲ η(1 + 24lK)1/2∥u∥(Y(I×R4))2 .

(5.17)

Bernstein’s inequality and Sobolev embedding theorem yield∥∥∥∥(P≥cN(t)u≤l)
∥∥∥∥2

(L2
t L4

x(I×R4))2
≲ 2l
( ∫

I
∥u>cN(t)∥

2
(L2

x(R4))2∥u≤l∥
2
(L∞x (R4))2dt

)1/2
≲ c−1K1/222l.

(5.18)

Then, combining (5.17) with (5.18), we obtain

∥u2
≤l∥(L1

t L2
x(I×R4))2 ≲ η(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/222l. (5.19)

It follows from Theorem 2.9 and (5.19) that∥∥∥∥ sup
k≥l

2−2k∥Pk

∫ t

t0
ei(t−τ)∆F(u≤l)dτ∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2
≲ ∥u2

≤l∥(L1
t L2

x(I×R4))2

≲ η(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/222l.

Therefore, (∑
k≤l

22k∥Pk

∫ t

t0
ei(t−τ)∆F(u≤l)dτ∥2(L2

t L4
x(I×R4))2

)1/2
≲
(∑

k≤l

24k
)1/2
∥u2
≤l∥(L1

t L2
x(I×R4))2

≲ 22lη(1 + 24lK)1/2∥u∥(Y(I×R4))2 + c−1K1/224l.

(5.20)

Step 4. Estimation for O(u2
≤lu≥l).

Using (5.17) and (5.18), then,∥∥∥∥∇O(u2
≤lu>l)

∥∥∥∥
(L2

t L4/3
x (I×R4))2

+ ∥∇u3
≤l∥(L2

t L4/3
x (I×R4))2

≲ ∥∇u∥(L∞t L2
x(I×R4))2∥u2

≤l∥(L1
t L2

x(I×R4))2

≲ c−1K1/222l + η(1 + 24lK)1/2∥u∥(Y(I×R4))2 .

(5.21)
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Therefore, we see that (∑
k≤l

22k∥Pk

∫ t

t0
ei(t−τ)∆O(u2

≤lu>l)dτ∥2(L2
t L4

x(I×R4))2

)1/2
≲ c−1K1/222l + η(1 + 24lK)1/2∥u∥(Y(I×R4))2 ,

(5.22)

Using Sobolev embedding theorem, Bernstein’s inequality, Strichartz estimate, and (5.22), we get∥∥∥∥ sup
k≥l

2−2k∥Pk

∫ t

t0
ei(t−τ)∆O(u2

≤lu>l)dτ∥(L∞x (R4))2

∥∥∥∥
(L2

t (I))2

≲ 2−2l
∥∥∥∥∇∫ t

t0
ei(t−τ)∆O(u2

≤lu>l)dτ
∥∥∥∥

(L2
t L4

x(I×R4))2

≲ c−1K1/2 + 2−2lη(1 + 24lK)1/2∥u∥(Y(I×R4))2 .

(5.23)

Combining (5.2), (5.3), (5.11), (5.15), (5.16), (5.20), (5.22), and (5.23), it is obvious to get

∥u∥(Y(I×R4))2 ≲ c(η)−1 + η∥u∥(Y(I×R4))2 .

By choosing η > 0 sufficiently small, Theorem 5.1 is proved. □

Remark 5.2. By Theorem 2.9 and above analysis, we have also proved

22l
∥∥∥∥ sup

k≥l
2−4k/3∥uk∥(L6

x(R4))2

∥∥∥∥
(L2

t (I))2
≲ (1 + 24lK)1/2, (5.24)

and this result will be applied later.

6. Exclusion of the almost periodic solution

In this section, we prove the main results by considering the following two cases.
Case 1: K =

∫
R

N(t)−2dt < ∞.
Case 2: K =

∫
R

N(t)−2dt = ∞.
First, let us prove the nonexistence of almost periodic solution for system (1.1) under Case 1. The

following theorem is obtained.

Theorem 6.1. There is no almost periodic solution for system (1.1) satisfying K =
∫
R

N(t)−2dt < ∞ in
Theorem 4.1.

Proof. By (4.1), for any η > 0, there exists l0(η) such that

∥P≤l0u(t)∥(L∞t Ḣ1
x (R×R4))2 ≤ η.

Let k0 be the integer such that 2k0 ≤ K−1/4 ≤ 2k0+1, by Duhamel formula, for l ≤ k0 and t ∈ [−T,T ],
then,

∇P≤lu(t) = ∇P≤lu(−T ) − i∇P≤l

∫ t

−T
ei(t−τ)∆F(u(τ))dτ.

For l ≤ l0(η) and k0, ∥∥∥∥∇F(u≤l)
∥∥∥∥

(L2
t L4/3

x ([−T,T ]×R4))2
≲ η2∥∇u≤l∥(L2

t L4
x([−T,T ]×R4))2 . (6.1)
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Exploiting Theorem 2.7 and Hölder’s inequality, we derive∥∥∥∥∇P≤lO(u2
≤lul≤·≤k0)

∥∥∥∥
(L2

t L4/3
x ([−T,T ]×R4))2

≲ 2l
∥∥∥∥∇P≤lO(u2

≤lul≤·≤k0)
∥∥∥∥

(L2
t L1

x([−T,T ]×R4))2

≲ 2l∥ul≤·≤k0∥(L∞t L2
x(R×R4))2∥∇u≤l∥(L2

t L4
x([−T,T ]×R4))2∥∇u≤l∥(L∞t L2

x(R×R4))2

≲ η∥∇u≤l∥(L2
t L4

x(I×R4))2 .

(6.2)

It follows from Bernstein’s inequality and Theorem 2.7 that∥∥∥∥∇P≤lO(u2
l≤·≤k0

u)
∥∥∥∥

(L2
t L4/3

x ([−T,T ]×R4))2
≲ 22l
∥∥∥∥∇P≤lO(u2

l≤·≤k0
u)
∥∥∥∥

(L2
t L4/5

x ([−T,T ]×R4))2

≲ 22l
∑

l≤k1≤k2≤k3

∥uk1∥(L2
t L4

x([−T,T ]×R4))2∥uk2∥(L∞t L2
x([−T,T ]×R4))2∥uk3∥(L∞t L4

x([−T,T ]×R4))2

≲
( ∑

l≤m≤k0

2l−m∥um∥(Ṡ 1([−T,T ]×R4))2

)( ∑
l≤m≤k0

2l−m∥um∥(L∞t Ḣ1([−T,T ]×R4))2

)
.

(6.3)

Combining (4.1) with (6.1)–(6.3), obviously,∥∥∥∥∇P≤lF(u≤k0)
∥∥∥∥

(L2
t L4/3

x ([−T,T ]×R4))2
≲ η∥u≤l∥(Ṡ 1([−T,T ]×R4))2

+
( ∑

l≤m≤k0

2l−m∥um∥(Ṡ 1([−T,T ]×R4))2

)( ∑
l≤m≤k0

2l−m∥um∥(L∞t Ḣ1([−T,T ]×R4))2

)
.

(6.4)

Using Sobolev embedding theorem, Bernstein’s inequality, Strichartz estimate, (4.1), and Theorem 5.1,
then, ∥∥∥∥∇P≤l

[
F(u) − F(u≤k0)

]∥∥∥∥
(L2

t L4/3
x ([−T,T ]×R4))2

≲ 2l∥u3
≥k0
∥(L2

t L1
x([−T,T ]×R4))2

+ 2l∥ul≤·≤k0∥
2
(L4

t L8
x([−T,T ]×R4))2∥u>k0∥(L∞t L2

x([−T,T ]×R4))2

+ 2l∥∇u≤l∥(L2
t L4

x([−T,T ]×R4))2∥u≤l∥(L∞t Ḣ1
x ([−T,T ]×R4))2∥u>k0∥(L∞t L2

x([−T,T ]×R4))2

≲ 22lK1/2 + 2l−k0
( ∑

l≤m≤k0

2l−m∥∇um∥(L2
t L4

x([−T,T ]×R4))2

)
+ 2l−k0η∥∇u≤l∥(L2

t L4
x([−T,T ]×R4))2 .

(6.5)

Therefore, we see that

∥u≤l∥(Ṡ 1([−T,T ]×R4))2 ≲
∥∥∥∥∇P≤lu(−T )

∥∥∥∥
(L2

x(R4))2
+ η∥u≤l∥(Ṡ 1([−T,T ]×R4))2

+
( ∑

l≤m≤k0

2l−m∥u≤m∥(Ṡ 1([−T,T ]×R4))2

)(∑
m≥l

2l−m∥∇um∥(L∞t L2
x([−T,T ]×R4))2

)
+ 22lK1/2.

(6.6)

It follows from (4.1) that ∑
l≤m

∥ul∥(L∞t Ḣ1
x ([−T,T ]×R4))2 ≲ η + 2l−l0(η).

Since K =
∫
R

N(t)−2dt < ∞,N(−T )→ +∞ as T → +∞, for any l,

inf
T

∥∥∥∥∇P≤lu(−T )
∥∥∥∥

(L2
x(R4))2

= 0. (6.7)
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Let αl = ∥u≤l∥(Ṡ 1([−T,T ]×R4))2 , by Theorem 5.1, we have

∥u≤k0∥(Ṡ 1([−T,T ]×R4))2 ≲ 1

uniformly in T , then by (6.6) and (6.7),

αl ≲ η
∑

l≤m≤k0

2l−mαl + 22lK1/2 + 2l−l0 . (6.8)

Let βm =
∑

m≤l≤k0
23(m−l)/4αl, clearly βm ≤ αm for any m, then by (6.8), we can deduce βm ≲ K1/223m/4.

Plugging ∥u≤l∥(Ṡ 1(R×R4))2 ≲ 23l/4 for l ≤ k0 back into (6.6),

∥u≤l∥(Ṡ 1(R×R4))2 ≲ 23l/2K.

In particular, this means that
∥u∥(H−1/4(R4))2 ≲ K. (6.9)

By Bernstein’s inequality, interpolation, (4.1), and (6.9), for any η > 0, then

∥u∥(L2(R4))2 ≲ ∥P≤N(t)/C(η)u∥4/5(H−1/4(R4))2∥P≤N(t)/C(η)u∥1/5(Ḣ1(R4))2 + ∥P≥N(t)/C(η)u∥(L2(R4))2

≲ K2/3η1/5 +
C(η)
N(t)

.
(6.10)

Since N(t)→ +∞ as t → +∞, there exists η(t)→ 0 such that (6.10) implies

∥u∥(L2
x(R4))2 → 0.

Therefore, conservation of mass (1.2) implies u ≡ 0. □

In what follows, let us illustrate the nonexistence of almost periodic solution for system (1.1) under
Case 2. The following theorem is obtained.

Theorem 6.2. If u is an almost periodic solution to system (1.1) with K =
∫
R

N(t)−2dt = ∞ in Theorem
4.1, then u ≡ 0.

To prove the Theorem 6.2, we first need the following theorems and lemmas.

Theorem 6.3. If u is an almost periodic solution to system (1.1) satisfying N(t) ≥ 1 on R, then

∥u(t)∥(L∞t L3
x(R×R4))2 < ∞.

Proof. See Dodson [11]. It will turn out that the proof for the single case works with a slight
modification, so we omit the proof. □

Next, we prove that in a general sense, the L2-norm of an almost periodic solution satisfy∫
R

N(t)−2dt = ∞ logarithmic divergence.

Lemma 6.4. Suppose ψ ∈ C∞0 (R4) is a positive, radial, decreasing function,
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ψ(x) =
{

1 |x| ≤ 1,
0 |x| ≥ 2.

(6.11)

If K =
∫

I
N(t)−2dt, then for any 1 ≤ R ≤ K1/5,∫

I

"
R4×R4

|u(t, y)|2ψ
(N(t)(x − y)

R

)[
|∇u(t, x)|2 + |u(t, x)|4

]
dxdydt ≲ K

(
1 + ln R

)
. (6.12)

Proof. The proof is similar to a single case, so we omit its proof; interested readers should consult
Colliander et al. [5] or Killip, Visan [19]. □

Now, we consider the case when N(t) ≡ 1.

Theorem 6.5. If u is an almost periodic solution for system (1.1) satisfying N(t) ≡ 1 on R, and
∥u∥(L∞t Ḣ1(R×R4))2 < ∥∇W∥(L2

x(R4))2 , then u ≡ 0.

Proof. Set ψ ∈ C∞0 (R4) as a radial function satisfying (6.11) and J a large number such that eJ ≤ K1/10,

then let

ϕ(x − y) =
1
J

∫ eJ

1

1
R

∫
R4
ψ2
( x
R
− s
)
ψ2
( y
R
− s
)
dsdR =

1
J

∫ eJ

1

1
R

∫
R4
ψ2
( x − y

R
− s
)
ψ2(s)dsdR.

We notice that ψ(s) = 0 for |s| ≥ 2, so ϕ(x− y) is supported on |x− y| ≤ 4eJ and that ∥ϕ∥L∞ is uniformly
bounded.

Next, we need to estimate the derivatives of ϕ. Let us illustrate for k = 1, 2, 3,

|∇kϕ(x)| ≲
1
J

1
|x|k

. (6.13)

In fact, since ψ(s) = 0 for |s| ≥ 2,

∇ϕ(x) =
2
J

" eJ

1

1
R2ψ
( x
R
− s
)
ψ′
( x
R
− s
)
ψ2(s)

( x
R − s)
| xR − s|

dsdR

=
2
J

∫ eJ

|x|
4

∫
1
R2ψ
( x
R
− s
)
ψ′
( x
R
− s
)
ψ2(s)

( x
R − s)
| xR − s|

dsdR ≲
1
J

1
|x|
.

For k = 2, 3, we can obtain by similar computation that ∇2ϕ(x) ≲ 1
J

1
|x|2 ,∇

3ϕ(x) ≲ 1
J

1
|x|3 .

Define the interaction Morawetz action

M(t) :=
"
R4×R4

|u(t, y)|2ϕ(x − y)(x − y) · Im[u∇u](t, x)dxdy.

By Hölder’s inequality, Sobolev embedding theorem, and Young’s inequality, then

sup |M(t)| ≲ ∥u∥3(L∞t L4
x(I×R4))2∥∇u∥(L∞t L2

x(I×R4))2∥(x − y)ϕ(x − y)∥L4/3(R4) ≲ e4J. (6.14)

Integrating by parts, we obtain

M′(t) = 2
"
R4×R4

|u(t, y)|2ϕ(x − y)
[
|∇u(t, x)|2 − |u(t, x)|4

]
dxdy (6.15)
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− 2
"
R4×R4

Im[u∂lu](t, y)ϕ(x − y)Im[u∂lu](t, x)dxdy (6.16)

+ 2
"
R4×R4

|u(t, y)|2(∂kϕ(x − y))(x − y)l

[
Re(∂lu∂ku)(t, x) −

1
4
δlk|u(t, x)|4

]
dxdy (6.17)

− 2
"
R4×R4

Im[u∂ku](t, y)(∂kϕ(x − y))(x − y)lIm[u∂lu](t, x)dxdy (6.18)

−
1
2

"
R4×R4

|u(t, x)|2
(
∂l∆ϕ(x − y)(x − y)l

)
|u(t, y)|2dxdy. (6.19)

Recall (6.12) and (6.13), then

∫
I
(6.18) + (6.19)dt ≲

1
J

∫
I

∫
|x−y|≤4eJ

∫
|x−x(t)|≥C(η)

|u(t, y)|2
[
|∇u(t, x)|2 + |u(t, x)|4

]
dxdydt

+
1
J

∫
I

∫
|x−y|≤4eJ

∫
|x−x(t)|≤C(η)

|u(t, y)|2
[
|∇u(t, x)|2 + |u(t, x)|4

]
dxdydt

≲
η

J

( ∫
I
sup
∫
|x−y|≤4eJ

|u(t, y)|2dydt
)
+

1
J

∫
I

∫
|x−x(t)|≤8eJ

|u(t, x)|2dxdt

≲ ηK +
1
J

∫
I

∫
|x−x(t)|≤8eJ

|u(t, x)|2dxdt.

(6.20)

If (6.20) provides a bound on
∫

I

∫
|x−x(t)|≤4eJ |u(t, x)|2dxdt, then by (6.12), we see that

∫
I

∫
|x−x(t)|≤eJ/2

|u(t, x)|2dxdt ≲ K =
∫

I
N(t)−2dt. (6.21)

Substituting (6.21) into (6.20), this implies that the left-hand side of (6.21)≪ K, which by (4.1) and
Bernstein’s inequality forces u ≡ 0.

Next, we will utilize (6.13) to estimate (6.19), that is

∫
I
(6.19)dt ≲

1
J

∫
I

"
|x−y|≤4eJ

|u(t, x)|2
1

|x − y|2
|u(t, y)|2dxdydt

≲
1
J

∫
I

"
|x−y|≤4eJ

|Phu≥c(η)(t, x)|2
1

|x − y|2
|uh(t, y)|2dxdydt

+
1
J

∫
I

"
|x−y|≤4eJ

|Phu≤c(η)(t, x)|2
1

|x − y|2
|uh(t, y)|2dxdydt

+
1
J

∫
I

"
|x−y|≤4eJ

|um(t, x)|2
1

|x − y|2
|um(t, y)|2dxdydt,

where Ph = P≥K−1/4 and Pm = 1 − Ph.
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By Bernstein’s inequality and Hardy’s inequality, since N(t) ≡ 1,

1
J

∫
I

"
|x−y|≤4eJ

|Phu≥c(η)(t, x)|2
1

|x − y|2
|uh(t, y)|2dxdydt

≲
1
J

∫
I
∥u≥c(η)(t)∥2(L2(R4))2

(
sup
∫

1
|x − y|2

|uh(t, y)|2dy
)
dt

≲
1
J

1
c(η)2 ∥∇u∥2(L∞t L2

x(I×R4))2

∫
I
N(t)−2dt

≲
K
J

1
c(η)2 .

(6.22)

It follows from Hölder’s inequality and Young’s inequality that

1
J

∫
I

"
|x−y|≤4eJ

|Phu≤c(η)(t, x)|2
1

|x − y|2
|uh(t, y)|2dxdydt

≲
1
J

∫
I

∑
2l≤4eJ

2−2l
"

2l≤|x−y|≤2l+1
|P>−lPhu≤c(η)(t, x)|2|uh(t, y)|2dxdydt

+
1
J

∫
I

∑
2l≤4eJ

2−2l
"

2l≤|x−y|≤2l+1
|P≤−lPhu≤c(η)(t, x)|2|uh(t, y)|2dxdydt

≲
1
J

∫
I

(∑
l

2−2l∥P>−lPhu≤c(η)(t, x)∥2(L2(R4))2

)(
sup
∫
|x−y|≤4eJ

|uh(t, x)|2dx
)
dt

+
1
J

∑
1≤2l≤4eJ

2−2l210l/3∥P≤−lPhu≤c(η)(t, x)∥2(L2
t L4

x(I×R4))2∥uh∥
2
(L∞t L3

x(I×R4))2

+
1
J

∑
l≤0

22l∥P≤c(η)uh∥
2
(L2

t L4
x(I×R4))2∥uh∥

2
(L∞t L4

x(I×R4))2 .

For any fixed t, by Bernstein’s inequality and rearranging the order of summation, then∑
l

2−2l∥P>−lu≤c(η)(t)∥2(L2(R4))2

≲
∑

l

∑
−l<k1≤k2

2−2l∥Pk1u≤c(η)(t)∥(L2(R4))2∥Pk2u≤c(η)(t)∥(L2(R4))2

≲
∑

l

∑
−l<k1≤k2

2−2l−k1−k2
(
2k12k2∥Pk1u≤c(η)(t)∥(L2(R4))2∥Pk2u≤c(η)(t)∥(L2(R4))2

)
≲
∑
k1≤k2

2k1−k2∥∇Pk1u≤c(η)(t)∥(L2(R4))2∥∇Pk2u≤c(η)(t)∥(L2(R4))2 ≲ η2.

By (6.12), we obtain

1
J

∫
I

(∑
l

2−2l∥P>−lu≤c(η)(t)∥2(L2(R4))2

)(
sup
∫
|x−y|≤4eJ

|uh(t)|2dx
)
dt ≲ η2K. (6.23)

Applying Theorem 6.3, Bernstein’s inequality, (6.12), Theorem 5.1, Ph = P≥K1/4 , Hölder’s inequality,
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and Young’s inequality, then

1
J

∑
1≤2l≤4eJ

2−2l210l/3∥P≤−lPhu≤c(η)∥
2
(L2

t L4
x(I×R4))2∥uh∥

2
(L∞t L3

x(I×R4))2

≲
1
J

∑
1≤2l≤4eJ

2−2l/3K ≲
K
J
.

(6.24)

Since N(t) ≡ 1 and u ∈ (L∞t L4
x(I × R

4))2,

1
J

∑
l≤0

22l∥P≤c(η)uh∥
2
(L2

t L4
x(I×R4))2∥uh∥

2
(L∞t L4

x(I×R4))2 ≲
K
J
. (6.25)

Finally, Theorem 6.3, Theorem 5.1, and Sobolev embedding theorem imply

∥u2
m∥(L2

t L3
x(I×R4))2 ≲ ∥∇um∥(L2

t L4
x(I×R4))2∥um∥(L∞t L3

x(I×R4))2 ≲ 1.

Hölder’s inequality indicates∫
I

"
|x−y|≤4eJ

|um(t, x)|2
1

|x − y|2
|um(t, y)|2dxdydt

≲ K1/2e2J∥u2
m∥(L2

t L3
x(I×R4))2∥u∥2(L∞t L3

x(I×R4))2

≲ K1/2e2J.

(6.26)

Then, combining (6.22)–(6.26), we obtain∫
I
(6.19)dt ≲

K
J

1
c(η)2 + η

2K + K1/2e2J. (6.27)

Decompose

ϕ(x − y) =
1
J

∫ eJ

1

1
R

∫
R4
ψ2
( x
R
− s
)
ψ2
( y
R
− s
)
dsdR.

For each R, s, t, there exists a ξ(R, s, t) such that∫
R4
ψ2
( x
R
− s
)
Im
(
eix·ξ(R,s,t)u∇eix·ξ(R,s,t)u

)
(t, x)dx

=

∫
R4
ξ(R, s, t)

∣∣∣∣ψ(
x
R
− s)u(t, x)

∣∣∣∣2dx +
∫
R4

Im(u∇u)(t, x)dx = 0.

Moreover, for any fixed s, t,"
R4×R4

ψ2
( x
R
− s
)
ψ2
( y
R
− s
)
|∇u(t, x)|2|u(t, y)|2 − Im(u∇u)(t, x)Im(u∇u)(t, y)dxdy

is invariant under the Galilean transformation u 7→ e−ix·ξ(R,s,t)u. Therefore, for any R, s, t, it is possible
to choose ξ(R, s, t) that removes the momentum squared term.
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Integrating by parts, we obtain∫
R4
ψ2
( x
R
− s
)[
|∇(e−ix·ξ(R,s,t)u(t, x))|2 − |u(t, x)|4

]
dx

=

∫
R4

∣∣∣∣∇(ψ(
x
R
− s)e−ix·ξ(R,s,t)u(t, x)

)∣∣∣∣2dx −
∫
R4

∣∣∣∣ψ(
x
R
− s)u(t, x)

∣∣∣∣2|u(t, x)|2dx

+

∫
R4
|u(t, x)|2

(
ψ(

x
R
− s)∆ψ(

x
R
− s)
)
dx.

By (1.8) and ∥u∥(L∞t Ḣ1(I×R4))2 ≤ (1 − δ)∥W∥(Ḣ1(R4))2 , we have

∥u∥(L4
x(R4))2 ≤ (1 − δ)∥W∥(L4

x(R4))2 .

Thus, ∫
R4

∣∣∣∣∇(ψ(
x
R
− s)e−ix·ξ(R,s,t)u(t, x)

)∣∣∣∣2dx −
∫
R4

∣∣∣∣ψ(
x
R
− s)e−ix·ξ(R,s,t)u(t, x)

∣∣∣∣2|u(t, x)|2dx

≥

∥∥∥∥∇(ψ(
x
R
− s)e−ix·ξ(R,s,t)u(t, x)

)∥∥∥∥2
(L2(R4))2

− (1 +
δ

2
)
∥∥∥∥ψ(

x
R
− s)u

∥∥∥∥2
(L4(R4))2

∥∥∥∥u∥∥∥∥2
(L4(R4))2

+
δ

2

∥∥∥∥ψ(
x
R
− s)u

∥∥∥∥4
(L4(R4))2

≥
δ

2

∥∥∥∥ψ(
x
R
− s)u

∥∥∥∥4
(L4(R4))2

+
δ

2

∥∥∥∥∇(ψ(
x
R
− s)e−ix·ξ(R,s,t)u(t, x)

)∥∥∥∥2
(L2(R4))2

Finally, if | xR − s| ≤ 2 and | yR − s| ≤ 2, | x−y
R | ≤ 4, then∫

R4

∣∣∣∣ψ(
x
R
− s)
∣∣∣∣∣∣∣∣∆ψ(

x
R
− s)
∣∣∣∣∣∣∣∣ψ(

y
R
− s)
∣∣∣∣2ds ≲

1
R2ψ(

x − y
4R

).

Therefore, it follows from (6.27) that∫ eJ

1

1
R3

"
R4×R4

ψ(
x − y

R
)|u(t, x)|2|u(t, x)|2dxdydt

≲

∫
I

"
|x−y|≤8eJ

|u(t, x)|2
1

|x − y|2
|u(t, y)|2dxdydt

≲
K
J

1
c(η)2 + η

2K + K1/2e2J.

(6.28)

Now, by (6.11), for |x − y| ≤ R
2 . ∫

R4
ψ4(

x
R
− s)ψ2(

y
R
− s)ds ≳ 1,

then, ∫
R4
ψ4(

x
R
− s)ψ2(

y
R
− s)ds ≳ ψ

[4(x − y)
R

]
,
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and
1
J

∫ eJ

1

1
R
ψ
[4(x − y)

R

]
dR ≳ ψ

( x − y
eJ/2

)
. (6.29)

In fact, for any c > 0,
1
J

∫ eJ

1

1
R
ψ
[4(x − y)

R

]
dR ≳c ψ

( x − y
eJ(1−c)

)
.

Therefore, by (6.14), (6.20), (6.27)–(6.29), we have

e4J ≳

∫
I

M′(t)dt ≳ δ
∫

I

"
|x−y|≤eJ/2

|u(t, x)|4|u(t, y)|2dxdydt

−
K
J

1
c(η)2 − η

2K − e2JK1/2 −
1
J

∫
I

∫
|x−x(t)|≤8eJ

|u(t, x)|2dxdt.
(6.30)

By (4.1), if u is a non-zero almost periodic solution to system (1.1), then ∥u(t)∥(L4
x(R4))2 is uniformly

bounded for all t ∈ I, similar to
∫
|x−x(t)|≤C(η)

|u(t, x)|4dx. Therefore, for J large,"
|x−y|≤eJ/2

|u(t, y)|4|u(t, x)|2dxdy

≥

∫
|x−x(t)|≤ 1

2 eJ/2

∫
|y−x(t)|≤ 1

2 eJ/2
|u(t, y)|4|u(t, x)|2dxdy

≥

∫
|x−x(t)|≤ 1

2 eJ/2
|u(t, x)|2dx.

Substituting this into (6.30), then

δ

∫
I

∫
|x−x(t)|≤ 1

2 eJ/2
|u(t, x)|2dxdt

≲ e4J +
K
J

1
c(η)2 + η

2K + K1/2e2J +
1
J

∫
I

∫
|x−x(t)|≤8eJ

|u(t, x)|2dxdt.

Repeating this argument, it is easily obtained that

δ
2
∫

I

∫
|x−x(t)|≤ 1

2 eJ/2
|u(t, x)|2dxdt

≲ e8J +
K
J

1
c(η)2 + η

2K + K1/2e4J +
1
J2

∫
I

∫
|x−x(t)|≤128e2J

|u(t, x)|2dxdt.

We can choose eJ = K1/10, and combine (6.12), then∫
I

∫
|x−x(t)|≤ 1

2 eJ/2
|u(t, x)|2dxdt ≲ η2K +

K
ln K

1
c(η)2 . (6.31)

Since η > 0 is arbitrary, we can deduce by (6.31) that there exists a sequence tn ∈ R such that Rn → ∞

and ∫
|x−x(tn)|≤R1/4

n

|u(tn, x)|2dx→ 0. (6.32)

Therefore, combining (4.1) with (6.32), we can deduce that u ≡ 0. □
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It is possible to generalize to any satisfying
∫
R

N(t)−2dt = ∞,N(t) ≥ 1 by using the argument in the
case that N(t) ≡ 1. N(t) is replaced with a Ñ(t) that satisfies the following conditions

(a) N(t) ≳ 1, (b) |N′(t)| ≲ N(t)3, (c)
∫

I
N(t)−2dt ≲ K, (d)

∫
I

|N′(t)|
N(t)5 dt ≪ K.

To simplify notation, let Nm(t) denote Ñm(t).

Definition 6.6. Let
1

N0(t)
= ∥uh(t)∥3(L3

x(R4))2 ,

where N0(t) satisfies the above conditions.

We refer to [11] possibly after modifying N0(t) by some function ε < α(t) < 1
ε
,N0(t) 7→ α(t)N0(t),

such that
(a) N0(t) ≳ 1, (b) |N′0(t)| ≲ N0(t)3, (c)

∫
I
N0(t)−2dt ≲ K.

The following argument is similar to N(t) ≡ 1, and we define

M(t) :=
"
R4×R4

|u(t, y)|2ϕ
(
(x − y)Nm(t)

)
(x − y) j · Im[u∂ ju](t, x)dxdy.

Since Nm(t) ≳ 1, by Hölder inequality and Young’s inequality, |M(t)| ≲ e4J

Nm(t)4 ≲ e4J, we have

M′(t) = 2
"
R4×R4

|u(t, y)|2ϕ
(
(x − y)Nm(t)

)[
|∇u(t, x)|2 − |u(t, x)|4

]
dxdy (6.33)

− 2
"
R4×R4

Im[u∂lu](t, y)ϕ
(
(x − y)Nm(t)

)
Im[u∂lu](t, x)dxdy (6.34)

+ 2
"
R4×R4

|u(t, y)|2
(
∂kϕ((x − y)Nm(t))

)
(x − y)l

[
Re(∂lu∂ku)(t, x) −

1
4
δlk|u(t, x)|4

]
dxdy (6.35)

− 2
"
R4×R4

Im[u∂ku](t, y)
(
∂kϕ((x − y)Nm(t))

)
(x − y)lIm[u∂lu](t, x)dxdy (6.36)

−
1
2

"
R4×R4

|u(t, x)|2
(
∂l∆(ϕ(x − y)Nm(t))(x − y)l

)
|u(t, y)|2dxdy (6.37)

+

"
R4×R4

ϕ′
(
(x − y)Nm(t)

)
(x − y)l|x − y||u(t, y)|2N′m(t)Im[u∂lu](t, x)dxdy. (6.38)

By (4.2), Theorem 5.1, Hölder’s inequality, Young’s inequality, and Nm(t) ≳ 1,∫
I
(6.38)dt ≲

1
J

∫
I

"
|x−y|≤ 4eJ

Nm(t)

|u(t, y)|2|x − y|
|N′m(t)|
Nm(t)

|∇u(t, x)||u(t, x)|dxdydt

≲
e3J

J

∫
I

|N′m(t)|
Nm(t)4 ∥uh(t)∥3(L3(R4))2∥∇u(t)∥(L2(R4))2dt

+
e5J

J

∫
I

|N′m(t)|

Nm(t)6 ∥ul(t)∥3(L6(R4))2∥∇u(t)∥(L2(R4))2dt

≲
e3J

J

∫
I

|N′m(t)|

Nm(t)5 dt +
e5J

J
∥ul(t)∥3(L6

t,x(I×R4))2∥∇u(t)∥(L∞t L2
x(I×R4))2(

∫
I
Nm(t)−6dt)1/2

≲ 2−4m+4K
e3J

J
+ 4

e3J

J
+ K1/2 e5J

J
.

(6.39)
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Next, by using the argument in the case that N(t) ≡ 1 to estimate the other terms,

(6.33) + (6.34) ≳
δ

2

"
R4×R4

ψ
(4(x − y)Nm(t)

e11J/12

)
|u(t, x)|2|u(t, y)|4dxdy

−
1
J

"
|x−y|≤ 4eJ

Nm(t)

1
|x − y|2

|u(t, x)|2|u(t, y)|2dxdy.
(6.40)

∫
I
(6.35) + (6.36)dt ≲

1
J

∫
I

∫
|x−y|≤ 4eJ

Nm(t)

∫
|x−x(t)|≥C(η)

N(t)

|u(t, y)|2
[
|∇u(t, x)|2 + |u(t, x)|4

]
dxdydt

+
1
J

∫
I

∫
|x−y|≤ 4eJ

Nm(t)

∫
|x−x(t)|≤C(η)

N(t)

|u(t, y)|2
[
|∇u(t, x)|2 + |u(t, x)|4

]
dxdydt

≲
η

J

( ∫
I
sup
∫
|x−y|≤ 4eJ

Nm(t)

|u(t, y)|2dydt
)
+

1
J

∫
I

∫
|x−x(t)|≤ 8eJ

Nm(t)

|u(t, x)|2dxdt

≲ ηK +
1
J

∫
I

∫
|x−x(t)|≤ 8eJ

Nm(t)

|u(t, x)|2dxdt.

(6.41)

Moreover,

1
J

∫
I

"
|x−y|≤4eJ

|u(t, x)|2
1

|x − y|2
|u(t, y)|2dxdydt

≲
1
J

∫
I

"
|x−y|≤ 4eJ

Nm(t)

∣∣∣∣Phu≥c(η)N(t)(t, x)
∣∣∣∣2 1
|x − y|2

|uh(t, y)|2dxdydt

+
1
J

∫
I

"
|x−y|≤ 4eJ

Nm(t)

∣∣∣∣Phu≤c(η)N(t)(t, x)
∣∣∣∣2 1
|x − y|2

|uh(t, y)|2dxdydt

+
1
J

∫
I

"
|x−y|≤ 4eJ

Nm(t)

|um(t, x)|2
1

|x − y|2
|um(t, y)|2dxdydt.

By Bernstein’s inequality and Hardy’s inequality,

1
J

∫
I

"
|x−y|≤ 4eJ

Nm(t)

∣∣∣∣Phu≥c(η)N(t)(t, x)
∣∣∣∣2 1
|x − y|2

|uh(t, y)|2dxdydt

≲
1
J

∫
I
∥u≥c(η)N(t)(t)∥2(L2(R4))2

(
sup
∫
R4

1
|x − y|2

|uh(t, y)|2dy
)
dt

≲
1
J

1
c(η)2

∫
I
N(t)−2dt =

K
J

1
c(η)2 .
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It follows from Hölder’s inequality and Young’s inequality that

1
J

∫
I

"
|x−y|≤ 4eJ

Nm(t)

∣∣∣∣Phu≤c(η)N(t)(t, x)
∣∣∣∣2 1
|x − y|2

|uh(t, y)|2dxdydt

≲
1
J

∫
I

∑
2l≤ 4eJ

Nm(t)

2−2l
"

2l≤|x−y|≤2l+1

∣∣∣∣P>−lPhu≤c(η)N(t)(t, x)|2|uh(t, y)|2dxdydt

+
1
J

∫
I

∑
2l≤ 4eJ

Nm(t)

2−2l
"

2l≤|x−y|≤2l+1

∣∣∣∣P≤−lPhu≤c(η)N(t)(t, x)|2|uh(t, y)|2dxdydt

≲
1
J

∫
I

(∑
l

2−2l∥P>−lPhu≤c(η)N(t)(t, x)∥2(L2
x(R4))2

)(
sup
∫
|x−y|≤4eJ

|uh(t, x)|2dx
)
dt

+
1
J

∫
I

∑
1

N0(t)≤2l≤ 4eJ
Nm(t)

22l∥P≤−lPhu≤c(η)N(t)(t, x)∥2(L6
x(R4))2∥uh∥

2
(L3

x(R4))2dt

+
1
J

∫
I

∑
2l≤ 1

N0(t)

22l∥P≤c(η)N(t)uh∥
2
(L4

x(R4))2∥uh∥
2
(L4

x(R4))2dt.

Now, for any fixed t, by Bernstein’s inequality and rearranging the order of summation,∑
l

2−2l∥P>−lu≤c(η)N(t)(t)∥2(L2(R4))2

≲
∑

l

∑
−l<k1≤k2

∥Pk1u≤c(η)N(t)(t)∥(L2(R4))2∥Pk2u≤c(η)N(t)(t)∥(L2(R4))2

≲
∑

l

∑
−l<k1≤k2

2−2l−k1−k2
(
2k12k2∥Pk1u≤c(η)N(t)(t)∥(L2(R4))2∥Pk2u≤c(η)N(t)(t)∥(L2(R4))2

)
≲
∑
k1≤k2

2k1−k2∥∇Pk1u≤c(η)N(t)(t)∥(L2(R4))2∥∇Pk2u≤c(η)N(t)(t)∥(L2(R4))2 ≲ η2.

By (6.12), we see that

1
J

∫
I

(∑
l

2−2l∥P>−lu≤c(η)N(t)(t)∥2(L2(R4))2

)(
sup
∫
|x−y|≤4eJ

|uh(t)|2dx
)
dt ≲ η2K

Since N(t) is variable, we have

1
J

∫
I

∑
1

N0(t)≤2l≤ 4eJ
Nm(t)

22l∥P≤−lPhu≤c(η)N(t)(t, x)∥2(L6
x(R4))2∥uh∥

2
(L3

x(R4))2dt

≲
1
J

∫
I

∑
1

N0(t)≤2l≤ 4eJ
Nm(t)

2−2l/3
(
24l/3∥P≤−lPhu≤c(η)N(t)(t, x)∥(L6

x(R4))2

)2
∥uh∥

2
(L3

x(R4))2dt

≲

∫
I

(
sup

2l≥K−1/4
24l/3∥Plu∥(L6

x(R4))2

)2(
sup

∑
2l≥ 1

N0(t)

2−2l/3∥uh∥
2
(L3

x(R4))2

)
dt ≲

K
J
.
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By (4.1) and u ∈ (L∞t L4
x(I × R

4))2,

1
J

∫
I

∑
2l≤ 1

N0(t)

22l∥P≤c(η)N(t)uh∥
2
(L4

x(R4))2∥uh∥
2
(L4

x(R4))2dt ≲
η

J

∫
I
N0(t)−2dt ≲

η

J
K.

Finally, by (6.26) and Nm(t) ≳ 1,∫
I

"
|x−y|≤ 4eJ

Nm(t)

|um(t, x)|2
1

|x − y|2
|um(t, y)|2dxdydt ≲ e2JK1/2.

Therefore,

1
J

∫
I

"
|x−y|≤4eJ

|u(t, x)|2
1

|x − y|2
|u(t, y)|2dxdydt ≲

K
J

1
c(η)2 + η

2K + e2JK1/2. (6.42)

We choose m such that 24m = e10J/3, since eJ is large and N(t) ≳ N0(t) ∼ N1(t),

δ

2

∫
I

"
R4×R4

ψ
(4(x − y)Nm(t)

e11J/12

)
|u(t, y)|2|u(t, x)|4dxdydt ≳

δ

2

∫
I

∫
|x−x(t)|≥ e11J/12

8Nm(t)

|u(t, x)|2dxdt. (6.43)

Combining (6.43) with (6.39)–(6.42), supt∈I |M(t)| ≲ e4J, we see that

δ

∫
I

∫
|x−x(t)|≤ e11J/12

8Nm(t)

|u(t, x)|2dxdt

≲
1
J

∫
I

∫
|x−x(t)|≤ 8eJ

Nm(t)

|u(t, x)|2dxdt + ηK + 2−4mK
e3J

J
+

e3J

J
+ K1/2 e5J

J
+ e4J +

K
J

1
c(η)2 ,

therefore,

δ
2
∫

I

∫
|x−x(t)|≤ e11J/12

8Nm(t)

|u(t, x)|2dxdt

≲
δ

J

∫
I

∫
|x−x(t)|≤ 8eJ

Nm(t)

|u(t, x)|2dxdt + δ
(
ηK + 2−4mK

e3J

J
+

e3J

J
+ K1/2 e5J

J
+ e4J +

K
J

1
c(η)2

)
≲

1
J2

∫
I

∫
|x−x(t)|≤ 512e12J/11

Nm(t)

|u(t, x)|2dxdt + ηK + 2−4mK
e36J/11

J
+

e36J/11

J

+ K1/2 e60J/11

J
+ e48J/11 +

K
J

1
c(η)2 .

Let us choose J and m such that 24m = e10J/3 and K = e12J,

δ
2
∫

I

∫
|x−x(t)|≤ e11J/12

8Nm(t)

|u(t, x)|2dxdt

≲
1
J2

∫
I

∫
|x−x(t)|≤ 512e12J/11

Nm(t)

|u(t, x)|2dxdt + ηK + K
e−2J/33

J
+ K21/22 +

K
J

1
c(η)2 .

(6.44)
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Now, we are able to complete the proof of Theorem 6.2.
Proof of Theorem 6.2. Let us prove by contradiction. Assume u is a non-zero, almost periodic solution
for system (1.1). Set I be an interval satisfying

K =
∫

I
N(t)−2dt.

Combining (6.44) with Lemma 6.4, we deduce that

δ
2
∫

I

∫
|x−x(t)|≤ e11J/12

8Nm(t)

|u(t, x)|2dxdt ≲ ηK +
1

c(η)2

K
ln K

.

Since any η > 0 and
∫
R

N(t)−2dt = ∞, let us choose an increasing sequence of interval I whose union
makes up R, combining Nm(t) ≲ 2mN(t) with 24m = e10J/3,K = e12J, there exists a sequence tn ∈ R and
Rn → ∞ such that

N(tn)2
∫
|x−x(t)|≤ Rn

N(tn)

|u(tn, x)|2dx→ 0.

However, by (4.1) we see that ∥u(tn)∥(Ḣ1(R4))2 → 0, then the conservation of energy (1.3) implies u ≡ 0.

7. Conclusions

In summary, we prove the global well-posedness and scattering of the four-dimensional cubic
focusing energy-critical nonlinear Schrödinger (NLS) system below threshold in the non-radial case.
Despite W being a stationary solution of system (1.1), and W giving an example of an almost periodic
solution that does not lie in (L2(R4))2, we are able to combine this logarithmically divergent result with
the long-time Strichartz estimate to establish an interaction Morawetz estimate, proving Theorem 1.7.
First, we establish the variational characterization of the ground state and derive the threshold of the
global well-posedness and scattering, which is a crucial step. Then, we adapt the strategy of Kenig and
Merle [17], using a concentration-compactness/rigidity method to reduce the global well-posedness
and scattering to the exclusion of almost periodic solution, that is, we need to preclude the almost
periodic solution to system (1.1) satisfying K =

∫
R

N(t)−2dt < ∞ and K =
∫
R

N(t)−2dt = ∞. In the
future, we plan to study the Schrödinger-Hirota equation, see [23, 24].
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