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1. Introduction

In this paper, we consider the following cubic-focusing energy-critical nonlinear Schrodinger
system on R*

{ia,u i(t, x) + Auj(t, x) = —F (), (1.1)

u(O, -x) =Ug = (ul,O’ MZ,O) € (H)lC(R4))2’

where j = 1,2,u = u(t,x) = (ul(t, x), ux(t, x)) : R x R* — C? is the unknown function and the
nonlinear term F;(u) is given by the relation

Fiu) o= (Juj(t, )Pu(t, ) + g2, )Pu(t, %)),
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where k = 1,2, and k # J.
The nonlinear Schrédinger system (1.1) enjoys the following conservation laws.
1) Mass conservation

M (w1 (), ur(1)) = f (la (e, 0 + lua(t, )P )dx = M(u1(0), u(0)). (1.2)

R4

2) Energy conservation

1 1
B (1), ux(0) = 5 fR Va6, OF + [Van(t, OP)dx = fR 4 (a2, P + o, 0P v 13

= E(u(0), u2(0)).

System (1.1) is called energy-critical since a solution (u;, u) to system (1.1) is invariant under the
scaling
(w12, 1), a2, %)) > A0 (22, 2%), un (21, Ax)).

We first briefly recall the results of the Cauchy problem for the single nonlinear Schrodinger
equation

{i@tu + Au = uf(u), (1.4)

u(0,x) = ug € Hl(Rd),

where dimension d > 3, u = =1, f(u) = |u|d4f2u, and u(t,x) : R x R¢ — C. By rescaling the values of
u, it is possible to restrict attention to the case u = —1 or u = 1; these are known as the focusing and
defocusing equations, respectively.

There is a large number of works on problem (1.4). In the defocusing case, Bourgain [3] first
proved the global well-posedness and scattering for radial initial data in dimensions (d = 3,4) by
introducing the induction on energy method. Grillakis [13] demonstrated global regularity for the
three-dimensional energy-critical defocusing NLS with spherically symmetric initial data, that is, he
proved that smooth spherically symmetric initial data lead to a globally smooth solution. This result
can be deduced a posteriori from [3]; however, the argument in [13] is rather different. Further
advancements in the spherically symmetric case were made by Tao [32], who extended the result to
higher dimensions. For non-radial initial data, Colliander et al. [5] achieved a significant breakthrough
by proving the global well-posedness and scattering for d = 3, introducing a wealth of new ideas and
tools to the problem. Specifically, the authors utilized an interaction Morawetz inequality (introduced
in [4]), which is more suitable for the non-radial case than the Morawetz inequality used in previous
works. Subsequently, Ryckman and Visan [28] extended the argument from [5] to d = 4, and Visan [34]
obtained global well-posedness and scattering for d > 5. Interested readers can refer to [8, 19, 35] for
an easier understanding of the global well-posedness and scattering for d = 3,4, 5 using the long-time
Strichartz estimate of Dodson [10].

In the focusing case, Kenig and Merle [17] established global well-posedness and scattering when
d = 3,4,5 for radial initial data, where they first put forward the concentration compactness/rigidity
method. Killip and Visan [18] extended this to global well-posedness and scattering for non-radial
initial data when d > 5. Later, Dodson [11] obtained global well-posedness and scattering for non-
radial initial data in d = 4. However, it seems difficult to solve the problem for d = 3 due to the fact
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that the stationary solution W(x) of problem (1.4) does not belong to L*(R¢) when d = 3,4. Here, W(x)
denotes the ground state. Therefore, the case (d = 3) remains an open question.
We can summarize the above research results in the following theorem.

Theorem 1.1. Let uy € H'(RY), when u = 1, the corresponding solution u to problem (1.4) is global
ford > 3.

When u = —1 and E(uy) < E(W), the following results hold.

1) If [[Vugll2gay < [IVW]|12ra), then the solution u of problem (1.4) is global for d > 4, and this is also
true for d = 3 in the radial case.

2) If IVuoll2gey > IVWII2gay, and if either ug € L*(RY) or up € H'(R?) is radial, then the solution u
of problem (1.4) blows up in finite time for d > 3.

Furthermore, the global solution scatters in H'(R?).
When u = —1, there exists global solution to problem (1.4) that does not scatter, that is,

1

(1 + d(|§|_22>)7

Wi, x) = W(x) = (1.5

which solves the nonlinear elliptic equation
AW +|W|72W = 0, (1.6)

then W(z, x) = W(x) is a stationary solution to problem (1.4). Moreover, the energy of ground state W

1S
2

_1 2 d—2 s _ g-ld
EW) = ZIVWlli2 ) - WHWHL%(W) =d C,°.
Here, the sharp constant
2d
Ca! = IV Wiy = WIS, (1.7)
comes from the Sobolev embedding inequality
el 24 < CyllVull2gay- (1.8)

Ld-2 (Rd)

By following the arguments in [1,31], we obtain W is a maximizer in the sharp Sobolev embedding
inequality.

There are also some results on the nonlinear Schrédinger equation of fourth order. Miao et al. [26]
considered the focusing energy-critical nonlinear Schrodinger equation of fourth order iu, + A’u =
|75 u with d > 5. They proved that if a maximal-lifespan radial solution u : I x RY — C obeys
sup,¢; lAu(®)|l2 < [[AW]|,, then it is global and scatters both forward and backward in time. In addition,
if a solution has both energy and kinetic energy lower than those of the ground state W at some point in
time, then the solution is global and scatters. After that, they considered the defocusing energy-critical
nonlinear Schrddinger equation of fourth order iu, + A%u = —Iulﬁu in [25]. They proved that any finite
energy solution is global and scatters both forward and backward in time in dimensions d > 9.
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Some results on nonlinear Schrodinger system were also obtained. For example, Cheng et al. [9]
obtained the global well-posedness and scattering of the cubic focusing infinite coupled nonlinear
Schrédinger system on R? below the threshold in L*A'(R* X Z). Gao and Wang [14] proved a
concentration result for blow-up solutions of the coupled Schrodinger equations with non-spherically
symmetric initial data in H'(R?). There are also some papers on other types of nonlinear Schrodinger
systems, for instance, [21,36,37]. Compared to the single nonlinear Schrédinger equation, results on
the nonlinear Schrodinger system is relatively short.

The main motivation of this article is to provide a satisfactory answer to the following Theorem 1.2
and to extend the results of single nonlinear Schrodinger (NLS) equation to a class of coupled systems,
which contributes to a better understanding of the long-time evolution between systems. Such finite
coupled nonlinear Schrédinger system has already been applied in nonlinear optics; see [2] and the
references therein. It provides a useful approximation for describing the propagation of self-trapped,
mutually incoherent wave packets in nonlinear optics. In order to prove the following Theorem 1.2, we
first establish the variational characterization of the ground state and determine the threshold for global
well-posedness and scattering, which is a pivotal initial step. Subsequently, we employ the approach
developed by Kenig and Merle [17], utilizing concentration-compactness/rigidity method to reduce
the problem of global well-posedness and scattering to the exclusion of almost periodic solutions. In
other words, we need to exclude the existence of almost periodic solutions to system (1.1) that satisfy
K = fRN(t)‘zdt < ooand K = fRN(t)‘Zdt = oo. We prove the global well-posedness and scattering
of the four-dimensional cubic focusing energy-critical nonlinear Schrodinger system below the ground
state. Our main results are listed as follows.

Theorem 1.2. If the initial data uy € (H 1(RY))? satisfies

E(a) < EW),  [[aollg gy < Wil gy

where W = (LZW, LZW), W is shown in (1.5), then the corresponding solution u to system (1.1) is
globally well-posed and scatters for both time directions.

Remark 1.3. If not otherwise specified, the following W = (%W, %W), W denotes ground state and
is the stationary solution to problem (1.4), when u = —1. The specific characterizations of ground state
W can be attained in Section 3.

The proof of Theorem 1.2 is based on the following three theorems.

Theorem 1.4. (Reduction to almost periodic solution, [17, 18]) If system (1.1) is not globally well-
posed and scattering for all data satisfying E(uo) < E(W), lluollgwsye < Wl g1 gey2, then there exists
a non-zero solution u to system (1.1) that is almost periodic for the entire time of its existence.

So far, reducing almost periodic solutions has become a standard technique in the analysis of
dispersive equations at critical regularity. Their existence was first established by Keraani [15] in
the context of the mass-critical nonlinear Schrodinger equation, and was initially employed by Kenig,
Merle [17] as a tool to prove global well-posedness. As mentioned above, Theorem 1.4 has been
proven in [17,18].

Next, is the definition of almost periodicity in Theorem 1.4.
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Definition 1.5. If there exists N(7) : I — (0, 00) and x(7) : I — R* such that for all ¢ € I, %u(x&fg))
lies in a compact set K ¢ H'(R*), then u is almost periodic for all # € I, where I is the maximal interval

of its existence.
Theorem 1.6. The only almost periodic solution on the maximal interval of its existence I satisfying
IVl 2o 2axmeye < IVWlzz2@sye isu = 0.

Theorem 1.7. To prove Theorem 1.6, it suffices to show that the only global, almost periodic solution
to system (1.1) on R satisfying

N() > 1,NQ) =1,

isu=0.

The outline of the paper is as follows. In Section 2, we present the local well-posedness of system
(1.1) and some analytic tools. In Section 3, we establish variational characterizations of the ground
state. In Section 4, we give that the non-scattering is equivalent to the existence of almost periodic
solutions. In Section 5, we prove the long time Strichartz estimate, which plays a pivotal role in
proving the main results. In Section 6, we first preclude the almost periodic solution to system (1.1)
satisfying K = fR N(#)72dt < oo (see Theorem 6.1). Second, we exclude the almost periodic solution to
system (1.1) with K = fR N(#)2dt = oo (see Theorem 6.2). Our study excursion comes to an end with
the provided conclusion in Section 7.

2. Notation and preliminaries

In this section, we will briefly recall the local well-posedness theory of system (1.1) and some basic
results.
2.1. Some notations

We use the following notations throughout this paper. We will use X < Y whenever there exists
some constant C > 0 such that X < CY. Similarly, we use X ~ Y if X < Y < X. For any space-time slab
I x R*, we use (LL'(I x R*))? to denote the Banach space time of function u : I x R* — C* whose
norm is

— q :
||U||(L;1L;(1xR4))2 = (f1||ll||(L;(R4))2dl)’i

with the usual modifications when ¢ or r are equal to infinity. When g = r, we abbreviate LL’, as L .
We define the Fourier transform on R* to be

FH(E) = 2n)™? f e f(x)dx.

R4

For s € R, we define the fractional differentiation/integral operator

F(IVI'1(©)) := |6 7 1),

which in turn define the homogeneous Sobolev norm

||f||(Hs(R4))2 = |I|V|Sf||(L2(R4))2~
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2.2. Local theory and analytic tools

In this subsection, we will review local well-posedness and some important estimates. We first give
the precise definition of solution in the energy spaces.

Definition 2.1. A function u : I x R* — C? on a nonempty time interval f, € I C R is a strong H'
solution of system (1.1) if it lies in the class CH (K x R*) M L? (K x R*) for all compact K C I, and
obeys the Duhamel formula

]
uity) = 70 + i f " TAF (a(r))dt
fo

forall t; € I and j = 1,2. We refer to the interval I as the lifespan of u. It is said that u is a maximal-
lifespan solution if the solution cannot be extended to any strictly larger interval, and that u is a global
solution if 7 = R.

Next, we will give the definition of scattering size and blow up.

Definition 2.2. The scattering size of a solution to system (1.1) on a time interval / by

S, (u) := f f lu(, x)|%dxdt.
I JR4

Definition 2.3. A solution u to system (1.1) blows up forward in time if there exists a time #; € I such
that
S[tl,supl)(u) = 009

and that u blows up backward in time if there exists a time #; € I such that

S (inf I,t|](u) = 0.

Let €™ be the free Schrodinger evolution. From the explicit formula

eitAf(x) — f ei|x_y|2/4tf(y)dy,
R4

(4rit)?

one easily obtains the standard dispersive inequality
itA -2
lle" Bl ro@aye < 16771l ey,

forall # # 0.
A different way to express the dispersive effect of the operator e
integrability. To state the estimates, we first need the following definition.

A is in terms of space-time

Definition 2.4. (Admissible pairs) For d > 3, a pair of exponents (g, ) is an admissible pair if

2 d d
—+—:§,2§q,r§oo,

q r
and (d, q,r) # (2,2, ).
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For a fixed space-time slab I x R?, we define the Strichartz norm

lall oy = SUP||U||(L;1L;(1de))2, hall sy == IIVIMallsocry2s

where (g, r) is an admissible pair and s € R. We write S°(/) for the closure of all test functions under
this norm and denote by N°(I) the dual of S°(J).
Now, we are ready to state the standard Strichartz estimates.

Theorem 2.5. (Strichartz estimates) Let I be a compact time interval, and let u : I x R* — C? be a
solution to the forced Schrodinger system

i0uj(t, x) + Au(t, x) = —F;(u),
then for any ¢, € 1
IVujllsoy < llujEo)llgr ey + IVF jllno-

Proof. We treat the non-endpoint case following [12, 29]. For the endpoint (¢,r) = (2, %) in

dimensions d > 3, see [16]. For failure of the d = 2 endpoint, see [27]. O

Theorem 2.6. (Littlewood-Paley) For any 1 < p < oo,

(zv1Pa?) ]

Theorem 2.7. (Sobolev embedding, [33]) For 1 < p < g <oco,N e€Z,

wse " Wlwrer:

4N(L-1
PNl Lareyy < 2 & q)||PNﬂ|(LP(R4))2-

Theorem 2.8. (Bernstein’s estimate) For any s €e R,N € Z,1 < p < oo,

N
2 slleﬁl(Ll’(R4))2 ~ |||V|SPNﬂ|(L”(R4))2-

Theorem 2.9. (Maximal Strichartz estimate) Suppose t,ty € I, and

t
Vj(l‘) = f ei(t_S)AFj(S)dS,

fo

thenford =4,g>4,j=1,2,

N(&-2
| sup 25 211P v )l

<4 |IF; )
2 q” ]||L3L,L(1><R4)

With the aid of Theorem 2.5, the following local well-posedness theory is obtained. Because the
proof is relatively standard, we do not review it here and refer interested readers to [6, 7].

Theorem 2.10. (Local well-posedness) Assume uy € (H'(R*)? and t, € R, there exists a unique
maximal-lifespan u : 1 x R* — C? to system (1.1) with initial data u(ty) = ug. This solution has the
following properties

1) Local existence: I is an open neighborhood of 7.
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2) Blow-up criterion: If sup I < oo, then §;, supn(0) = co. Similarly, if inf 7 < oo, then S ¢ 7,,;(0) = oo.

3) Scattering: If sup/ = oo, and u does not blow up forward in time, then u scatters forward in time,
that is, there exists a unique u, € (H'(R*))? such that

. / A
tllglo la(t) — " .l g gaye = 0.

4) Small data global existence: If [|[Vuy||z2r+)y is sufficiently small, then u is a global solution, which
does not blow up either forward or backward in time. Indeed, in this case, Sg(u) < ||Vu0||(6L2 B

3. Variational characterization of the ground state

In this section, we mainly study the variational characterizations of the ground state. Let us first
define the ground state to the system (1.1).

Set ground state W = (W}, W) of the system (1.1), that is W, is stationary solution of system (1.1),
and W solves the following elliptic system

AW, = =W [PW, — [W,W,, 3.1)
AW, = —|W, W, — [W, Wy,
then by subtracting the second equation from the first equation of (3.1), we obtain
AWy = W) = (IWi [ + [Wo?)(Wa — ). (3.2)
Multiplying the Eq (3.2) by (W; — W), it follows that
2 2 2
(Wi = W)AW, = Wa) = =(IWi > + [Wal (W = W) . (3.3)
Then, integrating by parts over R*, we have
2 2
f V(W - W) dx = - f (IW\P + IW2P) (W) = W) dx, (3.4)
R* R

which implies W, = W, in H'(R*). Hence, the system (3.1) can be reduced to the single nonlinear
elliptic equation
AW = 22|W*W. (3.5)

The positive solution of (3.5) is known as radially symmetric and unique up to translation and dilation
(see [22]) and is identified by

W, x) = W(x) := 1; (3.6)

Fk

8
which uniquely solves (1.6) (see [31]). As we all know, the solution of (3.5) minimizes the
corresponding energy functional (see [30]), and W obtains the best constant of the Sobolev embedding
equality (1.8), that is (1.7), is shown.
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The ground state is associated with the best constant in the vector-valued sharp Gagliardo-Nirenberg
inequality:

2 f (s + lualydx - f (r]* + Jual)dx < Cres f (P + uaPydx)( f (Vs + [Vip)elx),
R4 R4 R R4
we define the Weinstein functional
2 [P+ luof)2dx = [ (i |* + ol *)dx

F() := .
(foelrP + luaP)x)( [0 (Vs + [VuaP)dx)

By standard variational argument, a maximizer W = (W;, W,) of the Weinstein functional F(u) weakly
solves the system (3.1), if it exists.

If a maximizer W = (W;, W,) exists and we assume it is non-negative, then by a standard argument
using the maximum principle, each component W; of such a non-negative maximizer is indeed strictly
positive. In addition, due to strict positivity of each W; and (3.4), we can derive W; = W,.

Therefore, under spatial translation and dilation, W = (W, W,) = (%W, %W) is the unique
positive solution of (3.1) that minimizes the corresponding energy functional.

4. Reduction to the almost periodic solution

In this section, we will show that the non-scattering is equivalent to the existence of almost periodic
solutions. For any 0 < E < |[VW/|;2g4)2, we define

L(E) = sup {8 x(w)|lull e < EJ,

thus, L : [O,||VW||(L2(R4))2] - [0, oo] is a nondecreasing function with L(||VW||(L2(R4))2) = oo, and
by [18, Lemma 1.4], we see that L is continuous.

To prove system (1.1) is globally well-posed, and scatters satisfying E(uy) < E(W) and
ol g raye < [IWllggeypes, it suffices to prove that L(E) < oo for E < [[VW]|;2g4)2. Therefore, if
Theorem 1.2 does not hold, then by the continuity of L(E), there exists E. < [[VW]|2g4)2 such that
L(E.) = oo, and according to L is nondecreasing function, L(E) < oo for all E < E.. E,. is called
minimal energy. If we can prove E. = |[VW||2zs)2, then the global well-posedness, and scattering
are established. Suppose E. < |[VW]|2r4)2, by following the concentration-compactness/rigidity
arguments in [17, 18], we obtain the following theorem.

Theorem 4.1. Assume E. < |[VWI|2@s)p, there exists a solution u € CPHL(K x R*) (N L (K X RY)
of system (1.1) with sup,, ||Vu(t)||(2L2(R4))2 = E., which is almost periodic in the sense that exists

(N (0, x(t)) € R* x R* such that for any n > 0, there exists C(n) < oo satisfying for any t € I,

f oy 1V, X)dx + f EPI(, E)PdE < . (4.1)

[x=x(0)> Fay 1§1>C N (@)

Remark 4.2. Note that we have the freedom to modify N(#) by any bounded function of 7, provided that
we also modify compactness modulus function C accordingly. In particular, one could restrict N(¢) to
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be a constant locally if one wishes to. Thus, recall that [20, Lemma 5.21], one can choose N(¢) such
that
IN'(1)] < N(@)°, (4.2)

and

f N()*dt <, f lu(t, x)|%dxdt <4 1+ f N(1)%dt. (4.3)
1 1 JR4 1

Sketch of proof of Theorem 1.7. Suppose u(t) is an almost periodic solution to system (1.1), one can
take a limit of u(z,) in H'/G (G is a symmetry group) and deduce a solution to system (1.1) satisfying
either

N() > 1,NQ) =1,

or that u(t) blows up in finite time.

First, at + = 0 and by time reversal symmetry, suppose u(t) blows up as t — 0, then by (4.2) and
(4.3), N(t) > o0 ast — 0.

The next step is to prove that fR4 lu(z, x)’dx = O for any ¢ > 0, which implies the solution u is
identically zero, thus contradicting that u blows up in finite time.

For any R > 0, we define

o X\2 2
Mg(t) := fR 9(%) (. oFdx,
where ¢ is a smooth, radial function, such that

1oMs<1,
¢(’):{ 0 IH>2.

By (4.1) and Holder’s inequality, we obtain

lim Mg(1) = 0. (4.4)
Moreover, by integration by parts, one has
1 X\ (X 1 1/2
OMi(1) < - fR 9(2)o(Z)Vut. ol Dldx < 2(Me®) TIV0E o 45

Therefore, (4.4) combined with the fundamental theorem of calculus and (4.5) implies

lu(z, x)]*dx = 0
R4

for any ¢+ > 0, then according to conservation of mass (1.2), it implies u = 0, which contradicts u
blowing up in finite time. Hence, Theorem 1.2 has been reduced to Theorem 1.7.

5. Long-time Strichartz estimate
The main result of this section is a long-time Strichartz estimate; since the usual interaction
Morawetz estimate is not positive definite in the focusing case, we will rely on long-time Strichartz

estimate based on K = sz (1)~2dt.
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Theorem 5.1. (Long-time Strichartz estimate) Suppose I is an interval and given above K, then for

anyl € Z,

1/2
§ 2 21 -2k
( ||uk||(Sl(]><R4))2) + 2’ ’ Sup 2 ”I'lk”(L;O(R“))2

< (1+2¥K)'2,
k>l 2(1)?
k<l =

(L2
Remark: To simplify notation, it is convenient to write u; instead of P;u.

Proof. It follows from Theorem 2.7, Strichartz estimate, and Theorem 2.8 that
41 =4k i(t—1)A 2 41 =2k i(t—t9)A 2
23 Ml M I e S 2% D 2T MO 2
k=1 ]

21 2 2
< 2 ”uZl(tO)H(LZ(RAt))Z < ||Vu(t0)||(L2(R4))2 < 17

and

i(t—t9)A 2 2
D IV T GO e S IVUEO gy < 1.
k<l

Let

21 41 p\—1/2 —2k
||u||(Y(1xR4))2 =sup2°(1 +27K) / H sup 2 ||lll(l)||(L§.°(R4))2 S
! k>l Ly ()

_ 1/2
+#sup(1+27K)2( 3 21 s o) -
l 1

k<l

5.1

(5.2)

(5.3)

(5.4)

Our goal is to use (5.2), (5.3) and the smallness of u away from the scale N(f) to prove an estimate of

the form
[l yaxreye < 1+ nllallyaxes)-

To this end, we decompose
F(u) = F(uy) + O(u2ug) + O(uZus)) + F(ug).
By (4.1), it is possible to choose c(17) > 0 such that
lu<copnvollieai@xesyy < n-

Step 1. Estimation for F(u,).
By Bernstein’s inequality, we obtain

3
||PSCN(t)uZl||(Lt6L§(([><R4))2

< H Z 1P <eniy Wy Iz @2 1P <eny ol 2242 1P <enviry ks 12y 2

L2(I))?
I<ky<ka<k; & @y

2 -2k
S ||P5cN(z)u||(L;X>H1,(RX]R4))2 sup 27l ze a2
! k=1

(L2(D))?
2~-21 4] 1/2
<271+ 2Y k)Y ([l oy rxreyy2-

and
12
3 2 4
1P = ([ Mool ol )

1/2
4 -2 -2
S ||u||(L;OH,L(RXR4))2(‘fI‘C N(t) dt)

< c'KV2,

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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Then, combining (5.8) with (5.9), we see that
-2l 41 _
||“§1||(L,2L;(1xR4))2 < 7722 1 +2 K)1/2||u||(Y(1><R4))2 +c 'K

It follows from Theorem 2.9 and (5.10) that

!
—2%k i(-T)A 3
sup 2 ||Pkf et? F(uzl)dT”(Lf?(R“))z‘ S S llzriaxesy

k>l 0 (LF()?
2~-21 4] 1/2 -1 ¢1/2
< 722721 + 27 K) Pllully gy + ¢ K2

Therefore,

r 12
2k —T)A 2
(D2 ||Pkf N @) )

k<l fo

12

4k 3

$(§ 2 ) ||u21||(L,2L§(1><R4))2
k<l

2 4] 1/2 -1 1-1/2A~21
<SP (1+ 29 K) 2l yxpsye + ¢ K27

Step 2. Estimation for O(uZ u.)).
By Sobolev embedding theorem, Littlewood-Paley theorem, and interpolation, then,

||u§l||(LfJ,(1><R4))2 S ||Vuﬁl||(L?L;2/5(1x11§4))2

1/6
2/3 2k 2
S ”V“§"|<L;’°L£<IxR4>>2( Z 2 ”“"”(L%L;‘-axR‘*»Z)
k<l

41 x\1/6 1/3
< (14 2YK) O lall )7 oo

By Holder’s inequality, Theorem 2.7, (5.10), and (5.13), one has

2 2
||uzll151||(LtzLi/3(l><R4))2 S ||u21||(L,6L3,(1XR4))2 ||uSl||(Lr6L)1(2(IXR4))2
1/3 2
< 2 ||u21||(L;5L)3((1XR4))2”uﬁlH(Lﬁx(IXR“))z

2/3
1/3(,,2~»=21 4l g\1/2 —15-1/2 4l 5\1/6 1/3
< 2027+ 2YK) Pl + <KV T2 Pl -

Theorem 2.7, Strichartz estimate, and (5.14) imply

t
-2k i(t—T)A 2
|sup2-1P, f O )l ey

k=l 0 (LEI))?

< 2"'

(L2LI(IxXR*))?

t
f PR 0 ug)dr
fo
< 27 ludug|
S 2 Wl 21253 (12

2/3
=21/3(,,2~=2I 4l pN\1/2 -1 1/2 41 £\1/6 1/3
< 272P (270 + 2YK) Pl yegeye + ¢ KMP) A+ 22Kl

21 4/3 4l g\ 1/2 ~21/3 ,.~2/3 k1/3 41 g 1/64501(1/3
<27+ 2YK)" llallysraye + 2 Pe?PKP 1+ 2YK)Y ||u||(;(,><R4))z-

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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It follows from Strichartz estimate and (5.15) that

r 1/2
2 : 2%k DA y(1e2 2 Ijey2
( 2 ||Pkf el(t ? O(UZIuSI)dT||(L72L§(1><R4))2) < 2 ||u21u§l||(Lt2Li/3(1><R4))2
k<l fo (5.16)

4/3 41 p\1/2 41/3 -2/3 x-1/3 41 g~\1/6 1/3
<71+ 2YK) Pl ey + 24P PRPA 4 2Kl g7 o

Step 3. Estimation for F(u.)).
By Holder’s inequality, Sobolev embedding theorem, and (4.1), one has

2
S gl zzreaxpyp <eno e axmsyy

P u
H( <cN(1) Sl) (L2LEUIXRY))?
(5.17)

S IVugllzisasreye <enelle caaxesy?
4 g 1/2
sn(l +27K) / [[alfey(rxray)-

Bernstein’s inequality and Sobolev embedding theorem yield

2 / 2 2 /
<
s S 21| ool 0l ) 5.18)

< C_1K1/222l.

H(P ch(t)usl)

Then, combining (5.17) with (5.18), we obtain
||uil||(LtlL%(1X]R4))2 S 77(1 + 24IK)1/2||U||(Y(1XR4))2 + C_1K1/2221. (519)

It follows from Theorem 2.9 and (5.19) that

!
2k i(1—T)A 2
sup 2 ”Pkf et F(usl)dT”(L;"’(]R“))Z‘ < ||usz||(L}L§(1xR4))2

ksl 0 (LX)
4] 1/2 —1 -1/2~21
< n(l +27K) / lallyxpey + ¢ K 222,

Therefore,

r 12
2k —T)A 2
(D2 ||Pkf M@ )

k<l fo

i 5.20
< (Z 24k) ||uiz||(L}L§(1><R4))2 ( )

k<l
21 41 1/2 -1 r-1/2~4l
< 221+ 2YK) 2 |[ull y sy + ¢ K22V,

Step 4. Estimation for O(uZ,u.)).
Using (5.17) and (5.18), then,

|‘V0(u§,u>,)

3
Loy T VO llzz 85 e
1 ~x

(5.21)

2
S VUl syl sy
-1 1-1/2421 4 gry1/2
< K2 (1 + 2YK) Pllullyasesye-
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Therefore, we see that

1/2

!
. /
2%|Py f RO AT i
(; . <l (LPLAUXRY)) ) (5.22)

<KMol + 241K)1/2”u”(Y(1><R4))2,

Using Sobolev embedding theorem, Bernstein’s inequality, Strichartz estimate, and (5.22), we get

!
-2k i(t—7)A 2
sup 27| Py f RO us ) d| o

k>l f0 (LX(D)?

(5.23)

(L2LY(IXRH))?

!
< 2‘21”Vf ei(’_T)AO(uilu>1)dT‘
To
< 'KV 42721 + 28 K)V?||ul| ey
n (Y(IXR4))

Combining (5.2), (5.3), (5.11), (5.15), (5.16), (5.20), (5.22), and (5.23), it is obvious to get
Il < e~ + il sy

By choosing 1 > 0O sufficiently small, Theorem 5.1 is proved. O

Remark 5.2. By Theorem 2.9 and above analysis, we have also proved

221' < (1+2YK)'2, (5.24)

L2(D)?

—4k/3
Sup2 / ||uk||(Lg(R4))2
k=1

and this result will be applied later.
6. Exclusion of the almost periodic solution

In this section, we prove the main results by considering the following two cases.
Case 1: K = [ N(1)72dr < oo.
Case 2: K = [ N(1)7dr = oo.

First, let us prove the nonexistence of almost periodic solution for system (1.1) under Case 1. The
following theorem is obtained.

Theorem 6.1. There is no almost periodic solution for system (1.1) satisfying K = fR N@®)2dt < o in
Theorem 4.1.

Proof. By (4.1), for any n > 0, there exists /(1) such that

P <ty (Ol o 11 ety < M-

Let ko be the integer such that 2% < K~/ < 2%*1 by Duhamel formula, for [ < ky and ¢t € [-T,T],
then,

t

VP_u(f) = VP u(-T) — iVP f e OAE(u(r))dr.

-T
For [ < Iy(n) and ky,
|vF@a)

2
BT T S WIVugllgzrag-r.rixese- (6.1)
¢ Lx s
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Exploiting Theorem 2.7 and Holder’s inequality, we derive

HVPS,O(ui,uzggko)

l 2
(LY (-T.TIxRY))2 s2 HVPSIO(USZ‘IZS‘S"O)

(LZLY([-T.TIxR)?
I
<2 ||“ls-sko||(L;>°L§(RxR4))2 ||Vusl||(Lt2L;‘([—T,T]xR4))2 ||Vusl||(L;°L§(R><R4))2

< 77||Vusl||(L,2L§<1xR4))2-

It follows from Bernstein’s inequality and Theorem 2.7 that

HVPS,O(uZZS_SkOu)‘

21 2
(LY (-T.TIxRY))? 2 HVPS’O(HZS'S’“)“)‘

(L2LY([-T,T1xR#))?

21
<2 Z |, ||(L,2L§([—T,T]><R4))2||uk2||(L;’°L%([—T,T]><R4))2||1lk3||(L;>°L§([—T,T]xR4))2

I<ki<ko<k3
- -
(D 27 Ml qorrpene)( D 27 Mnllarmnr i)
I<m<kgy I<m<ky

Combining (4.1) with (6.1)—(6.3), obviously,

VPP @a,)

LT TR < nlluglls - rxms)2
T X ’

- -
+( Z 2 m“um“(S1([—T,T]><R4))2)( Z 2 m||Um||(L;>°H1([—T,T]><R4))2)-

I<m<ky I<m<koy

(6.2)

(6.3)

(6.4)

Using Sobolev embedding theorem, Bernstein’s inequality, Strichartz estimate, (4.1), and Theorem 5.1,

then,

[vPaFa - Faag,)]|

Ilee3
(L2L3 (=T T1xR4))2 2 ”quO”(L’ZLL([_T’T]XRZ‘))Q
t Lx 5

l 2
+2 ”ulS'SkO||(LfL§([—T,T]><R4))2 ||u>k0||(L;>°L§([_T,T]><R4))2

l
+ 21IVugllepaorrixesye 0<ill oy gorrixesy 2 skl -1 rixmey

2l gr1/2 =k - 1=k
S 2 K/ +2 O( Z 2 ml|Vum||(L,2L§([—T,T]><R4))2)+2 OT]||Vll51||(Lt2Li([_T’T]XR4))z.

I<m<ky

Therefore, we see that

+ nlluglls 1 (7. 71xr4)2

lagllsrq-rrixesye S "VPSIU(_T)‘

(L3 (R4)?
- - 20 172
(D) 27 Mgl or e ) D 27 IVl gz orreae) + 2K
I<m<ky m>1

u S 1=
” l”([t H}([—T,T]XR4))2 S n + ’2 0(77).

I<m

Since K = fRN(t)‘Zdt <00, N(-=T) = +c0as T — +oo, for any [,

inf HVPslu(—T)‘ .

(6.5)

(6.6)

(6.7)
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Let a; = [luglls1(-1.11xr4)2> by Theorem 5.1, we have

kol s 1 (=711 S 1
uniformly in 7', then by (6.6) and (6.7),

arsn ) 27+ 22K 200, (6.8)

I<m<kgy

Let B = Yomerci, 22" 4, clearly B, < a,, for any m, then by (6.8), we can deduce 3, < K'/22¥"/4,
Plugging [[ugll @z < 2°7* for I < ko back into (6.6),

31/2
||ll§1||(51(R><R4))2 s 2 / K.

In particular, this means that
Il g-1/4Rey2 < K. (6.9)

By Bernstein’s inequality, interpolation, (4.1), and (6.9), for any 1 > 0, then

4/5 1/5
lallz2gsyy < IP sN(t)/C(n)ul|(H_|/4(R4))z”P sN(t)/C(n)ull(Hl(R4))2 + 1P>niysconll sy
C(n) (6.10)

SKZ/S 1/5+ )
T T NG

Since N(t) — +oo as t — +oo, there exists 77(f) — 0 such that (6.10) implies
||u||(L§(R4))2 — 0.
Therefore, conservation of mass (1.2) implies u = 0. |

In what follows, let us illustrate the nonexistence of almost periodic solution for system (1.1) under
Case 2. The following theorem is obtained.

Theorem 6.2. If u is an almost periodic solution to system (1.1) with K = fR N(t)2dt = co in Theorem
4.1, thenu = 0.

To prove the Theorem 6.2, we first need the following theorems and lemmas.

Theorem 6.3. If u is an almost periodic solution to system (1.1) satisfying N(t) > 1 on R, then

e (Ol 3Rxreye < .

Proof. See Dodson [11]. It will turn out that the proof for the single case works with a slight
modification, so we omit the proof. O

Next, we prove that in a general sense, the L?>-norm of an almost periodic solution satisfy
fR N(t)~2dt = oo logarithmic divergence.

Lemma 6.4. Suppose y € C3(R?) is a positive, radial, decreasing function,
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NEEREERS

Y(x) = { 0 h>2. (6.11)

If K = [[N(1)~dt, then forany 1 <R < K'°,

N(@)(x —
f f f lu(z, y)ﬁb(M)[qu(t, )P + u(t, )| |dxdydt < K(1 +InR). (6.12)
1 R4xR4 R

Proof. The proof is similar to a single case, so we omit its proof; interested readers should consult
Colliander et al. [5] or Killip, Visan [19]. O

Now, we consider the case when N(¢) = 1.

Theorem 6.5. If u is an almost periodic solution for system (1.1) satisfying N(t) = 1 on R, and
||u||(L;>0H1(RXR4))2 < ”VW”(L)Z((RAt))Z, thenu = 0.

Proof. Sety € Cy(R*) as a radial function satisfying (6.11) and J a large number such that ¢/ < K'/10,
then let

d(x—y) = ;j:e I%LA lﬂz(% - s)lp2(;)—€ - s)dst = %\fl‘e 113]%4* :,bz(xl_ey - s)lpz(s)dst.

We notice that y/(s) = 0 for |s| > 2, so ¢(x — y) is supported on |x — y| < 4¢’ and that ||¢||;~ is uniformly
bounded.
Next, we need to estimate the derivatives of ¢. Let us illustrate for k = 1,2, 3,

. 11
V¢l < 5 o (6.13)

In fact, since ¥(s) = 0 for |s| > 2,

Vo(x) = % f fl e %w(% - (- s)wz(s)(ﬁ - ::|) dsdR

%

2 (¢ 1 x x (=9 11
_ = o ~ fr 2 R -
=7 L fsz(R s)w (R s)z// (s) £ dsdR < s
)
For k = 2,3, we can obtain by similar computation that V2¢(x) < %ﬁ, V3g(x) < %ﬁ

Define the interaction Morawetz action
M) = f f u(z, y)P¢(x = y)(x = y) - Im[uVu](t, x)dxdy.
R4XR*
By Holder’s inequality, Sobolev embedding theorem, and Young’s inequality, then

3 47
sup [M(7)] < ||u||(L?oL§_(,XR4))z||VU||(L;>°L§(1><R4))2||(X = Px = lpangs S €. (6.14)

Integrating by parts, we obtain
M'(5) =2 f f ()P0 = )| [Vut, 0P - g, f |dxdy (6.15)
R4XR
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-2 f fR ... mEOI(E, )9Cx ~ y)Im{Wd](r, x)dxdy (6.16)
+2 f fR - u(t, y)P(Grp(x — y))(x — y)l[Re(alﬁ(?ku)(t, x) — %&klu(t, x)|4]dxdy (6.17)
-2 f fR - Im[ud,u](z, y)(Gcp(x = y))(x = y)Im[udu](z, x)dxdy (6.18)
- % f fR s Jut, VP (SiA¢(x — y)(x = y) )iz, y)Pdxdy. (6.19)

Recall (6.12) and (6.13), then

1
f (6.18) + (6.19)dt < — f f f (s, )P[IVu(, 0 + e, x)[* |dxdydt
! I I iyisaer Jiv-xwizcm

1
+ f f f Ju(t, )P[IVu(, 0 + e, x)[* |dxdydt
lx—yl<de! J|x—x()|<Cn)

(6.20)
f sup f lu(z, y)lzdydt f f lu(t, x)|*dxdt
[x—y|<de’ [x—x(£)|<8e’
<nK + - f f lu(t, x)|*dxdt.
J I Jx—x(1)|<8e’
If (6.20) provides aboundon [, [~ ., lu(z, x)Pdxdt, then by (6.12), we see that
f f lu(z, x)|*dxdt < K = f N(f)2dt. (6.21)
I Jx—x(1)|<e’/? I

Substituting (6.21) into (6.20), this implies that the left-hand side of (6.21)<« K, which by (4.1) and
Bernstein’s inequality forces u = 0.

Next, we will utilize (6.13) to estimate (6.19), that is

f (6.19)dr < — f f f lu(r, x)| |2|u(t, y)[dxdydt
|x—yl<de’
< = fff , |Phll>c(;7)(t X)| | lzluh(t,y)lzdxdydt
[x—yl<de

fff |Ppccq)(t, x)]? 2|uh(t, y)Izdxdydt
[x—y|<4e! | |

fff lu,, (2, x)|* 2Ium(t y)dxdydt,
|x—y|<de! | |

where P, = Psg-14 and P, = 1 — P},
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By Bernstein’s inequality and Hardy’s inequality, since N(t) = 1,

fffl e [P o) (2, x)? P |2|uh(t y)|2dXdydt
x—y|<4e

S > flluzc(n)(t)llLZ(Rét))Z Supfﬁluh(hy)lzdy)dt

1 (6.22)
-2
~ jC( ) || || LOOLZ(IXR4))2 fN(t) dt
K 1
< = .
J c(n)?
It follows from Holder’s inequality and Young’s inequality that
fff |Pyuc q(t, x)I* 2|llh(f’ Y dxdydt
[x—y|<de’! | |
fz 27 ff |P+ 1Py (t, X) P lwy(t, y)I* dxdydt
1 5icqer 2l<lx—yl<2i!
+ = f Z P ff |P<_ i Prucey (t, )Py (t, y) dxdydt
2l<de’ 2l<|x—y|<2!
1
<S = 2’21P_Puc t, x| su f w,(z, x)|*dx)dt
; f, (Z‘ 1P 1Py (£, ) 5 ) SUD I )
Z 2_212101/3||P§—1Phuﬁc(n)(t’ x)”?L,zLﬁ(IXR“))Z||uh||(2L;X’L)3C(1XR4))2
1<2/<4e’
+ = Z 2 ||P<C(T])uh||(L2L4(1XR4))2||uh||(LooL4(1XR4))2
1<0
For any fixed ¢, by Bernstein’s inequality and rearranging the order of summation, then
D 272MP- ey O 2 gy
]
<D, D, 2P e Ol Pl sy
I —l<ki <k
< Z Z 2_ZI_kl_]Q(zk'2k2||P fr Wse(p Ol 2wy 1P, k2u§c(n)(t)”(L2(]R4))2)
| =<k <k
< Z 270V Py uceiy Ol 2y 2 IV Py ety Oll 2y < 1
k1<ky
By (6.12), we obtain
1 21 2 2 2
v f, (Zz 1P -0 ety (D 2y ) SUP ey O dx)dt s K. (6.23)

Applying Theorem 6.3, Bernstein’s inequality, (6.12), Theorem 5.1, P, = P-4, Holder’s inequality,

AIMS Mathematics Volume 9, Issue 9, 25659-25688.
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and Young’s inequality, then

1 § 21~101
- /3 2 2
7 2 2 ||PS—1PhuSC(77)”(LrZLi(IXRAt))Z”uh”(LfoLi(IXRét))Z

1<2/<4¢’
K (6.24)

3k < &
J

1<2/<4e’

<

~I| =

Since N(t) = 1 and u € (L LY(I x R*))?,

K
7 (6.25)

1 21 2 2
5 2 2Pl IO 3 ey
<0

Finally, Theorem 6.3, Theorem 5.1, and Sobolev embedding theorem imply

2
||um||(L,2L§(1xR4))2 < ||Vum||(L3L§(1xR4))2||um||(L;°L;}.(1xR4))2 < 1.

Hoélder’s inequality indicates

1
f f f [, (¢, x)* Sl (2, y)[*dxdydt
I [x—y|<de’! |)C - )’|

2 (6.26)

(LR L3 (IXRH)?

1/2 2J 11442
<K e ||um||(L,2L§(IxR4))2”u”

< K1/2€2J.

Then, combining (6.22)—(6.26), we obtain

K 1
f[ (6.19)dr 5 =~ ot 7K+ K'?e (6.27)

Decompose

$(x—y) = % fl e ;—e fR 4 wz(% ~ s)gbz(;)—e — 5)dsdR.

For each R, s, t, there exists a £(R, s, t) such that

f . ¢2(% - s)Im(e"x'f(Rv“”)uVeix'f(R’S’t)U)(t, x)dx

R
2
- f R, s, r)'w(f ~ sult, x)' dx + f Im@Vu)(z, x)dx = 0.
R4 R R4

Moreover, for any fixed s, t,

2 X 2 Y 2 2 — —

f f (5 = s )V PG, ) - Im@Va) (e, )lm@Vu)(r, y)dxdy
R*XR

is invariant under the Galilean transformation u — e *¢®s0y_ Therefore, for any R, s, ¢, it is possible
to choose &(R, s, t) that removes the momentum squared term.
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Integrating by parts, we obtain

[ 2 - 7 a0 - fuce o
R4

X iR 2 _ X 2 2
v(w(R s)e u, x))| dx fR 4 |¢(R syu(t, )| Ju(z, x)Pdx
¥ f (e, DP(U( ~ AU — 5))dx
R4 R R
By (18) and ||u||(L;>0H1(1XR4))2 < (1 - 5)||W||(H1(R4))2’ we have

lallzageye < (1= OIWIlagey-

Thus,
fR |V - et tug, x))‘zdx - — s)e v ksIy(y, x)rlu(t, ldx
2 [Pl — e ute ) ;W - ->H¢<— =9 g el
= e
L P )
Finally, if |£ — 5| < 2 and |3 — s| < 2,152] < 4, then

f s - o|aucE - llu - o[ ds < D)

Therefore, it follows from (6.27) that

f‘f if l/’(x_y)IU(t, Xt x)|*dxdydt
R4XR*

f f f lu(, x)|2 |2 u(t, y)l*dxdydt (6.28)
|x—yl<8e’

+1°K + K'?e%.

~7 C(n)2

Now, by (6.11), for |x — y| < £.

fR 4 w“(g - s)w%l% —s)ds 2 1,

then,
4(x - y)]
R b

x y
fR WG = W~ 9ds 2 U]
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and

1 71 (4(x—y) -
L = () ©2

In fact, for any ¢ > 0,

11 4(x—y) xX—y
7| R R = )
Therefore, by (6.14), (6.20), (6.27)—(6.29), we have

eV > f M (Hdt 2 6 f f f lu(z, x)|*u(z, y)|>dxdydt
Ix yl<el?

2 2] 1/2 2
~ 1K - YK f f Ju(z, x)dxdr.
- C(77)2 r—x(r)<8e’

By (4.1), if u is a non-zero almost periodic solution to system (1.1), then [[u()l|;4gs+)> is uniformly

bounded for all ¢ € I, similar to f|x—x OI<C) lu(t, x)|*dx. Therefore, for J large,

f f la(t, y)I*lu(t, x)|*dxdy

[x—yl<e’/?

> f f ju(t, y)[*lu(r, x)Pdxdy
lx—x(D|<el2 Jy-x(l<iel/?

> f lu(z, x)|*dx.
[x—x(D|< S e’/?

Substituting this into (6.30), then

f f lu(t, x)[*dxdt
|x— X(t)|< e?

1
<et 1, K >+ K+ K'?e + ff u(z, x)Pdxdt.
J c(n) l—x(t)|<8¢’

Repeating this argument, it is easily obtained that

5 f f (s, x)dxdt
o= x(t)|< ell2

1
<ée +°K + K% + f f lu(t, x)|*dxdt.
J ( )? J2 1 Jir—x(n)<128¢2

We can choose ¢/ = K'/1°, and combine (6.12), then

(6.30)

1
u(t, )|’ dxdt < 2K+— 6.31
f »ﬁc i< ef/zl (& x)fdx 7 InK c(n)? ©31)

Since n > 0 is arbitrary, we can deduce by (6.31) that there exists a sequence #, € R such that R, — oo
and

f lu(z,, x)[*dx — 0. (6.32)
[x—x(t,)I<RL*

Therefore, combining (4.1) with (6.32), we can deduce that u = 0. |
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It is possible to generalize to any satisfying ﬁ@ N(t)2dt = oo, N(t) > 1 by using the argument in the
case that N(¢) = 1. N(¢) is replaced with a N(¢) that satisfies the following conditions
IN"(DI

—dt K.
N S

@N@n 21, BINOI<NGD, (© fN(t)_zdt <K, (d)
I

To simplify notation, let N,,(¢) denote N, (?).
Definition 6.6. Let

NO( ) = ||uh(t)||(L3(R4))2’
where Ny(¢) satisfies the above conditions.

We refer to [11] possibly after modifying Ny(7) by some function & < a(?) < é, No(t) — a(t)Ny(1),
such that

(@) No() 2 1, (b) INy(D)] s No(®)*,  (c) f No(H)~dt < K.
I

The following argument is similar to N(¢) = 1, and we define
M) := f f [u(t, »)P¢((x = YINw(®))(x = ), - Im[Uul(¢, x)dxdly.
R4xR*

Since N,,(t) > 1, by Holder inequality and Young’s inequality, |M(t)| < < e*, we have

N (t)4 ~
M'(1) =2 f fR o MPS((x = YINW®)| IV, )P = udt, x)I* |dxdy (6.33)
-2 f fR - Im[@du](t, )¢((x = y)N,u(t) Im[Uou](z, x)dxdy (6.34)
2 f fR4xR4 (e, »P(Drd((x = VINn(1))(x y)z[Re(f?zﬁaku)(t, x) — %&klu(t, x)|4]dxdy (6.35)
-2 f fR - Im[udeu](z, y)(0p((x = Y)N,u () )(x = y)Im[Udu](t, x)dxcly (6.36)
B % f fM u(t, P (A A@x = NG x = ) )lut, )P dxdy 6.37)
" f fRR ¢ (Cx = YINu(0)0x = yilx = yllute, YN, (OIm[E,u] (1, x)dxdy. (6.38)

By (4.2), Theorem 5.1, Holder’s inequality, Young’s inequality, and N,,(7) > 1,

f(6 38)dt < — fff Iu(t WP x - yl| N, E ;lqu(t, x)|[a(z, x)|dxdydt
[x—yl< 12 N,

Nm (t)

s al m (( ))lll WO s g VOOl 12ty ol
+ = |A,:(())|II KOs oy IVOO Nl 2y pdt (6.39)
S 7 lj\jj(())l i|| z(t)ll(Ls (IxR4))2||Vu(t)”(Lf°L§(I><R4))2(‘[Nm(l)_6dl‘)l/2
< 2‘4’"*41(i + 4ﬁ + Kl/Zi_
J J 7

AIMS Mathematics Volume 9, Issue 9, 25659-25688.



25682

Next, by using the argument in the case that N(¢) = 1 to estimate the other terms,

4 Ny
(6.33) + (6.34) > = f fR Y x “y]alz ())lu(t, 0P, y)*dxdy

(6.40)
Vi f L |2Iu(t,x)lzlu(t,y)lzdxdy-
f (6.35) + (6.36)dr < — f f f la(z, y)| [IVu(t 0P + u(z, x)| ]dxdydt
l-yls ety Jh-a )z 52
= f f Jut, )P[IVu(, 0 + e, ) |dxdydt
w-yls s Jl-xls§8
(6.41)

<2 f sup f ju(c, y)Pdydr) + f f u(z, x)Pdxd
7 eyl el r-x()|< 73

N (r) Nin(1)

<nK + = f f lu(z, x)|*dxdt.
x—x(1)|< 22

N (1)

Moreover,

f ff lud, x)l 2|“(f,y)|2dxdydt
[x—y|<de’ |
<5
be—yl< 7 (,)
ffjl; SR
f ff , It 0F : > lw,, (2, y)Pdxdydt.
lx =yl

N()

|2|uh(z ,y)*dxdydt

\Phu«(w(r x)| = |2|uh<t Pdxdydr

By Bernstein’s inequality and Hardy’s inequality,

f f f o 'Phu>c(n)N(z)(l X)‘ X |2Iuh(t )P dxdydt
=y<3em

N

< = | use DI su —— |u,(t, y)*dy)dt
J fll > (T])N(l)( )”(LZ(RAt))Z( p \[R4 |x _ y|2| h( y)l y)

11 L, K 1
S o J MO G
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It follows from Holder’s inequality and Young’s inequality that

1
J f f f 'Phu<6(n)N(t)(l x)\ 2|uh(t V) dxdydt
|)C—y|< 40/ | |

N

<5zl
l<|x_)|<2l+1

_Nm(t)

512l
21<|x_}|321+1

—N (1)

1 -
< = ‘[(Zl: 2 21||P>—1Phu56(77)N(t)(t, X)||(2L§(R4))2)( Supf

lx—y|<de’

P Piuccinio(t )P w8, ) Pdxdydt

P Pruccaneg (t, )Py (t, y)Pdxdydt

~

1 21
* jﬁ Z 2 ||P< lPhu<C(77)N(f)(t x)”(LG(R4))2||uh||(L3(R4))2dt

1 i 4
M0 <2 SN0

1 21 2 2

121< 1
Now, for any fixed ¢, by Bernstein’s inequality and rearranging the order of summation,

=21 2
D 2720P- e O 2 gy
1

< Z Z 1Pk, U<eipyney Dl 22 |1 Pry U<cpnn (Dl z2w4)y2

I —l<ki <k

—2l—k;—k; k1 ~k
Z Z 2 1 2(2 ) 2||Pk1uSC('I)N(Z)(t)”(LZ(R“))Z|IPkZUSc(n)N(z)(tN|(L2(R4))2)
| —l<ki<ky

ki1 —k: 2
D 2 PIVPL e Ollzeop IV P Oll sy < 7
k1 <k

N

N

By (6.12), we see that

1 _
v f (D 272P- e Ol 2 ) sup f lw,()Pdx)dr < K
I

|x—yl<de’

Since N(¥) is variable, we have

1 21
v f Z 2P Pyccpin(ts DN e 011 3 ol

N()(l)— —Nm(t)
“21/3(~41/3 22
Do 27PN Pt D psgeye) IO, e ot
No<r> <<z
<f( sup 2“5|1Ppll, s e sup D 2R 0 )t S S
~ 3 ~ .
21>K 14 (L (R )) (L (R4))2 J

I> 1
= No(®)
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By (4.1) and u € (L°LY(I X RY))?,

n -2 n

< No(t)

Finally, by (6.26) and N,,(¢) > 1,

1
fff |um(t’ X)|2| |2|um(t y)Idedydt < K2,
[x—yl< 7es

N (t)
Therefore,

1

fff u(z, x) ——u(, s -
[x—y|<de’ | | J 0(77)

We choose m such that 2" = ¢!%//3 since e’ is large and N(f) 2 No(f) ~ N, (1),

s RELAD
2 ‘f,fjl;‘xw 110712 )| (t, )P, ©)*dxdydt > = fﬁ o (. oldxdr.  (6.43)

’K + ¥ K. (6.42)

8N (1)
Combining (6.43) with (6.39)—-(6.42), sup,., |M(?)| < e, we see that
s f f la(t, x)[dxdt
Ol
3J 3J 5J K 1
f f u(t, x)Pdxdr + K + 2K+ oy K1PE oy D
r-x(0l< 320 JoJ J J c(m)
therefore,
0 lu(z, x)|"dxdt
[x—x(n)I< "81 AIIJ/ (l;

J 3J 5J K 1
f f ju(e, vPdxds + 5(nK + 27K + T p KPP e D)
-0 3 I J J c(n)?

N

: 2 g, €011 Q307
G 2 t+nK +2""K 4
A fﬁc *(p]< 312211 u(t, x)["dxdt + 1 ; .
£607/11
S V. K 1 1
/ J <)

Let us choose J and m such that 2*" = ¢'%/3 and K = ¢'%/,

5 f f o 0t 0P dxar
x—xI< e
s | (6.44)

d d =+ + K
ff o |u(t X)| X t nK K + K21/22
[x— x(l)|<5|2€ /“ J 7 —c( )

AIMS Mathematics Volume 9, Issue 9, 25659-25688.



25685

Now, we are able to complete the proof of Theorem 6.2.
Proof of Theorem 6.2. Let us prove by contradiction. Assume u is a non-zero, almost periodic solution
for system (1.1). Set I be an interval satisfying

K = f N(1)2dk.
1

Combining (6.44) with Lemma 6.4, we deduce that

- 1 K
5 f f ju(t, )Pdxdt < K + — —.
I Jx-x(n|< G c(m*InK

8Nm (1)

Since any > 0 and fR N(t)"2dt = oo, let us choose an increasing sequence of interval / whose union
makes up R, combining N,,(f) < 2"N(t) with 24" = ¢!%/3 K = ¢!?/_ there exists a sequence #, € R and
R, — oo such that

N(t,)? lu(,, x)[*dx — 0.

_ Rn
be=x(I< 57,5

However, by (4.1) we see that [[u(z,)|| 71 z+)2 — 0O, then the conservation of energy (1.3) implies u = 0.

7. Conclusions

In summary, we prove the global well-posedness and scattering of the four-dimensional cubic
focusing energy-critical nonlinear Schrodinger (NLS) system below threshold in the non-radial case.
Despite W being a stationary solution of system (1.1), and W giving an example of an almost periodic
solution that does not lie in (L*(R*))?, we are able to combine this logarithmically divergent result with
the long-time Strichartz estimate to establish an interaction Morawetz estimate, proving Theorem 1.7.
First, we establish the variational characterization of the ground state and derive the threshold of the
global well-posedness and scattering, which is a crucial step. Then, we adapt the strategy of Kenig and
Merle [17], using a concentration-compactness/rigidity method to reduce the global well-posedness
and scattering to the exclusion of almost periodic solution, that is, we need to preclude the almost
periodic solution to system (1.1) satisfying K = fRN(t)‘zdt < ocoand K = fRN(t)‘zdt = co. In the
future, we plan to study the Schrodinger-Hirota equation, see [23,24].
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