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Abstract: In order to approximate the common solution of quasi-nonexpansive fixed point and
pseudo-monotone variational inequality problems in real Hilbert spaces, this paper presented three
new modified sub-gradient extragradient-type methods. Our algorithms incorporated viscosity terms
and double inertial extrapolations to ensure strong convergence and to speed up convergence. No line
search methods of the Armijo type were required by our algorithms. Instead, they employed a novel
self-adaptive step size technique that produced a non-monotonic sequence of step sizes while also
correctly incorporating a number of well-known step sizes. The step size was designed to lessen the
algorithms’ reliance on the initial step size. Numerical tests were performed, and the results showed
that our step size is more effective and that it guarantees that our methods require less execution time.
We stated and proved the strong convergence of our algorithms under mild conditions imposed on the
control parameters. To show the computational advantage of the suggested methods over some well-
known methods in the literature, several numerical experiments were provided. To test the applicability
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and efficiencies of our methods in solving real-world problems, we utilized the proposed methods to
solve optimal control and image restoration problems.

Keywords: variational inequality problem; fixed point; pseudo-monotone operator; strong
convergence; viscosity; subgradient extragradient method
Mathematics Subject Classification: 47H05, 47J20, 47J25, 65K15

1. Introduction

In this paper, let H denote a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let M, R, and
N stand for the nonempty closed convex subset of H, set of real numbers and set of positive integers,
respectively. Let G : H → H be a mapping. The variational inequality problem (VIP) is concerned
with the problem of finding a point u? ∈ M such that

〈Gu?, u − u?〉 ≥ 0, ∀ u ∈ M. (1.1)

We denote the solution set of VIP (1.1) by VI(M,G). The VIP, which Fichera [12] and
Stampacchia [38] independently examined, is a crucial tool in both the applied and pure sciences.
It has attracted the attention of many authors in recent years due to its wide range of applications
to issues arising from partial differential equations, optimal control problems, saddle point problems,
minimization problems, economics, engineering, and mathematical programming.

On the other hand, an element u ∈ M is said to be the fixed point of a mapping S : M → M,
if S u = u. The set of all the fixed points of S is denoted by F(S ) = {u ∈ M : S u = u}. The
study of the fixed point theory of nonexpansive mappings has been applied in several fields such as
game theory, differential equations, signal processing, integral equations, convex optimization, and
control theory [19]. There are several recent results in the literature on approximation of fixed points
of nonexpansive mappings (see, for example, [8, 9, 26–29, 34–36] and the references therein).

It is well-known that the VIP (1.1) can be reformulated as a fixed point problem as follows:

u? = PM(I − ηG)u?, (1.2)

where PM : H → M is the metric projection and η > 0. The extragradient method is a prominent
method that has been used by many authors over the years to solve VIP. This method was first
introduced by Korpelevich [21] in 1976. Given an initial point u0 ∈ M, the sequence {um} generated by
the extragradient method is as follows:{

vm = PM(I − ηG)um,

um+1 = PM(um − ηGvm), ∀m ≥ 0,
(1.3)

where η ∈ (0, 1
L ), and G is an operator that is L-Lipschitz continuous and monotone. For VI(M,G) , ∅,

the author showed that the sequence {um} defined by (1.3) converges weakly to an element in VI(M,G).
The extragradient method’s main flaw is its iterative requirement to compute two projections on the

feasible set M. In fact, if M has a complex structure, this might have an impact on how efficiently the
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method computes. In recent years, several authors have paid a great deal of attention to overcoming
this restriction (see, for example [6,7,11,16,48]). In order to address the drawback of the extragragient
method, in 1997, He [16] introduced a method that requires only a single projection per each iteration.
This method is known as the projection and contraction method and it is given as follows:

vm = PM(um − ηGum),
wm = (um − vm) − η(Gum −Gvm),
um+1 = um − σ$mwm,

where σ ∈ (0, 2), η ∈ (0, 1
L ) and $m is defined as

$m =
〈um − vm,wm〉

‖wm‖
2 . (1.4)

The author showed that the sequence {um} generated by (1.4) converges weakly to a unique solution of
VIP (1.1). The subgradient extragradient method, which was developed by Censor et al. [6, 7, 11], is
another effective strategy for addressing the limitation of the extragradient method and it is defined as
follows: 

vm = PM(um − ηGum),
Tm = {u ∈ H|〈um − ηGum − vm, u − vm〉 ≤ 0},
um+1 = PTm(um − ηGvm),

(1.5)

where η ∈ (0, 1
L ), and G is a L-Lipschitz continuous and monotone operator. The main idea in this

method is that a projection onto a special contractible half-space is used to replace the second projection
onto M of the extragradient method, and this significantly reduces the difficulty of calculation. The
authors showed that if VI(M,G) , ∅, the sequence {um} defined by (1.5) weakly converges to a point
in VI(M,G).

Furthermore, the notion of the inertial extrapolation technique is based upon a discrete analogue
of a second order dissipative dynamical system and it is known as an acceleration process of iterative
methods. It was first developed in [37] to solve smooth convex minimization problems. For some years
now, the inertial techniques have been widely adopted by many authors to improve the convergence rate
of various iterative algorithms for solving several kinds of optimization problems (see, for example,
[1, 17, 30–32, 41, 44–46, 55]).

It is worthy to note that the study of the problem involving the approximation of the common
solution of the fixed point problem (FPP) and VIP plays a significant role in mathematical models
whose constraints can be expressed as FPP and VIP. This happens in real-world applications such as
image recovery, signal processing, network resource allocation, and composite site reduction (see, for
example, [2, 14, 18, 22, 24, 25, 33, 51] and the references therein).

Very recently, Thong and Hieu [43] introduced two modified subgradient extragradient methods
with line search process for solving the VIP with L-Lipschitz continuous and monotone operator G
and FPP involving quasi-nonexpansive mapping S , such that I − S is demiclosed at zero. Under
appropriate assumptions, the authors showed that the sequences generated by their algorithms weakly
converge some points in F(S ) ∩ VI(M,G).

We note that Thong and Hieu [43] only proved weak convergence results for their algorithms.
According to Bauschke and Combettes [3], for the solution of optimization problems, the strong
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convergence of iterative methods are more desirable than their weak convergence counterparts.
Furthermore, we observe that Thong and Hieu [43] employed the Armijo-type line search rule step size
to their algorithms in order to enable them to operate without requiring prior knowledge of the Lipschitz
constant of the operators. However, the use of Armijo-type step sizes may cause the considered
methods to perform multiple calculations of the projection values per iteration on the feasible set.
To overcome this limitation, Liu and Yang [23] developed an adaptive step size criterion, which only
needs the use of some previously given information to complete the step size calculation.

As far as we know, there is no result in the literature involving the subgradient extragradient method
with double inertial extrapolations for finding the common solution of VIP and FPP in real Hilbert
spaces. Due to the importance of common solutions of VIP and FPP to some real-world problems, it
is natural to ask the following question:

Is it possible to construct a double inertial subgradient extragradient-type algorithms with a new
step size for finding the common solution of VIP and FPP?

One of the purposes of this article is to give an affirmative answer to the above question. Motivated
by the ongoing research in these directions, we propose some modified subgradient extragradient
methods with a new step size. These proposed methods are derived from the combinations of the
original subgradient extragradient method, viscosity method, projection and contraction method. We
prove that our new methods converge strongly to the common solutions of VIP involving pseudo-
monotone mappings and FPP involving quasi-nonexpansive mappings that are demiclosed at zero in
real Hilbert spaces. The following are more contributions made in this research:

• Our algorithms do not need any Armijo-type line search techniques. Rather, they use a new self-
adaptive step size technique, which generates a non-monotonic sequence of step sizes. This step
size is formulated such that it reduces the dependence of the algorithms on the initial step size.
Conducted numerical experiments proved that the proposed step size is more efficient and ensures
that our methods require less computation time than many methods in the literature that work with
Armijo-type line search technique.
• Our step size properly includes those in [23, 41, 50].
• Our algorithms are constructed to approximate the common solution of VIP involving pseudo-

monotone mappings and FPP involving quasi-nonexpansive mappings. Since the class of Pseudo-
monotone mappings is more general than the class of monotone mappings, it means that our
results improve and generalize several results in the literature for finding common solution
VIP involving monotone mappings and quasi-nonexpansive mappings. Hence, our results are
improvements of the results in [22, 43, 47] and several others.
• Our algorithms are embedded with double inertial terms to accelerate their convergence speed.

Numerical tests showed that the proposed algorithms converge faster than the compared existing
methods with single inertial term.
• We prove our strong convergence result under mild conditions imposed on the parameters. Our

results are improvements on the weak convergence results in [43, 47].
• To show the computational advantage of the suggested methods over some well-known methods

in the literature, several numerical experiments are provided.
• We utilize our methods to solve some real-world problems, such as optimal control and signal

processing problems.
• The proofs of our strong convergence results do not require the conventional “two cases” approach
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that have been employed by several authors in the literature to establish strong convergence
results; see, for example, [5, 30].

The article is organized as follows: In Section 2, some useful definitions and lemmas are recalled.
The proposed algorithms and their convergence results are presented in Section 3. In Section 4, we
conduct some numerical experiments to show the efficiency of our proposed algorithms over several
well known methods. In Section 5, we consider the application of our algorithms to the solution
of optimal control problem. In Section 6, we apply our methods to image recovery problem and in
Section 7, we give summary of the basic contributions in this work.

2. Preliminaries

In what follows, we denote the weak convergence of the sequence {um} to u by um ⇀ u as m → ∞
and the strong convergence of the sequences {um} is denoted by um → u as m→ ∞.

Next, the following definitions and lemmas will be recalled. Let G : H → H be an operator, then G
is called:

(a1) contraction if there exists a constant k ∈ [0, 1) such that

‖Gu −Gv‖ ≤ k‖u − v‖, ∀u, v ∈ H;

(a2) L-Lipschitz continuous, if L > 0 exists with

‖Gu −Gv‖ ≤ L‖u − v‖, ∀u, v ∈ H.

If L = 1, then G becomes a nonexpansive mapping;
(a3) Quasi-nonexpansive, if F(G) , ∅ such that

‖Gu − u?‖ ≤ ‖u − u?‖, ∀u ∈ H, u? ∈ F(G);

(a4) α-strongly monotone, if there exists a constant α > 0 such that

〈Gu −Gv, u − v〉 ≥ α‖u − v‖2, ∀u, v ∈ H;

(a5) Monotone, if
〈Gu −Gv, u − v〉 ≥ 0, ∀u, v ∈ H;

(a6) Pseudo-monotone, if

〈Gu, u − v〉 ≥ 0 =⇒ 〈Gu, u − v〉 ≥ 0, ∀u, v ∈ H;

(a7) Sequentially weakly continuous, if for any sequence {um} which converges weakly to u, then the
sequence {Gum} weakly converges to Gu.

Lemma 2.1. [15] Let H be a real Hilbert space and M a nonempty closed convex subset of H. Suppose
u ∈ H and v ∈ M, then v = PMu ⇐⇒ 〈u − v, v − w〉 ≥ 0, ∀w ∈ M.

Lemma 2.2. [15] Let M be a closed convex subset of a real Hilbert space H. If u ∈ H, then
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(i) ‖PMu − PMv‖2 ≤ 〈PMu − PMv, u − v〉, ∀v ∈ H;

(ii) 〈(I − PM)u − (I − PM)v, u − v〉 ≥ ‖(I − PM)u − (I − PM)v‖2, ∀v ∈ H;

(iii) ‖PMu − v‖2 ≤ ‖u − v‖2 − ‖u − PMu‖2, ∀v ∈ H.

Lemma 2.3. For each u, v,w ∈ H and where α, β, δ ∈ [0, 1] with α + β + δ = 1, the followings hold in
Hilbert spaces:

(a)

‖u + v‖ ≤ ‖u‖2 + 2〈v, u + v〉;

(b)

‖u + v‖2 = ‖u‖2 + 2〈u, v〉 + ‖v‖2;

(c)

‖αu + βv + γw‖2 = α‖u‖2 + β‖v‖2 + γ‖w‖2 − αβ‖u − v‖2 − αγ‖u − w‖2 − βγ‖v − w‖2.

Lemma 2.4. [15] Let G : H → H be a nonlinear operator such that F(G) , ∅. Then I −G is called
demiclosed at zero if for any um ∈ H, the following implication holds:

um ⇀ u and (I −G)um → 0 =⇒ u ∈ F(G).

Lemma 2.5. [52] Let {am} be a sequence of nonnegative real numbers such that

am+1 ≤ (1 − νm)am + νmbm, ∀m ≥ 1,

where {νm} ⊂ (0, 1) with
∑∞

m=0 νm = ∞. If lim sup
k→∞

bmk ≤ 0 for every subsequence {amk} of {am}, the

following inequality holds:
lim inf

k→∞
(amk+1 − amk) ≥ 0.

Then lim
m→∞

am = 0.

3. Main results

In this section, we introduce three new double inertial subgradient extragradient algorithm-types for
solving VIP and FPP. In order to establish our main results, we assume that the following conditions
are fulfilled:

(C1) The feasible set M is nonempty, closed and convex.
(C2) The mapping G : H → H is pseudo-monotone and L-Lipschitz continuous.
(C3) The solution set F(S ) ∩ VI(M,G) , ∅.
(C4) The mapping G is sequentially weak continuous on M.
(C5) The mappings K, J : H → H are non-expansive.
(C6) The mapping S : H → H is quasi-nonexpansive such that I − S is demiclosed at zero.
(C7) The mapping f : H → H is a contraction with constant k ∈ [0, 1).
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(C8) Let {αm} ⊂ (0, 1), {βm}, {γm} ⊂ [a, b] ⊂ (0, 1) such that αm + βm + γm = 1, lim
m→∞

αm = 0,
∞∑

m=

αm = ∞

and lim
m→∞

εm
αm

= 0 = lim
m→∞

ξm
αm

, where {εm} and {ξm} are positive real sequences.

(C9) Let {pm}, {qm} ⊂ [0,∞) and {hm} ⊂ [1,∞) such that
∞∑

m=0
pm < ∞, lim

m→∞
qm = 0, and lim

m→∞
hm = 1.

Algorithm 3.1.
Initialization: Choose η1 > 0, φ > 0, θ > 0, ρ ∈ (0, 2) , µ ∈ (0, 1) and let g0, g1 ∈ H be arbitrary.
Iterative Steps: Given the iterates um−1 and {um} (m ≥ 1), calculate um+1 as follows:

Step 1: Choose φm and θm such that φm ∈ [0, φ̄m] and θm ∈ [0, θ̄m], where

φ̄m =

min
{

m−1
m+φ−1 ,

εm
‖um−um−1‖

}
, if um , um−1,

m−1
m+φ−1 , otherwise.

(3.1)

θ̄m =

min
{

m−1
m+θ−1 ,

ξm
‖um−um−1‖

}
, if um , um−1,

m−1
m+θ−1 , otherwise.

(3.2)

Step 2: Set

sm = um + φm(Kum − Kum−1), (3.3)
rm = um + θm(Jum − Jum−1), (3.4)

and compute

wm = PM(sm − ηmGsm). (3.5)

If sm = wm or Gsm = 0, stop; sm is a solution of the VIP. Otherwise, do Step 3.
Step 3: Compute

zm = PTm(sm − ρηmδmGwm), (3.6)

where

Tm = {u ∈ H : 〈sm − ηmGsm − wm, u − wm〉 ≤ 0}, (3.7)

δm =


〈sm−wm,vm〉

‖vm‖2
, if vm , 0,

0, otherwise,

(3.8)

and

vm = sm − wm − ηm(Gsm −Gwm). (3.9)
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Step 4: Compute

um+1 = αm f (rm) + βmzm + γmS zm. (3.10)

Update

ηm+1 =


min

{
(qm+hmµ)‖sm−wm‖

‖Gsm−Gwm‖
, ηm + pm

}
, if Gsm , Gwm,

ηm + pm, otherwise.

(3.11)

Set m := m + 1 and go back to Step 1.

Remark 3.1. We note the following in Algorithm 3.1:

(i) It is not hard to see from (3.1), (3.2), and condition (C8) that

lim
m→∞

φm‖um − um−1‖ = lim
m→∞

θm‖um − um−1‖ = 0

and

lim
m→∞

φm

αm
‖um − um−1‖ = lim

m→∞

θm

αm
‖um − um−1‖ = 0.

(ii) In order to get larger step sizes, we introduce the sequence {qm} and {hm} in (3.11) to relax the
the parameter µ. The relaxation parameters can often improve the numerical performances of
algorithms, see [10]. If qm = 0 in (3.11), then {ηm} becomes the step size in [41]. If hm = 1
in (3.11), then {ηm} becomes that in [50]. If qm = 0 and hm = 1 in (3.11), then the step size {ηm}

reduces to that in [23]. Lastly, if qm = pm = 0 and hm = 1, {ηm} reduces to the step sizes used by
many authors in the literature (see, for example, [13, 42, 53, 54]).

We now establish the following lemmas that will be useful in proving our strong convergence theorems.

Lemma 3.1. If conditions (C3) and (C4) are fulfilled and {ηm} is the sequence generated by (3.11).

Then, {ηm} is well-defined and lim
m→∞

ηm = η ∈

[
min

{
µ

L , η1

}
, η1 +

∞∑
m=1

pm

]
.

Proof. Since G is Lipschitz continuous with L > 0, qm ≥ 0 and hm ≥ 1, by (3.11), if Gsm , Gwm, we
have

ηm ≥
(qm + hmµ)‖sm − wm‖

‖Gsm −Gwm‖
≥

qm + hmµ

L
≥
µ

L
.

We omit the remaining part of the proof to avoid repetitive expressions of the proof of Lemma 3.1
in [50]. �

Lemma 3.2. Let {sm} and {wm} be two sequences generated by Algorithm 3.1. Suppose that conditions
(C1)–(C4) are fulfilled and if a subsequence {smk} of {sm} exists, such that smk ⇀ v? ∈ H and lim

k→∞
‖smk −

wmk‖ = 0, then v? ∈ VI(M,G).

AIMS Mathematics Volume 9, Issue 5, 12870–12905.



12878

Proof. Since wmk = PM(smk − ηmkGsmk), then by applying Lemma 2.1, we have

〈smk − ηmkGsmk − wmk , u − wmk〉 ≤ 0, ∀u ∈ M.

Equivalently, we have

1
ηmk

〈smk − wmk , u − wmk〉 ≤ 〈Gsmk , u − wmk〉, ∀u ∈ M.

It follows that

1
ηmk

〈smk − wmk , u − wmk〉 + 〈Gsmk ,wmk − smk〉 ≤ 〈Gsmk , u − smk〉, ∀u ∈ M. (3.12)

Since smk ⇀ v?, we know that {smk} is bounded and G is L-Lipschitz continuous on H, this means that
{Gsmk} is also bounded. Again, since lim

k→∞
‖smk−wmk‖ = 0, then {wmk} is also bounded and {ηmk} ≥

{
µ

L , η1

}
.

From (3.12), we have

lim inf
k→∞

〈Gsmk , u − smk〉 ≥ 0, ∀u ∈ M. (3.13)

On the other hand, we have

〈Gwmk , u − wmk〉 = 〈Gwmk −Gsmk , u − smk〉 + 〈Gsmk , u − smk〉 + 〈Gwmk , smk − wmk〉, ∀u ∈ M. (3.14)

Since lim
k→∞
‖smk − wmk‖ = 0 and G is L-Lpischitz continuous on H, we have

lim
k→∞
‖Gsmk −Gwmk‖ = 0. (3.15)

By lim
k→∞
‖smk − wmk‖ = 0, (3.13) and (3.15), (3.14) reduces to

lim inf
k→∞

〈Gwmk , u − wmk〉 ≥ 0, ∀u ∈ M. (3.16)

Next, we show that v? ∈ VI(M,G). To show this, we choose a decreasing sequence {ξk} of positive
numbers which approaches zero. For each k, let Nk stand for the smallest positive integer fulfilling the
following inequality:

〈Gwm j , u − wm j〉 + ξk ≥ 0, ∀ j ≥ Nk. (3.17)

It is not hard to see that the sequence {Nk} increases as {ξk} decreases. Moreover, since wNk ⊂ M, for
each k, we can assume that GwNk , 0 (otherwise, wNk is a solution). Putting

gNk =
GwNk

‖GwNk‖
2 ,

we get 〈GwNk , gNk〉 = 1, for each k. We can infer from (3.17) that for each k

〈GwNk , u + ξkgNk − wNk〉 ≥ 0.
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Now, owing to the pseudo-monotonicity of G on H, we have

〈G(u + ξkgNk), u + ξkgNk − wNk〉 ≥ 0.

This means that

〈Gu, u − wNk〉 ≥ 〈Gu −G(u + ξkgNk), u + ξkgNk − wNk〉 − ξk〈Gu, gNk〉. (3.18)

We now have to show that lim
k→∞

ξkgNk = 0. Indeed, by the fact that smk ⇀ v? and lim
k→∞
‖smk − wmk‖ = 0,

we have wNk ⇀ v? as k → ∞. Since the norm mapping is sequentially weakly lower semicontinuous,
we have

0 < ‖Gv?‖ ≤ lim inf
k→∞

‖Gwmk‖. (3.19)

Since wNk ⊂ wmk and ξk → 0 as k → ∞, we have

0 ≤ lim sup
k→∞

‖ξkgNk‖ = lim sup
k→∞

(
ξk

‖Gwmk‖

)
≤

lim
k→∞

ξk

lim inf
k→∞

‖Gwmk‖
= 0, (3.20)

which implies that lim
k→∞

ξkgNk = 0. Now, owing to the fact that G is Lipschitz continuous, {wmk}, {gNk}

are bounded, and lim
k→∞

ξkgNk = 0, then letting k → ∞ in (3.18), we obtain

lim inf
k→∞

〈Gu, u − wNk〉 ≥ 0.

Thus, for all u ∈ M, we have

〈Gu, u − v?〉 = lim
k→∞
〈Gu, u − wNk〉 = lim inf

k→∞
〈Gu, u − wNk〉 ≥ 0.

�

Lemma 3.3. Assume that conditions (C1)–(C3) hold and {zm} is a sequence generated by Algorithm 3.1,
then, for all u? ∈ VI(M,G), and for m0 > 0, we have

‖zm − u?‖2 ≤ ‖sm − u?‖2 − ‖sm − zm − ρδmvm‖
2 − (2 − ρ)ρ

1 − qm+hmµ

ηm+1

1 +
qm+hmµ

ηm+1


2

‖sm − wm‖
2, ∀m ≥ m0. (3.21)

Proof. From Lemma 3.1 and (3.9), we have

‖vm‖ = ‖sm − wm − ηm(Gsm −Gwm)‖
≥ ‖sm − wm‖ − ηm‖Gsm −Gwm‖

≥ ‖sm − wm‖ −
(qm + hmµ)ηm

ηm+1
‖sm − wm‖

=

(
1 −

(qm + hmµ)ηm

ηm+1

)
‖sm − wm‖. (3.22)
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By Lemma 3.1, we know that lim
m→∞

ηm exists, which together with lim
m→∞

qm = 0 and lim
m→∞

hm = 1 gives

lim
m→∞

(
1 −

(qm + hmµ)ηm

ηm+1

)
= 1 − µ > 0.

Thus, there exists m0 ∈ N such that

1 −
(qm + hmµ)ηm

ηm+1
>

1 − µ
2

, ∀m ≥ m0.

By (3.22), for all m ≥ m0, we have

‖vm‖ >

(
1 − µ

2

)
‖sm − wm‖ ≥ 0. (3.23)

Since u? ∈ VI(M,C) ⊂ M ⊂ Tm, then by Lemmas 2.2 and 2.3,

2‖zm − u?‖2 = 2‖PTm(sm − ρηmδmGwm) − PTmu?‖2

≤ 2〈zm − u?, sm − ρηmδmGwm − u?〉

= ‖zm − u?‖2 + ‖sm − ρηmδmGwm − u?‖2 − ‖zm − sm + ρηmδmGwm‖
2

= ‖zm − u?‖2 + ‖sm − u?‖2 + ρη2
mδ

2
m‖Gwm‖

2 − 2〈sm − u?, ρηmδmGwm〉

−‖zm − sm‖
2 − ρη2

mδ
2
m‖Gwm‖

2 − 2〈zm − sm, ρηmδmGwm〉

= ‖zm − u?‖2 + ‖sm − u?‖2 − ‖zm − sm‖
2 − 2〈zm − u?, ρηmδmGwm〉.

This implies that

‖zm − u?‖2 ≤ ‖sm − u?‖2 − ‖zm − sm‖
2 − 2ρηmδm〈zm − u?,Gwm〉. (3.24)

Since wm ∈ M and u? ∈ VI(M,G), we have 〈Gu?,wm − u?〉 ≥ 0. From the pseudo-monotonicity of G,
we know that 〈Gwm,wm − u?〉 ≥ 0. This implies that

〈Gwm, zm − u?〉 = 〈Gwm, zm − wm〉 + 〈Gwm,wm − u?〉.

Thus,

−2ρηmδm〈Gwm, zm − u?〉 ≤ −2ρηmδm〈Gwm, zm − wm〉. (3.25)

On the other hand, from zm ∈ Tm, we have

〈sm − ηmGsm − wm, zm − wm〉 ≤ 0.

It follows that

〈sm − wm − ηm(Gsm −Gwm), zm − wm〉 ≤ ηm〈Gwm, zm − wm〉.

Thus,

〈vm, zm − wm〉 ≤ ηm〈Gwm, zm − wm〉.
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Therefore,

−2ρηmδm〈Gwm, zm − wm〉 ≤ −2ρδm〈vm, zm − wm〉. (3.26)

Moreover, we have

−2ρδm〈vm, zm − wm〉 = −2ρδm〈vm, sm − wm〉 + 2ρδm〈vm, sm − zm〉. (3.27)

Recalling (3.23), we have know that vm , 0, for all m ≥ m0. This implies that δm = 〈sm−wm,vm〉

‖vm‖2
. Thus, we

have

〈sm − wm, vm〉 = δm‖vm‖
2, ∀m ≥ m0. (3.28)

On the other hand,

2ρδm〈vm, sm − zm〉 = 2〈ρδmvm, sm − zm〉 = ‖sm − zm‖
2 + ρ2δ2

m‖vm‖
2 − ‖sm − zm − ρδmvm‖

2. (3.29)

Putting (3.28) and (3.29) into (3.27), then for all m ≥ m0, we get

−2ρδm〈vm, zm − wm〉 ≤ −2ρδ2
m‖vm‖

2 + ‖sm − zm‖
2 + ρ2δ2

m‖vm‖
2 − ‖sm − zm − ρδmvm‖

2

= ‖sm − zm‖
2 − ‖sm − zm − ρδmvm‖

2 − (2 − ρ)ρδ2
m‖vm‖

2. (3.30)

Using (3.26) and (3.30), we get

−2ρηmδm〈Gwm, zm − wm〉 ≤ −2ρδ2
m‖vm‖

2 + ‖sm − zm‖
2 + ρ2δ2

m‖vm‖
2 − ‖sm − zm − ρδmvm‖

2

= ‖sm − zm‖
2 − ‖sm − zm − ρδmvm‖

2 − (2 − ρ)ρδ2
m‖vm‖

2. (3.31)

Also, from the combination of (3.25) and (3.31), we have

−2ρηmδm〈Gwm, zm − u?〉 ≤ −2ρδ2
m‖vm‖

2 + ‖sm − zm‖
2 + ρ2δ2

m‖vm‖
2 − ‖sm − zm − ρδmvm‖

2

= ‖sm − zm‖
2 − ‖sm − zm − ρδmvm‖

2 − (2 − ρ)ρδ2
m‖vm‖

2. (3.32)

�

Putting (3.32) into (3.24), we obtain

‖zm − u?‖2 ≤ ‖sm − u?‖2 − ‖sm − zm − ρδmvm‖
2 − (2 − ρ)ρδ2

m‖vm‖
2. (3.33)

Now, by Lemma 3.1 and (3.9), we have

‖vm‖ = ‖sm − wm − ηm(Gsm −Gwm)‖
≤ ‖sm − wm‖ + ηm‖Gsm −Gwm‖

≤ ‖sm − wm‖ +
(qm + hmµ)ηm

ηm+1
‖sm − wm‖

=

(
1 +

(qm + hmµ)ηm

ηm+1

)
‖sm − wm‖.
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Thus,

‖vm‖
2 ≤

(
1 +

(qm + hmµ)ηm

ηm+1

)2

‖sm − wm‖
2,

or equivalently

1
‖vm‖

2 ≥
1(

1 +
(qm+hmµ)ηm

ηm+1

)2
‖sm − wm‖

2
.

Again, from (3.9), we have

〈sm − wm, vm〉 = ‖sm − wm‖
2 − ηm〈sm − wm,Gsm −Gwm〉

≥ ‖sm − wm‖
2 − ηm‖sm − wm‖‖Gsm −Gwm‖

≥ ‖sm − wm‖
2 −

(qm + hmµ)ηm

ηm+1
‖sm − wm‖

2

=

(
1 −

(qm + hmµ)ηm

ηm+1

)
‖sm − wm‖

2.

Therefore, for all m ≥ m0, we have

δm‖vm‖
2 = 〈sm − wm, vm〉 ≥

(
1 −

(qm + hmµ)ηm

ηm+1

)
‖sm − wm‖

2 (3.34)

and

δm =
〈sm − wm, vm〉

‖vm‖
2 ≥

(
1 − (qm+hmµ)ηm

ηm+1

)
(
1 +

(qm+hmµ)ηm
ηm+1

)2 . (3.35)

Combining (3.34) and (3.35), we have

δ2
m‖vm‖

2 ≥

(
1 − (qm+hmµ)ηm

ηm+1

)2(
1 +

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2, ∀m ≥ m0. (3.36)

Putting (3.36) into (3.33), we have

‖zm − u?‖2 ≤ ‖sm − u?‖2 − ‖sm − zm − ρδmvm‖
2 − (2 − ρ)ρ

(
1 − (qm+hmµ)ηm

ηm+1

)2(
1 +

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2, ∀m ≥ m0.

Next, the strong convergence theorem of Algorithm 3.1 is established as follows:

Theorem 3.1. Suppose the conditions (C1)–(C8) are performed and {um} is the sequence generated
by Algorithm 3.1, then {um} converges strongly to an element u? ∈ F(S ) ∩ VI(M,G), where u? =

PF(S )∩VI(M,G) ◦ f (u?).
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Proof. We divide the proof into four parts as follows:
Claim 1. We show that {um} is bounded.

Indeed, due to (3.21), we have

‖zm − u?‖ ≤ ‖sm − u?‖. (3.37)

From (3.3), we have

‖sm − u?‖ = ‖um + φm(Kum − Kum−1) − u?‖

≤ ‖um − u?‖ + φm‖Kum − Kum−1‖

≤ ‖um − u?‖ + φm‖um − um−1‖

= ‖um − u?‖ + αm
φm

αm
‖um − um−1‖. (3.38)

From Remark 3.1, lim
m→∞

φm
αm
‖um−um−1‖ = 0. Therefore, { φm

αm
||um−um−1‖} is bounded, so, a constant Γ1 > 0

exists such that

φm

αm
‖um − um−1‖ ≤ Γ1, ∀m ≥ 1. (3.39)

Combining (3.37)–(3.39), we have

‖zm − u?‖ ≤ ‖sm − u?‖ ≤ ‖um − u?‖ + αmΓ1. (3.40)

Also, from (3.4), we have

‖rm − u?‖ = ‖um + θm(Jum − Jum−1) − u?‖

≤ ‖um − u?‖ + θm‖Jum − Jum−1‖

≤ ‖um − u?‖ + θm‖um − um−1‖

= ‖um − u?‖ + αm
θm

αm
‖um − um−1‖. (3.41)

From Remark 3.1, we see that lim
m→∞

θm
αm
‖um − um−1‖ = 0. Thus, a constant Γ2 > 0 exists such that

θm

αm
‖um − um−1‖ ≤ Γ2, ∀m ≥ 1. (3.42)

Combining (3.41) and (3.42), we have

‖rm − u?‖ ≤ ‖um − u?‖ + αmΓ2. (3.43)

Using (3.10) and condition (C7), we have

‖um+1 − u?‖ = ‖αm f (rm) + βmzm + γmS zm − u?‖

= ‖αm( f (rm) − u?) + βm(zm − u?) + γm(S zm − u?)‖
≤ αm‖ f (rm) − f (u?) + f (u?) − u?‖ + βm‖zm − u?‖ + γm‖S zm − u?‖
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≤ αm‖ f (rm) − f (u?)‖ + αm‖ f (u?) − u?‖ + βm‖zm − u?‖ + γm‖S zm − u?‖

≤ αmk‖rm − u?‖ + αm‖ f (u?) − u?‖ + βm‖zm − u?‖ + γm‖zm − u?‖

= αmk‖rm − u?‖ + αm‖ f (u?) − u?‖ + (1 − αm)‖zm − u?‖. (3.44)

Putting (3.40) and (3.43) into (3.44), we have

‖um+1 − u?‖ ≤ αmk(‖um − u?‖ + αmΓ2) + αm‖ f (u?) − u?‖ + (1 − αm)(‖um − u?‖ + αmΓ1)
= (1 − (1 − k)αm)‖um − u?‖ + α2

mkΓ2 + αm(1 − αm)Γ1 + αm‖ f (u?) − u?‖

≤ (1 − (1 − k)αm)‖um − u?‖ + αmΓ2 + αmΓ1 + αm‖ f (u?) − u?‖

= (1 − (1 − k)αm)‖um − u?‖ + αmΓ3 + αm‖ f (u?) − u?‖

= (1 − (1 − k)αm)‖um − u?‖ + (1 − k)αm
Γ3 + ‖ f (u?) − u?‖

1 − k

≤ max
{
‖um − u?‖,

Γ3 + ‖ f (u?) − u?‖
1 − k

}
≤ · · ·

≤ max
{
‖um0 − u?‖,

Γ3 + ‖ f (u?) − u?‖
1 − k

}
, ∀m ≥ m0, (3.45)

where Γ3 = Γ1 + Γ2. This means that {um} is bounded. It follows that {zm}, {sm}, {wm}, { f (rm)} and
{ f (zm)} are bounded.
Claim 2.

(1 − αm)‖sm − zm − ρδmvm‖
2 + (1 − αm)(2 − ρ)ρ

(
1 − (qm+hmµ)ηm

ηm+1

)2(
1 +

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2 + βmγm‖zm − S zm‖

2

≤‖um − u?‖2 − ‖um+1 − u?‖2 + αmΓ7, ∀m ≥ m0,

for some Γ7 > 0.
Indeed, from (3.40), we have

‖sm − u?‖2 ≤ (‖um − u?‖ + αmΓ1)2 = ‖um − u?‖2 + αm(2Γ1‖um − u?‖ + αmΓ2
1). (3.46)

Since {um} is a bounded sequence, it therefore implies that a constant Γ4 > 0 exists, such that 2Γ1‖um −

u?‖ + αmΓ2
1 ≤ Γ4. Hence, (3.46) becomes

‖sm − u?‖2 ≤ ‖um − u?‖2 + αmΓ4.

Also, from (3.43), we get

‖rm − u?‖2 ≤ (‖um − u?‖ + αmΓ2)2 = ‖um − u?‖2 + αm(2Γ2‖um − u?‖ + αmΓ2
2). (3.47)

Since {um} is a bounded sequence, it therefore implies that a constant Γ5 > 0 exists, such that 2Γ2‖um −

u?‖ + αmΓ2
2 ≤ Γ5. Hence, (3.47) becomes

‖rm − u?‖2 ≤ ‖um − u?‖2 + αmΓ5.
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Now, from (3.10) and Lemma 2.3, we have

‖um+1 − u?‖2 = ‖αm f (rm) + βmzm + γmS zm − u?‖2

= ‖αm( f (rm) − u?) + βm(zm − u?) + γm(S zm − u?)‖2

≤ αm‖ f (rm) − u?‖2 + βm‖zm − u?‖2

+γm‖S zm − u?‖2 − βmγm‖zm − S zm‖
2

≤ αm(‖ f (rm) − f (u?)‖ + ‖ f (u?) − u?‖)2 + βm‖zm − u?‖2

+γm‖S zm − u?‖2 − βmγm‖zm − S zm‖
2

≤ αm(k‖rm − u?‖ + ‖ f (u?) − u?‖)2 + βm‖zm − u?‖2

+γm‖zm − u?‖2 − βmγm‖zm − S zm‖
2

= αm(k2‖rm − u?‖2 + 2‖rm − u?‖‖ f (u?) − u?‖ + ‖ f (u?) − u?‖2)
+(1 − αm)‖zm − u?‖2 − βmγm‖zm − S zm‖

2

≤ αm(‖rm − u?‖2 + 2‖rm − u?‖‖ f (u?) − u?‖ + ‖ f (u?) − u?‖2)
+(1 − αm)‖zm − u?‖2 − βmγm‖zm − S zm‖

2

= αm‖rm − u?‖2 + αm(2‖rm − u?‖‖ f (u?) − u?‖ + ‖ f (u?) − u?‖2)
+(1 − αm)‖zm − u?‖2 − βmγm‖zm − S zm‖

2. (3.48)

Due to the boundedness of {rm}, we know that a constant Γ6 > 0 exists, such that 2‖rm − u?‖‖ f (u?) −
u?‖ + ‖ f (u?) − u?‖2 ≤ Γ6. Therefore, (3.48) becomes

‖um+1 − u?‖2 ≤ αm‖rm − u?‖2 + (1 − αm)‖zm − u?‖2 − βmγm‖zm − S zm‖
2 + αmΓ6. (3.49)

Putting (3.21) into (3.49), we get

‖um+1 − u?‖2 ≤ αm‖rm − u?‖2 + (1 − αm)‖sm − u?‖2 − (1 − αm)‖sm − zm − ρδmvm‖
2

−(1 − αm)(2 − ρ)ρ

(
1− (qm+hmµ)ηm

ηm+1

)2

(
1+

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2 − βmγm‖zm − S zm‖

2 + αmΓ6. (3.50)

Substituting (3.40) and (3.43) into (3.50), we have

‖um+1 − u?‖2 ≤ αm(‖um − u?‖ + αmΓ2)2 + (1 − αm)(‖um − u?‖ + αmΓ1)2

−(1 − αm)‖sm − zm − ρδmvm‖
2

−(1 − αm)(2 − ρ)ρ

(
1 − (qm+hmµ)ηm

ηm+1

)2(
1 +

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2

−βmγm‖zm − S zm‖
2 + αmΓ6.

≤ ‖um − u?‖2 − (1 − αm)‖sm − zm − ρδmvm‖
2

−(1 − αm)(2 − ρ)ρ

(
1 − (qm+hmµ)ηm

ηm+1

)2(
1 +

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2

−βmγm‖zm − S zm‖
2 + αmΓ1 + αmΓ2 + αmΓ6, (3.51)
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it follows from (3.51) that

(1 − αm)‖sm − zm − ρδmvm‖
2 + (1 − αm)(2 − ρ)ρ

(
1 − (qm+hmµ)ηm

ηm+1

)2(
1 +

(qm+hmµ)ηm
ηm+1

)2 ‖sm − wm‖
2 + βmγm‖zm − S zm‖

2

≤‖um − u?‖2 − ‖um+1 − u?‖2 + αmΓ7, ∀m ≥ m0,

where Γ7 = Γ1 + Γ2 + Γ6 > 0.
Claim 3.

‖um+1 − u?‖2 ≤ (1 − (1 − k)αm)‖um − u?‖2 + (1 − k)αm

[
2

1 − k
〈 f (u?) − u?, um+1 − u?〉

+
3Γ8

1 − k
·
θm

αm
‖um − um−1‖ +

3Γ9

1 − k
·
φm

αm
‖um − um−1‖

]
, ∀m ≥ m0, (3.52)

for some Γ8 > 0 and Γ9 > 0.
Indeed, using (3.3), we have

‖sm − u?‖2 = ‖um + φm(Kum − Kum−1) − u?‖2

= ‖um − u? + φm(Kum − Kum−1)‖2

≤ ‖um − u?‖2 + 2φm‖um − u?‖‖Kum − Kum−1‖ + φ2
m‖Kum − Kum−1‖

2

≤ ‖um − u?‖2 + 2φm‖um − u?‖‖um − um−1‖ + φ2
m‖um − um−1‖

2. (3.53)

Also, from (3.4), we get

‖rm − u?‖2 = ‖um + θm(Jum − Jum−1) − u?‖2

= ‖um − u? + θm(Jum − Jum−1)‖2

≤ ‖um − u?‖2 + 2θm‖um − u?‖‖Jum − Jum−1‖ + θ2
m‖Jum − Jum−1‖

2

≤ ‖um − u?‖2 + 2θm‖um − u?‖‖um − um−1‖ + θ2
m‖um − um−1‖

2. (3.54)

Using (3.10) and Lemma 2.3, we have

‖um+1 − u?‖2 = ‖αm f (rm) + βmzm + γmS zm − u?‖2

= ‖αm( f (rm) − u?) + βm(zm − u?) + γm(S zm − u?)‖2

= ‖αm( f (rm) − f (u?)) + βm(zm − u?) + γm(S zm − u?) + αm( f (u?) − u?)‖2

≤ ‖αm( f (rm) − f (u?)) + βm(zm − u?) + γm(S zm − u?)‖2

+2αm〈 f (u?) − u?, um+1 − u?〉

≤ αm‖ f (rm) − f (u?)‖2 + βm‖zm − u?‖2 + γm‖S zm − u?‖2

+2αm〈 f (u?) − u?, um+1 − u?〉

≤ αmk2‖rm − u?‖2 + βm‖zm − u?‖2 + γm‖zm − u?‖2

+2αm〈 f (u?) − u?, um+1 − u?〉

≤ αmk‖rm − u?‖2 + βm‖zm − u?‖2 + γm‖zm − u?‖2

+2αm〈 f (u?) − u?, um+1 − u?〉
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= αmk‖rm − u?‖2 + (1 − αm)‖zm − u?‖2 + 2αm〈 f (u?) − u?, um+1 − u?〉

≤ αmk‖rm − u?‖2 + (1 − αm)‖sm − u?‖2 + 2αm〈 f (u?) − u?, um+1 − u?〉. (3.55)

Substituting (3.53) and (3.54) into (3.55), we obtain

‖um+1 − u?‖2 ≤ αmk[‖um − u?‖2 + 2θm‖um − u?‖‖um − um−1‖ + θ2
m‖um − um−1‖

2]
+(1 − αm)[|um − u?‖2 + 2φm‖um − u?‖‖um − um−1‖ + φ2

m‖um − um−1‖
2]

+2αm〈 f (u?) − u?, um+1 − u?〉

≤ (1 − (1 − k)αm)‖um − u?‖2 + (1 − k)αm
2

1 − k
〈 f (u?) − u?, um+1 − u?〉

+θm‖um − um−1‖[2‖um − u?‖ + θm‖um − um−1‖]
+φm‖um − um−1‖[2‖um − u?‖ + φm‖um − um−1‖]

≤ (1 − (1 − k)αm)‖um − u?‖2 + (1 − k)αm

[
2

1 − k
〈 f (u?) − u?, um+1 − u?〉

+
3Γ8

1 − k
·
θm

αm
‖um − um−1‖ +

3Γ9

1 − k
·
φm

αm
‖um − um−1‖

]
, ∀m ≥ m0,

where Γ8 = sup
m∈N
{‖um − u?‖, θ‖um − um−1‖} and Γ9 = sup

m∈N
{‖um − u?‖, φ‖um − um−1‖}.

Claim 4. The sequence {‖um − u?‖2} converges to zero. Indeed, from (3.52), Remark 3.1 and
Lemma 2.5, it is enough to show that lim sup

k→∞
〈 f (u?) − u?, umk+1 − u?〉 ≤ 0 for any subsequence of

{‖umk − u?‖2} of {‖um − u?‖2} fulfilling

lim inf
k→∞

(‖umk+1 − u?‖2 − ‖umk − u?‖2) ≥ 0. (3.56)

Now, we assume that ‖umk − u?‖2 is a subsequence of ‖um − u?‖2 such that (3.56) holds, then

lim inf
k→∞

(‖umk+1 − u?‖2 − ‖umk − u?‖2)

= lim inf
k→∞

[(‖umk+1 − u?‖ − ‖umk − u?‖)(‖umk+1 − u?‖ + ‖umk − u?‖)] ≥ 0.

By Claim 2 and condition (C8), we get

lim sup
k→∞



(1 − αmk)‖smk − zmk − ρδmkvmk‖
2

+(1 − αmk)(2 − ρ)ρ

(
1−

(qmk +hmk µ)ηmk
ηmk+1

)2

(
1+

(qmk +hmk µ)ηmk
ηmk+1

)2 ‖smk − wmk‖
2

+βmkγmk‖zmk − S zmk‖
2


≤ lim sup

k→∞
{‖umk − u?‖2 − ‖umk+1 − u?‖2 + αmkΓ7}

= − lim inf
k→∞

{‖umk − u?‖2 − ‖umk+1 − u?‖2},

which implies that

lim
k→∞
‖smk − zmk − ρδmkvmk‖ = lim

k→∞
‖smk − wmk‖ = lim

k→∞
‖zmk − S zmk‖ = 0. (3.57)
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On the other hand,

‖smk − zmk‖ = ‖smk − zmk − ρδmkvmk + ρδmkvmk‖ ≤ ‖smk − zmk − ρδmkvmk‖ + ρδmk‖vmk‖. (3.58)

By (3.8) and (3.23), we know that

δmk‖vmk‖ =
〈smk − wmk , vmk〉

‖vmk‖
. (3.59)

Putting (3.59) into (3.58) and using the Cauchy Schwartz inequality, we have

‖smk − zmk‖ ≤ ‖smk − zmk − ρδmkvmk‖ + ρ‖smk − wmk‖.

Recalling (3.57), we have

lim
k→∞
‖smk − zmk‖ = 0. (3.60)

Also, from (3.3), we have

‖smk − umk‖ = φmk‖Kumk − Kumk−1‖ ≤ φmk‖umk − umk−1‖ ≤ αmk ·
φmk

αmk

‖umk − umk−1‖. (3.61)

By Remark 3.1, condition (C8) and (3.61), we have

lim
k→∞
‖smk − umk‖ = 0. (3.62)

Using (3.60) and (3.62), we have

lim
k→∞
‖zmk − umk‖ ≤ lim

k→∞
(‖zmk − smk‖ + ‖smk − umk‖) = 0. (3.63)

Again, from (3.10), we have

‖umk+1 − zmk‖ ≤ αmk‖ f (rm) − zmk‖ + βmk‖zmk − zmk‖ + γmk‖S zmk − zmk‖. (3.64)

From condition (C8), (3.57) and (3.64), we obtain

lim
k→∞
‖umk+1 − zmk‖ = 0. (3.65)

Next, we have that

‖umk+1 − umk‖ ≤ ‖umk+1 − zmk‖ + ‖zmk − smk‖ + ‖smk − umk‖. (3.66)

Combing (3.60), (3.62), (3.65), and (3.66), we have

lim
k→∞
‖umk+1 − umk‖ = 0. (3.67)

Since the sequence {umk} is bounded, then we know that a subsequence {umk j
} of {umk} exists such that

umk j
⇀ q?. Furthermore,

lim sup
k→∞

〈 f (u?) − u?, umk − u?〉 = lim
j→∞
〈 f (u?) − u?, umk j

− u?〉 = 〈 f (u?) − u?, q? − u?〉. (3.68)
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Thus, we have smk j
⇀ q? since lim

k→∞
‖smk − umk‖ = 0. Since lim

k→∞
‖smk − wmk‖ = 0, it follows from

Lemma 3.2 that q? ∈ VI(M,G). From (3.63), it follows that zmk j
⇀ q?. Following the demiclosedness

of I − S at zero as defined in Lemma 2.4, we know that q? ∈ F(S ). Thus, q? ∈ F(S ) ∩ VI(M,G). By
combining (3.68), q? ∈ F(S ) and u? = PF(S )∩VI(M,G) ◦ f (u?), we get

lim sup
k→∞

〈 f (u?) − u?, umk − u?〉 = 〈 f (u?) − u?, q? − u?〉 ≤ 0. (3.69)

Using (3.67) and (3.69), we have

lim sup
k→∞

〈 f (u?) − u?, umk+1 − u?〉 ≤ lim sup
k→∞

〈 f (u?) − u?, umk+1 − umk〉 + lim sup
k→∞

〈 f (u?) − u?, umk − u?〉

= 〈 f (u?) − u?, q? − u?〉 ≤ 0. (3.70)

By Claim 3, Remark 3.1, (3.70), and Lemma 2.5, we obtain that lim
m→∞
‖um−u?‖ = 0, and this completes

the proof of Theorem 3.1. �

Next, we propose our second and third algorithms as in Algorithms 3.2 and 3.3, which differ slightly
from Algorithm 3.1.

Algorithm 3.2.
Initialization: Choose η1 > 0, φ > 0, θ > 0, ρ ∈ (0, 2) , µ ∈ (0, 1) and let g0, g1 ∈ H be arbitrary.
Iterative Steps: Given the iterates um−1 and {um} (m ≥ 1), calculate um+1 as follows:
Step 1: Choose φm and θm such that 0 ≤ φm ≤ φ̄m and 0 ≤ θm ≤ θ̄m, where φ̄m and θ̄m are as defined
in (3.1) and (3.2).
Step 2: Set

sm = um + φm(Kum − Kum−1),
rm = um + θm(Jum − Jum−1),

and compute

wm = PM(sm − ηmGsm).

If sm = wm or Gsm = 0, stop, sm is a solution of the VIP. Otherwise, do Step 3.
Step 3: Compute

zm = PTm(sm − ρηmδmGwm),

where Tm, δm and vm are as defined in (3.7)–(3.9).
Step 4: Compute

um+1 = αm f (um) + βmzm + γmS zm.

Update ηm+1 by (3.11).
Set m := m + 1 and go back to Step 1.
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Algorithm 3.3.
Initialization: Choose η1 > 0, φ > 0, θ > 0, ρ ∈ (0, 2) , µ ∈ (0, 1) and let g0, g1 ∈ H be arbitrary.
Iterative Steps: Given the iterates um−1 and {um} (m ≥ 1), calculate um+1 as follows:
Step 1: Choose φm and θm such that 0 ≤ φm ≤ φ̄m and 0 ≤ θm ≤ θ̄m, where φ̄m and θ̄m are as defined
in (3.1) and (3.2).
Step 2: Set

sm = um + φm(Kum − Kum−1),
rm = um + θm(Jum − Jum−1),

and compute

wm = PM(sm − ηmGsm).

If sm = wm or Gsm = 0, stop, sm is a solution of the VIP. Otherwise, do Step 3.
Step 3: Compute

zm = PTm(sm − ρηmδmGwm),

where Tm, δm and vm are as defined in (3.7)–(3.9).
Step 4: Compute

um+1 = αm f (sm) + βmzm + γmS zm.

Update ηm+1 by (3.11).
Set m := m + 1 and go back to Step 1.

Remark 3.2. In Algorithm 3.2, we replace the term f (zm) in (3.10) of Algorithm 3.1 with f (um). Also,
in Algorithm 3.3, we replace the term f (zm) in (3.10) of Algorithm 3.1 with f (sm). Now, the strong
convergence theorems of Algorithms 3.2 and 3.3 will be stated without proofs. Their proofs are very
similar to that of Theorem 3.1. Hence, we leave the proofs for the reader to verify.

Theorem 3.2. Suppose the conditions (C1)–(C8) are performed and {um} is the sequence generated
by Algorithm 3.2, then {um} converges strongly to an element u? ∈ F(S ) ∩ VI(M,G), where u? =

PF(T )∩VI(M,G) ◦ f (u?).

Theorem 3.3. Suppose the conditions (C1)–(C8) are performed and {um} is the sequence generated
by Algorithm 3.3, then {um} converges strongly to an element u? ∈ F(S ) ∩ VI(M,G), where u? =

PF(T )∩VI(M,G) ◦ f (u?).

4. Number experiments

In this part of the work, we consider two numerical examples to demonstrate the computational
efficiency of our Algorithms 3.1–3.3 (shortly, OAUAN Algs. 3.1, 3.7 and 3.8) over some existing
modified algorithms, namely, Algorithms 1 and 2 of Thong and Hieu [43] (shortly, TH Alg. 1 and
TH Alg. 2), Algorithm 2 of Tian and Tong [47] (shortly, TT Alg. 2), Algorithm 3.1 of Ogwo
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et al. [33] (shortly, OAM Alg. 3.1), Algorithm 3.1 of Godwin et al. [14] (shortly, GAMY Alg 3.1), and
Algorithm 3.1 of Maluleka et al. [24] (shortly, MUA Alg 3.1). We perform all numerical simulations
using MATLAB R2020b and carried out on PC Desktop Intel R© CoreT M i7-3540M CPU @ 3.00GHz × 4
memory 400.00GB.

Example 4.1. Suppose that G : Rk → Rk (k = 30, 50, 80, 110) is defined by G(u) = Qu + q, where
q ∈ Rk and Q = AAT + B + C, C is a k × k diagonal matrix whose diagonal terms are nonnegative
(hence Q is positive symmetric definite), B is a k× k skew-symmetric, and A is a k× k matrix. We define
the feasible set M by

M = {u ∈ Rk : −5 ≤ ui ≤ 5, i = 1, · · · k}.

It is not hard to see that the mapping G is monotone and L-Lipschitz continuous with L = ‖Q‖ (hence, G
is pseudo-monotone). For q = 0, the solution set VI(M,G) = {0}. On the other hand, let S u= 3

4u sin ‖u‖.
Clearly, the only fixed point of S is 0, i.e., F(S ) = {0}. The mapping S is quasi-nonexpansive but not
nonexpansive. Indeed, for k = 1, we have

|S u − 0| =
∣∣∣∣∣34u sin |u|

∣∣∣∣∣ ≤ ∣∣∣∣∣3u
4

∣∣∣∣∣ ≤ |u| = |u − 0|, ∀u ∈ M.

Hence, S is quasi-nonexpansive. Moreover, if we take u = 2π and v = 3π
2 , then we have

|S u − S v| =
∣∣∣∣∣6π4 sin 2π −

9π
8

sin
3π
2

∣∣∣∣∣ =
9π
8
>
π

2
= |u − v|.

Therefore, S is not quasinonexpansive. Notice that I − S is demiclosed at 0 and F(S ) ∩ VI(M,G) =

{0} , ∅. Furthermore, we take Ku = sin u, where for k > 1, sin u = (sin u1, sin u2, . . . , sin uk)T and
Ju = u

2 .
The parameters for all the algorithms are taken as follows:

• For Algorithms 3.1–3.3, we take η1 = 0.9, µ = 0.4, αm = 1
2m+20 , βm = γm = m

2m+20 , pm = 1
(m+100)1.1 ,

qm = m+1
m , hm = 1

m+100 , φ = 0.6, θ = 0.9, ρ = 0.0001 and εm = 1
(2m+1)3 .

• For TH Algs. 1 and 2 γ = 2, l = 0.5, τ1 = 0.8, αm = 0.5, βm = 0.5, µ = 0.6.
• For Algorithm 2 of Tian and Tong [47] (TT Alg.), we take αm = 0.5, βm = 0.5, µ = 0.4 and λ1 = 1

7 .
• For Algorithm 3.1 of Godwin et al. [14] (GAMY Alg. 3.1), we take α = 4, λ1 = 0.5, θm = θ̄m

δ = 0.4 c′(x) = 2x, φm = 2m+1
5m+2 , βm = 2m

3m+2 , γ = 1, γm =
(

2
3m+1

)2
, αm = ( 2

3m+1 , µ = 0.8,
Dx = T x = 0.5x and f (x) = 1

3 x.
• For Algorithm 3.1 of Maluleka et al. [24] (MUA Alg. 3.1), we take θ = 0.9, λ1 = 3.1, µm = 1

(m+1)2

αm = 1
m+1 , βm = 0.5 and ρ = 0.5.

• For Algorithm 3.2 of Ogwo et al. [33] (OAM Alg. 3.1), we take α = 3, λ1 = 0.5, αm = ᾱm µ = 0.4,
βm = m

m+10 , γ1 = 0.01, τm = ( 1
(m+1)2 , θm = 1

m+10 , Dx = 0.01x and f (x) = 0.01x.

In this example, all entries A, B and C are taken randomly from [1, 100]. We consider 4 different
dimensions for k, Case I: k = 50, Case II: k = 100, Case III: k = 300, Case IV: k = 500. The initial
values u1 = u2 are chosen at random using randn(k, 1) in MATLAB and stopping criterion is taken as
‖um+1 − um‖ ≤ 10−8. The results of the numerical simulations are presented in Table 1 and Figures 1
and 2.
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Table 1. Numerical Results for the four dimensions considered in Example 4.1.

Algorithms Case I Case II Case III Case IV
Iter. CPU Iter. CPU Iter. CPU Iter. CPU

OUANC Alg. 3.1 15 0.0062 14 0.0043 15 0.0093 15 0.0205
OUANC Alg. 3.7 16 0.0099 16 0.0075 16 0.0096 17 0.0199
OUANC Alg. 3.8 17 0.0089 13 0.0037 14 0.0096 17 0.0242
TH Alg. 1 33 0.0194 35 0.0363 35 0.0777 39 0.1864
TH Alg. 2 38 0.0254 31 0.0413 38 0.0823 51 0.1878
TT Alg. 2 23 0.0092 30 0.0181 36 0.0146 30 0.0565
GAMY Alg. 3.1 90 0.0201 91 0.0399 99 0.0276 103 0.0712
MUA Alg. 3.1 47 0.0207 47 0.0159 44 0.0294 45 0.0453
OAM Alg. 3.1 40 0.0144 39 0.0076 41 0.0159 42 0.033
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Figure 1. Graph of the iterates for Cases I and II.
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Figure 2. Graph of the iterates for Cases III and IV.

Example 4.2. Let H = `2, i.e., H = {u = (u1, u2, u3, · · · , ui, · · · ) :
∞∑

i=1
|ui|

2 < +∞}. Let e, d ∈ R be such

that d > e > d
2 > 0. Let M = {u ∈ `2 : ‖u‖ ≤ e} and Gu = (d − ‖u‖)u. Obviously, the solution set

VI(M,G) = {0}. Now, we show that G is L-Lipschitz continuous on H and pseudo-monotone on M.
Indeed, for any u, v ∈ H, we have

‖Gu −Gv‖ = ‖(d − ‖u‖)u − (d − ‖v‖)v‖
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= ‖d(u − v) − ‖u‖(u − v) − (‖u‖ − ‖v‖)v‖
≤ d‖u − v‖ + ‖u‖‖u − v‖ + |‖u‖ − ‖v‖|‖v‖

≤ d‖u − v‖ + e‖u − v‖ + ‖u − v‖e

= (d + 2e)‖u − v‖.

Hence, G is Lipschitz continuous with L = d + 2e. Now, let u, v ∈ M be such that 〈Gu, v − u〉 > 0, then
we have (d − ‖u‖)〈u, v − u〉 > 0. Since ‖u‖ ≤ e ≤ d, we have 〈u, v − u〉 > 0. Hence,

〈Mv, v − u〉 = (d − ‖v‖)〈v, v − u〉 ≥ (d − ‖v‖)(〈v, v − u〉 − 〈u, v − u〉 ≥ (d − e)‖u − v‖2 ≥ 0.

This shows that G is a pseudo-monotone mapping. If we set e = 3 and d = 5, the projection formula is
defined by

PM =

u, if ‖u‖ ≤ 3,
3u
‖u‖ , otherwise.

(4.1)

Now, let S u = u
2 . It is not hard to show that the mapping S is nonexpansive (hence, quasi-

nonexpansive). We see that F(S ) = {0} , ∅. Thus, F(S ) ∩ VI(M,G). We take the stopping criterion
as ‖um+1 − um‖≤10−8. Furthermore more, we maintain the same control parameters as in Example 4.1.
Since we cannot sum to infinity in MATLAB, we considered the subspace of `2

0 consisting of finite
nonzero terms defined by

`2
0(R) = {u1 ∈ `

2 : u1 = (u1,1, u1,2, u1,3, . . . , u1,i, 0, 0, . . .)}, for some i ≥ 1.

The first i points of the initial points are generated randomly considering the following cases for i:
Case I: i = 100, Case II: i = 1, 000, Case III: i = 10, 000, Case IV: i = 100, 000. We use the same
control parameters used in the previous example for all the algorithms. The results of the numerical
simulations are presented in Table 2 and Figures 3 and 4.

Remark 4.1. After conducting numerical simulations in Examples 4.1 and 4.2 our proposed
Algorithms 3.1–3.3 have exhibited a competitive nature and potential when compared to existing
algorithms. They outperformed Algorithms 1 and 2 of Thong and Hieu [43], Algorithm 2 of Tian and
Tong [47], Algorithm 3.1 of Ogwo et al. [33], Algorithm 3.1 of Godwin et al. [14], and Algorithm 3.1
of Maluleka et al. [24] in terms of computational time and the number of iterations required to meet
the specified stopping criteria, highlighting their superior performance.
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Table 2. Numerical results for the four dimensions considered in Example 4.2.

Algorithms Case I Case II Case III Case IV
Iter. CPU Iter. CPU Iter. CPU Iter. CPU

OUANC Alg. 3.1 13 0.0024 16 0.0042 17 0.0309 17 0.1011
OUANC Alg. 3.7 16 0.0067 17 0.0083 18 0.0220 19 0.1094
OUANC Alg. 3.8 16 0.0089 16 0.0081 17 0.0273 20 0.1105
TH Alg. 1 37 0.0065 35 0.0286 40 0.1310 45 1.1786
TH Alg. 2 34 1.0409 35 0.0190 37 0.1328 38 1.1063
TT Alg. 2 36 0.0131 37 0.0101 38 0.0256 46 0.1978
GAMY Alg. 3.1 67 0.0089 65 0.0081 69 0.0545 73 0.3740
MUA Alg. 3.1 44 0.0083 42 0.0063 45 0.0467 47 0.2787
OAM Alg. 3.1 33 0.0039 34 0.0128 37 0.0299 39 0.1892
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Figure 3. Graph the Iterates for Cases I and II.
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Figure 4. Graph the Iterates for Cases III and IV.

5. Application to optimal control problems

In this section, the solution of variational inequality problem arising from optimal control problem
is approximated by our Algorithm 3.1. Let 0 < T ∈ R, then we denote the Hilbert space of the square
integrable by L2([0, 1],Rk), measurable vector function s : [0,T ]→ Rm induced with the inner product

〈s, r〉 =

∫ T

0
〈s(g), r(g)〉dg,

AIMS Mathematics Volume 9, Issue 5, 12870–12905.



12895

and norm

‖s‖2 =
√
〈s, s〉 < ∞.

Now, the following optimal control problem will be considered on [0,T]:

s∗(g) = argmin{ζ(s) : s ∈ S }, (5.1)

supposing such control exists. Note that S denotes the set of admissible controls, which takes the form
an k-dimensional box and is made up of a piecewise continuous function:

S = {s(g) ∈ L2([0, 1],Rk) : si(g) ∈ [s−i , s
+
i ], i = 1, 2, ..., k}.

Particularly, the control can be piecewise constant function (bang-bang).
The terminal objective can be expressed as:

ζ(s) = θ(u(T )),

where θ is a differentiable and convex function defined on the attainability set. If the trajectory u(z) ∈
L2([0, 1]) fulfills constrains in the form of a linear differential equation system:

u̇(g) = D(z)u(g) + B(g)s(g), u(0) = u0, z ∈ [0,T ], (5.2)

where D(g) ∈ Rm×m and B(g) ∈ Rm×k are matrices which are continuous for all z ∈ [0,T ]. Using the
Pontryagin maximum principle, we know that a function x∗ ∈ L2([0, 1]) exists with the triple (u∗, x∗, s∗)
solving the following system for a.e. z ∈ [0,T ]:{

u̇∗(g) = D(g)u∗(z) + B(g)s∗(z),
u∗(0) = u0,

(5.3)

{
ẋ∗(g) = −D(g)T x∗(z),
x∗(0) = Oζ(u(T )),

(5.4)

0 ∈ B(g)T x∗(g) + NS (s∗(g)), (5.5)

where NS (s) is the normal cone to S at s defined by

NS (s) =

{
∅, if s < S ,
{` ∈ H : 〈`, r − s〉 ≤ 0 ∀ s ∈ S }, if s ∈ S .

(5.6)

Letting Fs(g) = B(z)T x(g), where Fs is shown by Khoroshilova [20] to be the gradient of objective
cost function ζ. The express (5.4) can be expressed as a variational inequality problem as follows:

〈Fs∗, r − s∗〉 ≥ 0, ∀ r ∈ S . (5.7)
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Next, we discretize the continuous function and also take a natural number N with the mesh size
h = T

N . Furthermore, we identify any discretized control sN = (s0, s1, · · · , sN) with its piecewise
constant extension:

sN(g) = s j, ∀ g ∈ [g j, g j+1), j = 0, 1, · · · ,N − 1.

Again, any discretized state uN = (u0, u1, · · · , uN) is identified with its piecewise linear interpolation

uN(g) = u j +
g − g j

h
(u j+1 − u j), g ∈ [g j, g j+1), j = 0, 1, · · · ,N − 1. (5.8)

The same approach can be used to identify the co-state variable xN = (x0, x1, · · · , xN).
The system of ordinary differential equations (ODEs) (5.3) and (5.4) will be solved by the Euler

method [49]

{
uN

j+1 = uN
j + h[D(gi)uN

j + B(g j)sN
j ],

u(0) = 0,
(5.9)

{
xN

i = xN
j+1 + hD(gi)T xN

j+1,

x(N) = Oθ(u(N)).
(5.10)

Next, we solve use Algorithm 3.1 to solve the problem in the following example:

Example 5.1. (see [4])

minimize − u1(2) + (u2(2))2,

subject to u̇1(g) = u2(g),
u̇2(g) = x(g), ∀g ∈ [0, 2],
u̇1(0) = 0 u̇2(0) = 0,
s(g) ∈ [−1, 1].

The exact solution of the problem in Example 5.1 is

s∗ =

{
1, if g ∈ [0, 1.2),
−1, if g ∈ [1.2, 2].

The initial controls s0(t) = s1(t) are randomly taken in [-1,1]. For this, we use the same parameters
defined in Example 4.1 and set S u = u

2 . The stopping criterion for this section is ‖um+1 − um‖ ≤ 10−7.
The approximate optimal control and the corresponding trajectories of Algorithm 3.1 are shown in
Figure 5.
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Figure 5. Random initial control (green) and optimal control (purple) on the left and optimal
trajectories on the right for Example 5.1 generated by Algorithm 3.1.

6. Application to restoration problem

It is noticed that images are, in most cases distorted by the process of acquisition. The purpose of the
restoration technique for distorted images is to restore the original image from the noisy observation of
it. The image restoration problem can be modeled as the following undetermined system of the linear
equation:

v = Fu + w, (6.1)

where F : RN → RM(M < N) is a bounded linear operator, u ∈ RN is an original image and v ∈ RM is
the observed image with noise w. It is well-known that the solution of the model (6.1) is equivalent the
solution of the (LASSO) problem as follows [39]:

min
u∈RN
{k‖u‖1 +

1
2
‖v − Fu‖22}, (6.2)

where k > 0. It is worthy to know that according [40], one can reconstruct the LASSO problem (6.2)
as a variational inequality problem by letting Gu = FT (Fu − v). For this, G is monotone (hence G is
pseudomonotone) and Lipschitz continuous with L = ‖FT F‖.

Now, we compare the restoration efficiency of our suggested Algorithms 3.1–3.3 (shortly, OAUAN
Algs. 3.1, 3.7 and 3.8) with Algorithms 1 and 2 of Thong and Hieu [43] (shortly, TH Alg. 1 and
TH Alg. 2), and Algorithm 2 of Tian and Tong [47] (shortly, TT Alg. 2), Algorithm 3.1 of Ogwo
et al. [33] (shortly, OAM Alg. 3.1), Algorithm 3.1 of Godwin et al. [14] (shortly, GAMY Alg. 3.1),
and Algorithm 3.1 of Maluleka et al. [24], (shortly, MUA Alg. 3.1). The test images are Austine and
Peacock of sizes 289 × 350 and 245 × 245, respectively. The images went through a Gaussian blur
of size 9 × 9 and standard deviation of σ = 4. The performances of the algorithms are measured via
signal-to-noise ratio (SNR) defined by

S NR = 25 log10

(
‖u‖2

‖u − u∗‖2

)
, (6.3)

where u∗ is the restored image and u is the original image. In this experiment, we maintain the same
parameters used for all the algorithms in Example 4.1 with stopping criterion Em = ‖um+1−um‖ ≤ 10−5.
The numerical results for this experiment are shown in Figures 6–9 and Tables 3–6.
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It is well-known that the higher the SNR value of an algorithm, the better the quality of the image
it restores. From Figures 6–9 and Tables 3–6, it is evident that our Algorithms 3.1–3.3 restored the
blurred images better than Algorithms 1 and 2 of Thong and Hieu [43], and Algorithm 2 of Tian and
Tong [47], Algorithm 3.1 of Ogwo et al. [33], Algorithm 3.1 of Godwin et al. [14], and Algorithm 3.1
of Maluleka et al. [24]. Hence, our algorithms are more effective and applicable than many existing
methods.

Original Austine

(a)

Blurred Austine

(b)

OAUAN Alg 3.1

(c)

OAUAN Alg 3.7

(d)

OAUAN Alg 3.8

(e)

OAM Alg 3.1

(f)

GAMY Alg 3.1

(g)

MUA Alg 3.1

(h)

TT Alg 2

(i)

TH Alg 1

(j)

TH Alg 2

(k)

Figure 6. Austine’s image deblurring by various algorithms.

AIMS Mathematics Volume 9, Issue 5, 12870–12905.



12899

Original Peacock

(i)

Blurred Peacock

(ii)

OAUAN Agl 3.1

(iii)

OAUAN Alg 3.7

(iv)

OAUAN Alg 3.8

(v)

OAM Alg 3.1

(vi)

GAMY Alg 3.1

(vii)

MUA Alg 3.1

(viii)

TT Alg 2

(ix)

TH Alg 1

(x)

TH Alg 2

(xi)

Figure 7. Peacock’s image deblurring by various algorithms.

Table 3. Numerical comparison of various algorithms using their SNR values for Austine’s
image.

Images m OAUAN
Alg. 3.1

OAUAN
Alg. 3.7

OAUAN
Alg. 3.8

OAM
Alg 3.1

GAMY
Alg. 3.1

Austine.png SNR SNR SNR SNR SNR
(285 × 350) 50 54.18938 40.5451 33.1598 28.1770 26.6383

100 54.2745 40.7152 34.2100 28.8195 26.6932
150 55.3164 41.3918 34.8141 29.5183 27.7202
200 55.3532 41.17770 34.5151 29.9243 27.7442
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Table 4. Numerical comparison of various algorithms using their SNR values for Austine’s
image.

Images m MUA Alg. 3.1 TT Alg. 2 TH Alg. 1 TH Alg. 2

Austine.png SNR SNR SNR SRN
(285 × 350) 50 26.6726 21.18938 21.5451 13.1598

100 26.6726 25.2745 21.7152 13.2100
150 26.8450 25.3164 21.3918 13.8141
200 26.9953 25.3532 21.1777 13.5151

Iteration number (m)

0 20 40 60 80 100 120 140 160 180 200
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50

60
MUA Alg 3.‘

OMA Alg 3.1

GAMY Alg 3.1

TT Alg 2

OUANC Alg 3.1

TH Alg 2

TH Alg 1

OUANC Alg 3.8

OUANC Alg 3.7

Figure 8. Graph corresponding to Tables 3 and 4.

Table 5. Numerical comparison of various algorithms using their SNR values for Peacock’s
image.

Images m OAUAN
Alg. 3.1

OAUAN
Alg. 3.7

OAUAN
Alg. 3.8

OAM
Alg. 3.1

GAMY
Alg. 3.1

Peacock.png SNR SNR SNR SNR SNR
(285 × 350) 40 53.17939 40.6452 33.2599 28.2771 26.7384

80 54.3746 40.8153 34.3101 28.9196 26.7933
120 55.4165 41.4919 34.9142 29.6184 27.8203
150 55.4533 41.27771 34.6152 29.9244 27.8443

Table 6. Numerical comparison of various algorithms using their SNR values for Peacock’s
image.

Images m MUA Alg. 3.1 TT Alg. 2 TH Alg. 1 TH Alg. 2

Peacock.png SNR SNR SNR SNR
(285 × 350) 40 26.7727 21.28939 21.6452 13.2599

80 26.8727 25.3746 21.8153 13.3101
120 26.9451 25.4165 21.4919 13.9142
150 26.9955 25.4533 21.2778 13.6152
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Figure 9. Graph corresponding to Tables 5 and 6.

7. Conclusions

In this work, we have introduced three novel iterative algorithms for finding the common solution of
quasi-nonexpansive FPP and pseudo-monotone variational inequality problems. Our algorithms embed
double inertial steps which accelerate their convergence rates. Numerical experiments have shown that
our algorithms outperformed several existing algorithms with single or no inertial terms. Further, we
a considered a new self-adaptive step size technique that produces a non-monotonic sequence of step
sizes while also correctly incorporating a number of well-known step sizes. The step size is designed
to lessen the algorithms’ reliance on the initial step size. Numerical tests were performed, and the
results showed that our step size is more effective and that it guarantees that our methods require less
execution time. Our convergence results were obtained without the imposition of stringent conditions
on the control parameters. The class of pseudo-monotone operators, which has been studied in the
work, is more general than the class of monotone operators which has been studied in [43, 47] and
several other articles. To test the applicability and efficiencies of our methods in solving real-world
problems, we utilized the methods to solve optimal control and image restorations problems.
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