The present study implements the incompressible smoothed particle hydrodynamics (ISPH) method with an artificial neural network (ANN) to simulate the impacts of Cattaneo-Christov heat flux on the double diffusion of a nanofluid inside a square cavity. The cavity contains a rotated wavy circular cylinder and four fins fixed on its borders. The rotational motion of an inner wavy cylinder interacting with a nanofluid flow is handled by the ISPH method. An adiabatic thermal/solutal condition is applied for the embedded wavy cylinder and the plane cavity's walls. The left wall is a source of the temperature and concentration, $ {T}_{h}\&{C}_{h} $, and the right wall with the four fins is maintained at a low temperature/concentration, $ {T}_{c}\&{C}_{c} $. The pertinent parameters are the Cattaneo-Christov heat flux parameter $ \left({0\le \delta }_{c}\le 0.001\right) $, the Dufour number $ \left(0\le Du\le 2\right) $, the nanoparticle parameter $ \left(0\le \phi \le 0.1\right) $, the Soret number $ \left(0\le Sr\le 2\right) $, the Hartmann number $ \left(0\le Ha\le 80\right) $, the Rayleigh number $ \left({10}^{3}\le Ra\le {10}^{5}\right) $, Fin's length $ \left({0.05\le L}_{Fin}\le 0.2\right) $, and the radius of a wavy circular cylinder $ \left(0.05\le {R}_{Cyld}\le 0.3\right) $. The results revealed that the maximum of a velocity field is reduced by $ 48.65\% $ as the $ {L}_{Fin} $ boosts from $ 0.05 $ to $ 0.2 $, and by $ 55.42\% $ according to an increase in the $ {R}_{Cyld} $ from $ 0.05 $ to $ 0.3 $. Adding a greater concentration of nanoparticles until 10% increases the viscosity of a nanofluid, which declines the velocity field by $ 36.52\%. $ The radius of a wavy circular cylinder and the length of four fins have significant roles in changing the strength of the temperature, the concentration, and the velocity field. Based on the available results of the ISPH method for $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $, an ANN model is developed to predict these values. The ideal agreement between the prediction and target values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ indicates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values with a remarkable accuracy.
Citation: Munirah Alotaibi, Abdelraheem M. Aly. Effects of Cattaneo-Christov heat flux on double diffusion of a nanofluid-filled cavity containing a rotated wavy cylinder and four fins: ISPH simulations with artificial neural network[J]. AIMS Mathematics, 2024, 9(7): 17606-17617. doi: 10.3934/math.2024856
The present study implements the incompressible smoothed particle hydrodynamics (ISPH) method with an artificial neural network (ANN) to simulate the impacts of Cattaneo-Christov heat flux on the double diffusion of a nanofluid inside a square cavity. The cavity contains a rotated wavy circular cylinder and four fins fixed on its borders. The rotational motion of an inner wavy cylinder interacting with a nanofluid flow is handled by the ISPH method. An adiabatic thermal/solutal condition is applied for the embedded wavy cylinder and the plane cavity's walls. The left wall is a source of the temperature and concentration, $ {T}_{h}\&{C}_{h} $, and the right wall with the four fins is maintained at a low temperature/concentration, $ {T}_{c}\&{C}_{c} $. The pertinent parameters are the Cattaneo-Christov heat flux parameter $ \left({0\le \delta }_{c}\le 0.001\right) $, the Dufour number $ \left(0\le Du\le 2\right) $, the nanoparticle parameter $ \left(0\le \phi \le 0.1\right) $, the Soret number $ \left(0\le Sr\le 2\right) $, the Hartmann number $ \left(0\le Ha\le 80\right) $, the Rayleigh number $ \left({10}^{3}\le Ra\le {10}^{5}\right) $, Fin's length $ \left({0.05\le L}_{Fin}\le 0.2\right) $, and the radius of a wavy circular cylinder $ \left(0.05\le {R}_{Cyld}\le 0.3\right) $. The results revealed that the maximum of a velocity field is reduced by $ 48.65\% $ as the $ {L}_{Fin} $ boosts from $ 0.05 $ to $ 0.2 $, and by $ 55.42\% $ according to an increase in the $ {R}_{Cyld} $ from $ 0.05 $ to $ 0.3 $. Adding a greater concentration of nanoparticles until 10% increases the viscosity of a nanofluid, which declines the velocity field by $ 36.52\%. $ The radius of a wavy circular cylinder and the length of four fins have significant roles in changing the strength of the temperature, the concentration, and the velocity field. Based on the available results of the ISPH method for $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $, an ANN model is developed to predict these values. The ideal agreement between the prediction and target values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ indicates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values with a remarkable accuracy.
[1] | R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181 (1977), 375-389. |
[2] | L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (1977), 1013-1024. |
[3] | F. He, H. Zhang, C. Huang, M. Liu, A stable SPH model with large CFL numbers for multi-phase flows with large density ratios, J. Comput. Phys., 453 (2022), 110944. https://doi.org/10.1016/j.jcp.2022.110944 doi: 10.1016/j.jcp.2022.110944 |
[4] | T. Bao, J. Hu, C. Huang, Y. Yu, Smoothed particle hydrodynamics with κ-ε closure for simulating wall-bounded turbulent flows at medium and high Reynolds numbers, Phys. Fluids, 35 (2023), 8. https://doi.org/10.1063/5.0158301 doi: 10.1063/5.0158301 |
[5] | C. Huang, L. Zhao, J. P. Niu, J. J. Di, J. J. Yuan, Q. L. Zhao, Coupled particle and mesh method in an Euler frame for unsteady flows around the pitching airfoil, Eng. Anal. Bound. Elem., 138 (2022), 159-176. https://doi.org/10.1016/j.enganabound.2022.02.011 doi: 10.1016/j.enganabound.2022.02.011 |
[6] | M. Ellero, M. Serrano, P. Español, Incompressible smoothed particle hydrodynamics, J. Comput. Phys., 226 (2007), 1731-1752. https://doi.org/10.1016/j.jcp.2007.06.019 doi: 10.1016/j.jcp.2007.06.019 |
[7] | X. Y. Hu, N. A. Adams, An incompressible multi-phase SPH method, J. Comput. Phys., 227 (2007), 264-278. http://dx.doi.org/10.1016/j.jcp.2007.07.013 doi: 10.1016/j.jcp.2007.07.013 |
[8] | X. Hu, N. Adams, A constant-density approach for incompressible multi-phase SPH, J. Comput. Phys., 228 (2009), 2082-2091. https://doi.org/10.1016/j.jcp.2008.11.027 doi: 10.1016/j.jcp.2008.11.027 |
[9] | A. Khayyer, H. Gotoh, S. Shao, Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coast. Eng., 55 (2008), 236-250. https://doi.org/10.1016/j.coastaleng.2007.10.001 doi: 10.1016/j.coastaleng.2007.10.001 |
[10] | M. Kondo, S. Koshizuka, Improvement of stability in moving particle semi-implicit method, Int. J. Numer. Meth. Fl., 65 (2011), 638-654. https://doi.org/10.1002/fld.2207 doi: 10.1002/fld.2207 |
[11] | K. Szewc, J. Pozorski, A. Tanière, Modeling of natural convection with smoothed particle hydrodynamics: Non-Boussinesq formulation, Int. J. Heat Mass Tran., 54 (2011), 4807-4816. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.034 doi: 10.1016/j.ijheatmasstransfer.2011.06.034 |
[12] | M. Asai, A. M. Aly, Y. Sonoda, Y. Sakai, A stabilized incompressible SPH method by relaxing the density invariance condition, J. Appl. Math., 2012 (2012), 139583. https://doi.org/10.1155/2012/139583 doi: 10.1155/2012/139583 |
[13] | A. M. Aly, A. J. Chamkha, S. W. Lee, A. F. Al-Mudhaf, On mixed convection in an inclined lid-driven cavity with sinusoidal heated walls using the ISPH method, Comput. Therm. Sci. Int. J., 8 (2016), 337-354. https://doi.org/10.1615/ComputThermalScien.2016016527 |
[14] | A. Khayyer, N. Tsuruta, Y. Shimizu, H. Gotoh, Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering, Appl. Ocean Res., 82 (2019), 397-414. https://doi.org/10.1016/j.apor.2018.10.020 doi: 10.1016/j.apor.2018.10.020 |
[15] | Z. L. Zhang, K. Walayat, C. Huang, J. Z. Chang, M. B. Liu, A finite particle method with particle shifting technique for modeling particulate flows with thermal convection, Int. J. Heat Mass Transf., 128 (2019), 1245-1262. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.074 |
[16] | A. M. Aly, ISPH method for MHD convective flow from grooves inside a nanofluid-filled cavity under the effects of Soret and Dufour numbers, Physica A, 546 (2020), 124087. https://doi.org/10.1016/j.physa.2019.124087 doi: 10.1016/j.physa.2019.124087 |
[17] | A. Khayyer, H. Gotoh, Y. Shimizu, Y. Nishijima, A 3D Lagrangian meshfree projection-based solver for hydroelastic fluid-structure interactions, J. Fluid. Struct., 105 (2021), 103342. https://doi.org/10.1016/j.jfluidstructs.2021.103342 doi: 10.1016/j.jfluidstructs.2021.103342 |
[18] | Y. Xu, G. Yang, S. Liu, D. Hu, Improvement of surface tension discrete model in the ISPH-FVM coupling method, Int. J. Multiphase Flow, 160 (2023), 104347. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104347 doi: 10.1016/j.ijmultiphaseflow.2022.104347 |
[19] | Y. Xu, G. Yang, D. Hu, A three-dimensional ISPH-FVM coupling method for simulation of bubble rising in viscous stagnant liquid, Ocean Eng., 278 (2023), 114497. https://doi.org/10.1016/j.oceaneng.2023.114497 doi: 10.1016/j.oceaneng.2023.114497 |
[20] | Y. Xu, G. Yang, D. Hu, An enhanced mapping interpolation ISPH-FVM coupling method for simulating two-phase flows with complex interfaces, Int. J. Comput. Method., 2024. http://dx.doi.org/10.1142/S0219876224500099 |
[21] | V. M. Krishna, M. S. Kumar, Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment, Mater. Today Proc., 17 (2019), 295-302. https://doi.org/10.1016/j.matpr.2019.06.433 doi: 10.1016/j.matpr.2019.06.433 |
[22] | D. S. Saidina, M. Z. Abdullah, M. Hussin, Metal oxide nanofluids in electronic cooling: A review, J. Mater. Sci., 31 (2020), 4381-4398. https://doi.org/10.1007/s10854-020-03020-7 doi: 10.1007/s10854-020-03020-7 |
[23] | H. Ibrahim, N. Sazali, A. S. M. Shah, M. S. A. Karim, F. Aziz, W. N. W. Salleh, A review on factors affecting heat transfer efficiency of nanofluids for application in plate heat exchanger, J. Adv. Res. Fluid Mech. Therm. Sci., 60 (2019), 144-154. |
[24] | M. U. Sajid, H. M. Ali, Recent advances in application of nanofluids in heat transfer devices: A critical review, Renew. Sust. Energ. Rev., 103 (2019), 556-592. https://doi.org/10.1016/j.rser.2018.12.057 doi: 10.1016/j.rser.2018.12.057 |
[25] | S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL, United States, 1995. |
[26] | B. Wang, Y. Liu, L. Li, Nanofluid double diffusive natural convection in a porous cavity under multiple force fields, Numer. Heat Tr. A-Appl., 77 (2019), 1-18. https://doi.org/10.1080/10407782.2019.1693195 doi: 10.1080/10407782.2019.1693195 |
[27] | A. Kasaeipoor, B. Ghasemi, S. M. Aminossadati, Convection of Cu-water nanofluid in a vented T-shaped cavity in the presence of magnetic field, Int. J. Therm. Sci., 94 (2015), 50-60. https://doi.org/10.1016/j.ijthermalsci.2015.02.014 doi: 10.1016/j.ijthermalsci.2015.02.014 |
[28] | F. Selimefendigil, H. F. Öztop, Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation, J. Taiw. Inst.Chem. E., 56 (2015), 42-56. https://doi.org/10.1016/j.jtice.2015.04.018 |
[29] | S. Parvin, A. Akter, Effect of magnetic field on natural convection flow in a prism shaped cavity filled with nanofluid, Proc. Eng., 194 (2107), 421-427. https://doi.org/10.1016/j.proeng.2017.08.166 doi: 10.1016/j.proeng.2017.08.166 |
[30] | F. H. Ali, H. K. Hamzah, K. Egab, M. Arıcı, A. Shahsavar, Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field, Int. J. Mech. Sci., 186 (2020), 105887. https://doi.org/10.1016/j.ijmecsci.2020.105887 doi: 10.1016/j.ijmecsci.2020.105887 |
[31] | B. P. Geridönmez, H. F. Öztop, Effects of partial magnetic field in a vented square cavity with aiding and opposing of MWCNT-water nanofluid flows, Eng. Anal. Bound. Elem., 133 (2021), 84-94. https://doi.org/10.1016/j.enganabound.2021.08.024 |
[32] | F. Selimefendigil, H. F. Öztop, F. Izadi, Non-uniform magnetic field effects on the phase transition dynamics for PCM-installed 3D conic cavity having ventilation ports under hybrid nanofluid convection, J. Build. Eng., 49 (2022), 104074. https://doi.org/10.1016/j.jobe.2022.104074 doi: 10.1016/j.jobe.2022.104074 |
[33] | A. M. Aly, S. E. Ahmed, Z. Raizah, Impacts of variable magnetic field on a ferrofluid flow inside a cavity including a helix using ISPH method, Int. J. Numer. Meth. Heat Fluid Flow, 31 (2021), 2150-2171. https://doi.org/10.1108/HFF-08-2020-0501 doi: 10.1108/HFF-08-2020-0501 |
[34] | N. H. Saeid, Natural convection in a square cavity with discrete heating at the bottom with different fin shapes, Heat Transf. Eng., 39 (2018), 154-161. https://doi.org/10.1080/01457632.2017.1288053 doi: 10.1080/01457632.2017.1288053 |
[35] | L. El Moutaouakil, M. Boukendil, Z. Zrikem, A. Abdelbaki, Natural convection and surface radiation heat transfer in a cavity with vertically oriented fins, Mater. Today Proc., 27 (2020), 3051-3057. https://doi.org/10.1016/j.matpr.2020.03.526 doi: 10.1016/j.matpr.2020.03.526 |
[36] | S. Hussain, M. Jamal, B. P. Geridonmez, Impact of fins and inclined magnetic field in double lid-driven cavity with Cu-water nanofluid, Int. J. Therm. Sci., 161 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106707 doi: 10.1016/j.ijthermalsci.2020.106707 |
[37] | A. M. Aly, S. El-Sapa, Effects of Soret and Dufour numbers on MHD thermosolutal convection of a nanofluid in a finned cavity including rotating circular cylinder and cross shapes, Int. Commun. Heat Mass Transf., 130 (2022), 105819. https://doi.org/10.1016/j.icheatmasstransfer.2021.105819 |
[38] | A. M. Aly, E. M. Mohamed, N. Alsedais, The magnetic field on a nanofluid flow within a finned cavity containing solid particles, Case Stud. Therm. Eng., 25 (2021). https://doi.org/10.1016/j.csite.2021.100945 doi: 10.1016/j.csite.2021.100945 |
[39] | A. B. Çolak, A new study on the prediction of the effects of road gradient and coolant flow on electric vehicle battery power electronics components using machine learning approach, J. Energy Storage, 70 (2023). https://doi.org/10.1016/j.est.2023.108101 |
[40] | T. Güzel, A. B. Çolak, Performance prediction of current-voltage characteristics of Schottky diodes at low temperatures using artificial intelligence, Microelectron. Reliab., 147 (2023). https://doi.org/10.1016/j.microrel.2023.115040 |
[41] | A. B. Çolak, O. Yıldız, M. Bayrak, B. S. Tezekici, Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation, Int. J. Energ. Res., 44 (2020), 7198-7215. https://doi.org/10.1002/er.5417 doi: 10.1002/er.5417 |
[42] | M. T. Nguyen, A. M. Aly, S. W. Lee, Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method, Numer. Heat Tra. A-Appl., 72 (2017), 68–88. https://doi.org/10.1080/10407782.2017.1353385 doi: 10.1080/10407782.2017.1353385 |
[43] | M. T. Nguyen, A. M. Aly, S. W. Lee, ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor, Meccanica, 53 (2018), 2299-2318. https://doi.org/10.1007/s11012-018-0825-3 doi: 10.1007/s11012-018-0825-3 |
[44] | G. R. Kefayati, FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field, Int. J. Therm. Sci., 95 (2015), 29-46. https://doi.org/10.1016/j.ijthermalsci.2015.03.018 doi: 10.1016/j.ijthermalsci.2015.03.018 |
[45] | Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43 (2000), 3701-3707. https://doi.org/10.1016/S0017-9310(99)00369-5 doi: 10.1016/S0017-9310(99)00369-5 |
[46] | T. Mahapatra, B. C. Saha, D. Pal, Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure, Comput. Appl. Math., 37 (2018), 6132-6151. https://doi.org/10.1007/s40314-018-0676-5 doi: 10.1007/s40314-018-0676-5 |
[47] | T. M. Nguyen, A. M. Aly, S. W. Lee, Improved wall boundary conditions in the incompressible smoothed particle hydrodynamics method, Int. J. Numer. Method. Heat Fluid Flow, 28 (2018), 704-725. https://doi.org/10.1108/HFF-02-2017-0056 doi: 10.1108/HFF-02-2017-0056 |
[48] | A. M. Aly, Z. A. S. Raizah, Mixed convection in an inclined nanofluid filled-cavity saturated with a partially layered porous medium, J. Therm. Sci. Eng. Appl., 11 (2019), 41002-41011. https://doi.org/10.1115/1.4042352 doi: 10.1115/1.4042352 |
[49] | S. J. Lind, R. Xu, P. K. Stansby, B. D. Rogers, Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys., 231 (2012), 1499-1523. http://dx.doi.org/10.1016/j.jcp.2011.10.027 doi: 10.1016/j.jcp.2011.10.027 |
[50] | A. Skillen, S. Lind, P. K. Stansby, B. D. Rogers, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction, Comput. Method. Appl. Mech. Eng., 265 (2013), 163-173. https://doi.org/10.1016/j.cma.2013.05.017 doi: 10.1016/j.cma.2013.05.017 |
[51] | B. S. Kim, D. S. Lee, M. Y. Ha, H. S. Yoon, A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations, Int. J. Heat Mass Transf., 51 (2008), 1888-1906. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.06.033 |
[52] | M. Paroncini, F. Corvaro, Natural convection in a square enclosure with a hot source, Int. J. Therm. Sci., 48 (2009), 1683-1695. https://doi.org/10.1016/j.ijthermalsci.2009.02.005 doi: 10.1016/j.ijthermalsci.2009.02.005 |