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Abstract: The present study implements the incompressible smoothed particle hydrodynamics (ISPH) 

method with an artificial neural network (ANN) to simulate the impacts of Cattaneo-Christov heat flux 

on the double diffusion of a nanofluid inside a square cavity. The cavity contains a rotated wavy 

circular cylinder and four fins fixed on its borders. The rotational motion of an inner wavy cylinder 

interacting with a nanofluid flow is handled by the ISPH method. An adiabatic thermal/solutal 

condition is applied for the embedded wavy cylinder and the plane cavity’s walls. The left wall is a 

source of the temperature and concentration, 𝑇ℎ & 𝐶ℎ , and the right wall with the four fins is 

maintained at a low temperature/concentration, 𝑇𝑐 & 𝐶𝑐. The pertinent parameters are the Cattaneo-

Christov heat flux parameter (0 ≤ 𝛿𝑐 ≤ 0.001), the Dufour number (0 ≤ 𝐷𝑢 ≤ 2), the nanoparticle 

parameter (0 ≤ 𝜙 ≤ 0.1), the Soret number (0 ≤ 𝑆𝑟 ≤ 2), the Hartmann number (0 ≤ 𝐻𝑎 ≤ 80), 

the Rayleigh number (103 ≤ 𝑅𝑎 ≤ 105), Fin’s length (0.05 ≤ 𝐿𝐹𝑖𝑛 ≤ 0.2), and the radius of a wavy 

circular cylinder (0.05 ≤ 𝑅𝐶𝑦𝑙𝑑 ≤ 0.3). The results revealed that the maximum of a velocity field is 

reduced by 48.65%  as the 𝐿𝐹𝑖𝑛  boosts from 0.05  to 0.2 , and by 55.42%  according to an 

increase in the 𝑅𝐶𝑦𝑙𝑑 from 0.05 to 0.3. Adding a greater concentration of nanoparticles until 10% 

increases the viscosity of a nanofluid, which declines the velocity field by 36.52%. The radius of a 

wavy circular cylinder and the length of four fins have significant roles in changing the strength of the 

temperature, the concentration, and the velocity field. Based on the available results of the ISPH 

method for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, an ANN model is developed to predict these values. The ideal agreement 

between the prediction and target values of 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ indicates that the developed ANN model can 

forecast the 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values with a remarkable accuracy. 
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1. Introduction  

The smoothed particle hydrodynamics (SPH) method is a Lagrangian representation that is based 

on a particle interpolation to calculate smooth field variables [1,2]. Because of its Lagrangian features, 

the SPH method has fine advantages. The SPH method is used to simulate several industrial 

applications by simulating highly dynamic and violent flows such as tank sloshing, oil flow in 

gearboxes, nozzles, and jet impingement. In addition, the SPH method works well with the free surface 

flows, surface tension in free surface flows, and breaking waves without a special treatment required 

in this area. Additionally, the simulations of multiphase flows are easily handled by the SPH method. 

In conventional grid-based approaches, both the Volume-of-Fluid (VOF) method and the Level set 

method are adept at accurately capturing multiphase interfaces. An additional strength of the SPH 

method is its ability to handle complex/moving geometries. He et al. [3] introduced a new, weakly-

compressible, SPH model tailored for multi-phase flows with notable differences in the density, while 

also allowing for large Courant-Friedrichs-Lewy numbers. Their method involves adjusting the 

continuity equation to exclude contributions from particles of different phases, solely focusing on 

neighboring particles of the same phase. Subsequently, they utilize a Shepard interpolation to reset the 

pressure and density of the particles from other phases. Bao et al. [4] presented an upgraded method 

within the SPH aimed at simulating turbulent flows near walls with medium to high Reynolds numbers. 

Their approach combined the 𝜅 − 휀 turbulence model and a wall function to enhance the accuracy. 

To tackle numerical errors and challenges related to the boundary conditions, they split the second-

order partial derivative term of the composite function containing the turbulent viscosity coefficient 

into two components. Ensuring uniform particles, smooth pressure fields, and efficient computation, 

they employed particle shifting techniques, the 𝛿-SPH method, and graphics processing unit (GPU) 

parallel processing in their simulations. Huang et al. [5] devised an innovative approach that merged 

SPH with the Finite Difference Method (SPH-FDM) within an Eulerian framework to analyze the 

unsteady flow around a pitching airfoil. They introduced an improved Iterative Shifting Particle 

Technology (IPST) to accurately track the motion of pitching airfoils. The numerical results from the 

SPH-FDM approach within a Eulerian framework closely aligned with those from either the finite 

volume method (FVM) or the existing literature, affirming the effectiveness of their proposed method. 

Further applications of the SPH method and its incompressible scheme, entitled the ISPH method, can 

be found in the references [6−17]. In recent years, the ISPH-FVM coupling method refers to the 

integration of the ISPH method with the FVM. This hybrid approach combines the strengths of both 

techniques to accurately model the fluid flow phenomena, particularly in scenarios involving either 

complex geometries or multiphase flows. Xu et al. [18] introduced the ISPH-FVM coupling method 

to simulate a two-phase incompressible flow, and combined the advantages of ISPH in interface 

tracking and FVM in flow field calculations with enhancements in surface tension calculations inspired 

by VOF and Level Set methods, demonstrating an improved accuracy and stability in complex two-

phase flow scenarios. Xu et al. [19] developed a 3D ISPH-FVM coupling technique to model a bubble 

ascent in a viscous stagnant liquid, and employed an exchange of information at overlapping regions 

between the ISPH and FVM schemes, with an evaluation of surface tension effects using the 3D 

continuum surface force model (CSF). They validated the accuracy of the interface capture through 
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benchmark tests and compared simulations of a single bubble ascent against experimental and 

literature-based data; moreover, they explored the method’s capabilities in various parameter settings 

and in studying the dynamics of a two-bubble coalescence, demonstrating the reliability and versatility 

of the approach in simulating the bubble ascent phenomena. Xu et al. [20] proposed an advanced 

mapping interpolation ISPH-FVM coupling technique tailored to simulate complex two-phase flows 

characterized by intricate interfaces. The nanofluids were a suspension of nanomaterials in the base 

fluids. The nanofluids were applied to enhance the thermal features of cooling devices and equipment 

in electronic cooling systems [21,22] and heat exchangers [23,24]. In 1995, Choi and Eastman [25] 

achieved an enhanced heat transfer by adding nanoparticles inside a base fluid. The double diffusion of 

nanofluids (Al2O3-H2O) in an enclosure under the magnetic field impacts was studied by the lattice 

Boltzmann method [26]. There are several uses of coupling magnetic field impacts on nanofluids in 

thermal engineering experiments [27−32]. The variable magnetic field on ferrofluid flow in a cavity 

was studied numerically by the ISPH method [33]. Aly [16] adopted the ISPH method to examine the 

effects of Soret-Dufour numbers and magnetic fields on the double diffusion from grooves within a 

nanofluid-filled cavity. To enhance the heat transfer in cavities, the wavy or extended surface or fins 

were applied. The fins were used in several mechanical engineering applications. Saeid [34] studied 

the existence of different fin shapes on a heating cavity. The numerical attempt based on the finite 

volume method was introduced for natural convection and thermal radiation in a cavity containing N 

thin fins [35]. Hussain et al. [36] examined the effects of fins and inclined magnetic field on mixed 

convection of a nanofluid inside single/double lid-driven cavities. The recent numerical attempts based 

on the ISPH method for double diffusion of a nanofluid in a finned cavity, which were introduced by 

Aly et al. [37,38]. This work examines the impacts of Cattaneo-Christov heat flux and magnetic 

impacts on the double diffusion of a nanofluid-filled cavity. The cavity contains a rotated wavy circular 

cylinder and four fins fixed on its borders. The ISPH method is utilized to handle the interactions 

between the rotational speed of an inner wavy cylinder with a nanofluid flow. The established ANN 

model can accurately predict the values of 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, as demonstrated in this study, in which there 

is a high agreement between the prediction values generated by the ANN model and the target values. 

2. Mathematical analysis 

The initial physical model and its particle generation are represented in Figure 1. The physical 

model contains a square cavity filled with a nanofluid and containing four fins and a wavy circular 

cylinder. The embedded wavy circular cylinder rotates around its center by a rotational velocity V =
𝜔 (𝑟 − 𝑟0) with adiabatic thermal/solutal conditions. The four fins are fixed at the center of the cavity 

borders with a low temperature/concentration 𝑇𝑐 & 𝐶𝑐. The source is located on the left wall of a cavity 

with 𝑇ℎ & 𝐶ℎ, the plane walls are adiabatic, and the right wall is maintained at 𝑇𝑐 & 𝐶𝑐. It is assumed 

that the nanofluid flow is laminar, unsteady, and incompressible. Figure 2 depicts the architecture and 

fundamental configuration structure of the created multilayer perceptron (MLP) network. A model with 14 

neurons in the hidden layer of the MLP network model was identified so that the number of neurons 

were included in the hidden layer [39,40]. To build ANN models, the data-collecting process must be 

idealistically structured. Three methods were used to arrange the 1,020,888 data points that were used 

to construct the ANN model. In the created MLP network model, the 𝑁𝑢̅̅ ̅̅   and 𝑆ℎ̅̅ ̅  values were 

estimated in the output layer, while the 𝜏 and 𝑆𝑟 values were defined as input parameters in the input 

layer. A total of 70% of the data was set aside for model training, 15% for validation, and 15% for 

testing. The recommended training algorithm in the network model was the Levenberg-Marquardt (LM) 

algorithm. The LM algorithm effectively minimizes nonlinear least squares problems by iteratively 

https://www.sciencedirect.com/topics/engineering/nanofluid
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adjusting parameters based on an objective function, utilizing the gradient descent and Gauss-Newton 

methods, while dynamically controlling the step size to prevent overshooting; this achieves 

convergence to the optimal parameter values, making it widely used in various fields for an efficient 

optimization. Below are the transfer functions that are employed in the MLP network’s hidden and 

output layers: 

𝑓(𝑥) =
2

1+ 𝑒(−2𝑥) − 1         (1) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) =  𝑥.         (2) 

The mathematical equations utilized to compute the mean squared error (MSE), coefficient of 

determination (R), and margin of deviation (MoD) values, which were selected as the performance 

criteria, are outlined below [41]: 

MSE =
1

𝑁
∑ (𝑋𝑡𝑎𝑟𝑔 (𝑖) − 𝑋𝑝𝑟𝑒𝑑(𝑖))2𝑁

𝑖=1         (3) 

R = √1 −
∑ (Xtarg(i)−Xpred(i))

2N
i=1

∑ (Xtarg(i))
2N

i=1

         (4) 

MoD (%) = [
Xtarg−Xpred

Xtarg
] x 100.       (5) 

 

 
A primary physical model             Mesh generation 

Figure 1. Primary model of rotated wavy cylinder and four fins in the cavity’s center borders. 
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Figure 2. The fundamental design of the intended MLP network setup. 

The regulating equations in the Lagrangian description [38,42,43] are as follows:  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,           (6) 

𝑑𝑢

𝑑𝑡
= −

1

𝜌nf

𝜕𝑝

𝜕𝑥
+

𝜇nf

𝜌nf
(

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) −
𝜎nf 𝐵0

2

𝜌nf
(𝑢 𝑠𝑖𝑛2𝛾 − 𝑣 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾),    (7) 

𝑑𝑣

𝑑𝑡
= −

1

𝜌nf

𝜕𝑝

𝜕𝑦
+

𝜇nf

𝜌nf
(

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) +
(𝜌𝛽𝑇)nf

𝜌nf
 g(𝑇 − 𝑇𝑐) +

(𝜌𝛽𝐶)nf

𝜌nf
 g(𝐶 − 𝐶𝑐) −

𝜎nf 𝐵0
2

𝜌nf
(𝑣 𝑐𝑜𝑠2𝛾 −

𝑢 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾),          (8) 

𝑑𝑇

𝑑𝑡
= 𝛻 ∙ (𝛼nf 𝛻𝑇) +

1

(𝜌𝐶𝑃)nf
𝛻 ∙ (𝐷1 𝛻𝐶) − 𝛿1 (𝑢

𝜕𝑇

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝑢2 𝜕2𝑇

𝜕𝑥2
+ 𝑣2 𝜕2𝑇

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝑇

𝜕𝑥𝜕𝑦
+

𝑢
𝜕𝑇

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑥

𝜕𝑢

𝜕𝑦
),         (9) 

𝑑𝐶

𝑑𝑡
= 𝛻 ∙ (𝐷𝑚 𝛻𝐶) + 𝛻 ∙ (𝐷2 𝛻𝑇).       (10) 

The dimensionless quantities [38,42,43] are as follows: 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝜏 =

𝑡𝛼f

𝐿2
, 𝑈 =

𝑢𝐿

𝛼f
, 𝑉 =

𝑣𝐿

𝛼f
,     𝛼𝑓 =

𝑘f

(𝜌𝐶𝑃)f
  

 𝑃 =
𝑝𝐿2

𝜌nf 𝛼f
2 

, 𝜃 =
𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
, Φ =

𝐶−𝐶𝑐

𝐶ℎ−𝐶𝑐
.        (11) 

After substituting Eq (6) into the dimension form of governing Eqs (1)−(5), then the dimensionless 

equations [38,42,43] are as follows: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,          (12) 
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𝑑𝑈

𝑑𝜏
= −

𝜕𝑃

𝜕𝑋
+

𝜇nf

 𝜌nf𝛼f
(

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2) −
σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(U sin2𝛾 − V sin𝛾 cos𝛾),   (13) 

𝑑𝑉

𝑑𝜏
= −

𝜕𝑃

𝜕𝑌
+

𝜇nf

 𝜌nf𝛼f
(

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
) +

(𝜌𝛽)nf

𝜌nf 𝛽f
𝑅𝑎 𝑃𝑟 (𝜃 + 𝑁Φ) −

σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(V 𝑐𝑜𝑠2𝛾 − U sin𝛾 cos𝛾), 

       (14) 

𝑑𝜃

𝑑𝜏
=

1

(𝜌𝐶𝑃)nf
 𝐷𝑢 (

𝜕2Φ

𝜕𝑋2
+

𝜕2Φ

𝜕𝑌2
) +

𝛼𝑛𝑓 

𝛼𝑓 
(

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
) − 𝛿𝐶 (𝑈

𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2 𝜕2𝜃

𝜕𝑋2
+ 𝑉2 𝜕2𝜃

𝜕𝑌2
+

2𝑈𝑉
𝜕2𝜃

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑌
),        (15) 

𝑑Φ

𝑑𝜏
= 𝑆𝑟 (

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2) +
1 

𝐿𝑒 
(

𝜕2Φ

𝜕𝑋2 +
𝜕2Φ

𝜕𝑌2 ).       (16) 

The Soret number is 𝑆𝑟 =
𝐷2

𝛼𝑓
(

(𝑇ℎ−𝑇𝑐)

(𝐶ℎ−𝐶𝑐)
), 𝛿𝐶 =

𝜈𝑓𝛿1

𝐿2  is the Cattaneo Christov heat flux parameter, and 

𝐷𝑢 =
𝐷1

𝛼𝑓
(

(𝐶ℎ−𝐶𝑐)

(𝑇ℎ−𝑇𝑐)
) is Dufour number. The Hartmann number is 𝐻𝑎 = √

𝜎f 

𝜇f
 𝐵0𝐿, the buoyancy ratio is 

𝑁 =
𝛽𝐶(𝐶ℎ−𝐶𝑐)

𝛽𝑇(𝑇ℎ−𝑇𝑐)
, Rayleigh's number is 𝑅𝑎 =

g𝛽𝑇(𝑇ℎ−𝑇𝑐)𝐿3

𝜈𝑓𝛼f
, the Prandtl number is 𝑃𝑟 =

𝜈𝑓

𝛼𝑓
, and Lewis's 

number is 𝐿𝑒 =
𝛼𝑓

𝐷𝑚
. 

2.1. Dimensionless boundary conditions 

Left wall, 𝜃 = Φ = 1, 𝑈 = 0 =   𝑉, 

(17) 

Right wall, 𝜃 = Φ = 0, 𝑈 = 0 =   𝑉, 

Plane walls, 
𝜕Φ

𝜕𝑌
=

𝜕𝜃

𝜕𝑌
= 0, 𝑈 = 0 =   𝑉, 

Four fins, 𝜃 = Φ = 0, 𝑈 = 0 =   𝑉, 
Wavy circular 

cylinder 

𝜕Φ

𝜕𝑌
=

𝜕𝜃

𝜕𝑌
= 0, 𝑈 = 𝑈𝑟𝑜𝑡, 𝑉 = 𝑉𝑟𝑜𝑡, 

The mean Nusselt/Sherwood numbers are as follows: 

𝑁𝑢̅̅ ̅̅ = − ∫
𝑘nf

𝑘f
 (

𝜕𝜃

𝜕𝑋
) 𝑑𝑌

1

0
,         (18) 

𝑆ℎ̅̅ ̅ = − ∫ (
𝜕Φ

𝜕𝑋
) dY

1

0
.         (19) 

2.2. Nanofluid properties  

The nanofluid properties are as follows ([44−46]):  

𝜌nf = 𝜌f − 𝜙𝜌f + 𝜙𝜌np        (20) 

(𝜌𝐶𝑝)
nf

= (𝜌𝐶𝑝)
f

− 𝜙(𝜌𝐶𝑝)
f

+ 𝜙(𝜌𝐶𝑝)
np

      (21) 

(𝜌𝛽)nf = 𝜙(𝜌𝛽)np − 𝜙(𝜌𝛽)f + (𝜌𝛽)f      (22) 

𝜎nf = 𝜎f (1 +
3𝜙(𝜎np/𝜎f−1)

(𝜎np/𝜎f+2)−(𝜎np/𝜎f−1)𝜙
)       (23) 
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𝛼nf =
𝑘nf

(𝜌𝐶𝑝)
nf

          (24) 

𝑘nf = (𝑘np + 2𝑘f) + 𝜙 ((𝑘np + 2𝑘f)𝑘f − 2𝜙(𝑘f − 𝑘np)𝑘f) (𝑘f − 𝑘np)
−1

    (25) 

𝜇nf = (1 − 𝜙)−2.5𝜇f.         (26) 

3. ISPH method 

The solving steps in the ISPH method [42,43,47,48] are as follows:  

First:  

𝑈∗ =
𝜇nf 𝛥𝜏

 𝜌nf𝛼f
(

𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑌2
)

𝑛

−
𝛥𝜏σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(𝑈𝑛 sin2𝛾 − 𝑉𝑛 sin𝛾 cos𝛾) + 𝑈𝑛   (27) 

𝑉∗ =
𝜇nf 𝛥𝜏

 𝜌nf𝛼f
(

𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2)
𝑛

−
𝛥𝜏σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(𝑉𝑛 𝑐𝑜𝑠2𝛾 − 𝑈𝑛 sin𝛾 cos𝛾) +

 𝛥𝜏 (𝜌𝛽)nf

𝜌nf 𝛽f
𝑅𝑎 𝑃𝑟  (𝜃𝑛 +

𝑁Φ𝑛) + 𝑉𝑛.          (28) 

Second:  

𝛻2𝑃𝑛+1 =
1

 𝛥𝜏
(

𝜕𝑈∗

𝜕𝑋
+

𝜕𝑉∗

𝜕𝑌
).        (29) 

Third:  

𝑈𝑛+1 = 𝑈∗ − 𝛥𝜏 (
𝜕𝑃

𝜕𝑋
)

𝑛+1

,       (30) 

𝑉𝑛+1 = 𝑉∗ − 𝛥𝜏 (
𝜕𝑃

𝜕𝑌
)

𝑛+1

.        (31) 

Fourth:  

𝜃𝑛+1 = 𝜃𝑛 +
𝛼𝑛𝑓 𝛥𝜏

𝛼𝑓 
(

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2)
𝑛

+
𝛥𝜏

(𝜌𝐶𝑃)nf
 𝐷𝑢 (

𝜕2Φ

𝜕𝑋2 +
𝜕2Φ

𝜕𝑌2 )
𝑛

− 𝛥𝜏 𝛿𝐶 (𝑈
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑌
+

𝑈2 𝜕2𝜃

𝜕𝑋2 + 𝑉2 𝜕2𝜃

𝜕𝑌2 + 2𝑈𝑉
𝜕2𝜃

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑌
)

𝑛

,      (32) 

Φ𝑛+1 = Φ𝑛 +
𝛥𝜏 

𝐿𝑒 
(

𝜕2Φ

𝜕𝑋2
+

𝜕2Φ

𝜕𝑌2
)

𝑛

+ 𝛥𝜏 𝑆𝑟 (
𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
)

𝑛

.      (33) 

Fifth:  

𝒓𝑛+1 = ∆𝜏 𝐔𝑛+1 + 𝒓𝑛.         (34) 

The shifting technique [49,50] is as follows:  

φ𝑖′ = φ𝑖 + (∇φ)𝑖 ∙ 𝛿𝑟𝑖𝑖′ + 𝒪(𝛿𝑟𝑖𝑖′
2 ).      (35) 

The ISPH method’s flowchart encompasses initiating the computational domain and boundary 

conditions, advancing through the time steps to estimate particle densities, solving the pressure fields, 

computing the heat and mass transfer, updating the particle velocities and positions, and ultimately 

analyzing results, all to accurately simulate the fluid dynamics. The flowchart of the ISPH method is shown 

in Figure 3.  
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Figure 3. The flowchart illustrating the ISPH method. 

4. Validation tests 

This section introduces several numerical tests of the ISPH approach, beginning with an 

examination of the natural convection around a circular cylinder within a square cavity. Figure 4 

illustrates a comparison of isotherms during the natural convection (NC) at different Rayleigh numbers 

(𝑅𝑎) between the ISPH approach and the numerical findings by Kim et al. [51]. The ISPH approach 

yielded results consistent with those obtained by Kim et al. [51]. 
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𝑅𝑎 =  103 𝑅𝑎 =  104 𝑅𝑎 =  105 𝑅𝑎 =  106 

Figure 4. Comparison of the isotherms during NC between Kim et al. [51] (ᅳ), and 

the ISPH method (- - -) at 𝑅𝑎 =  103, 104, 105, and 106.  

Second, the ISPH method’s validation for the natural convection in a cavity with a heated 

rectangle source is presented. Figure 5 compares the ISPH method with numerical simulations (Fluent 

software) and experimental data from Paroncini and Corvaro [51] for isotherms at various Rayleigh 

numbers and hot source heights. The ISPH method shows good agreement with both experimental and 

numerical results across different scenarios. Additionally, Figure 6 illustrates comparisons between the 

experimental, numerical, and ISPH method results for streamlines at different Rayleigh numbers and 

hot source lengths, confirming the accuracy of the ISPH method simulations without redundancy. 

   
(a) 𝑅𝑎 = 1.02 × 105& 휁 = 0.25 

   
(b) 𝑅𝑎 = 1.24 × 105 & 휁 = 0.5 
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(c) 𝑅𝑎 = 2.11 × 105 & 휁 = 0.25 

   
(d) 𝑅𝑎 = 2.25 × 105 & 휁 = 0.5 

(i) Present ISPH method (ii) Numerical simulation 

(Fluent software) [51] 

(iii) Experimental data [51] 

Figure 5. The comparison of isothermal lines involves assessing (i) the present ISPH 

method, (ii) numerical simulation (Fluent software), and (iii) experimental data 

according to Paroncini and Corvaro. [51]. 
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(i) Experimental data [52] (ii) Numerical simulation [52] (iii) Current ISPH method 

   

(a) 𝑅𝑎 = 1.78 × 105& 휁 = 0.5 

   

(b) 𝑅𝑎 = 1.69 × 105& 휁 = 0.25 

Figure 6. Streamline comparisons involve evaluating (i) the current ISPH method, 

(ii) numerical simulations, and (iii) experimental data from the cited source [52]. 

5. Results and discussion 

The performed numerical simulations are discussed in this section. The range of pertinent 

parameters is the Cattaneo Christov heat flux parameter (0 ≤ 𝛿𝑐 ≤ 0.001) , the Dufour number 

(0 ≤ 𝐷𝑢 ≤ 2) , the nanoparticle parameter (0 ≤ 𝜙 ≤ 0.1) , the Soret number (0 ≤ 𝑆𝑟 ≤ 2) , the 

Hartmann number (0 ≤ 𝐻𝑎 ≤ 80) , the Rayleigh number (103 ≤ 𝑅𝑎 ≤ 105) , Fin’s length (0.05 ≤
𝐿𝐹𝑖𝑛 ≤ 0.2), and the radius of a wavy circular cylinder (0.05 ≤ 𝑅𝐶𝑦𝑙𝑑 ≤ 0.3). Figure 7 shows the 

effects of 𝛿𝑐  on the temperature 𝜃 , concentration Φ,  and velocity field V . Increasing 𝛿𝑐  slightly 

enhances the temperature, concentration, and velocity field within an annulus. Figure 8 shows the 

effects of 𝐷𝑢 on 𝜃, Φ, and V. Physically, the Dufour number indicates the influence of concentration 

gradients on thermal energy flux. An increase in 𝐷𝑢 has a minor influence on 𝜃 and Φ. Increasing 𝐷𝑢 

growths the velocity field. These results are relevant to the presence of a diabatic wavy cylinder inside 

a square cavity, which shrinks the contributions of 𝐷𝑢. Figure 9 represents the effects of 𝐻𝑎 on 𝜃, Φ, 
and V. The Hartmann number (𝐻𝑎) is a proportion of an electromagnetic force to a viscous force. 

Physically, the Lorentz forces represent the magnetic field that shrinks the flow velocity. Consequently, 

an increment in 𝐻𝑎 shrinks the distributions of θ and Φ. The maximum of the velocity field declines 

by 87.09% as 𝐻𝑎 powers from 0 to 80. The study of the inner geometric parameters including the 

length of inner fins 𝐿𝐹𝑖𝑛  and the radius of a wavy circular cylinder 𝑅𝐶𝑦𝑙𝑑  on the features of 
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temperature, concentration, and velocity field is represented in Figures 10 and 11. In Figure 10, an 

expanded of 𝐿𝐹𝑖𝑛 supports the cooling area, which reduces the strength of 𝜃 and Φ within a cavity. As 

the inner fins represent blockages for the nanofluid flow in a square cavity, the maximum of the 

velocity field reduces by 48.65% as the 𝐿𝐹𝑖𝑛 boosts from 0.05 to 0.2. In Figure 11, regardless of the 

adiabatic condition of an inner wavy cylinder, an increment in 𝑅𝐶𝑦𝑙𝑑  reduces the distributions of 

temperature and concentration across the cavity. Furthermore, due to the low rotating speed of the 

inner wavy cylinder, an expanded wavy cylinder reduces the velocity field. It is seen that the maximum 

of the velocity field shrinks by 55.42% according to an increase in 𝑅𝐶𝑦𝑙𝑑 from 0.05 to 0.3. Figure 12 

represents the effects of 𝜙 on 𝜃, Φ, and V. Here, due to the presence of an inner wavy cylinder, the 

contribution of 𝜙 is minor in enhancing the cooling area and reducing the strength of the concentration 

inside a cavity, whilst the physical contribution of 𝜙 in increasing the viscosity of a nanofluid appears 

well by majoring the velocity field. The velocity’s maximum reduces by 36.52%  according to an 

increasing concentration of nanoparticles from 0 to 10%. Figure 13 establishes the effects of 𝑅𝑎 on 𝜃, 

Φ, and V. As 𝑅𝑎 represents the ratio of buoyancy to thermal diffusivity and it is considering a main 

factor in controlling the natural convection. Accordingly, there are beneficial enhancements in the 

strength of the temperature and concentration in a cavity according to an increase in 𝑅𝑎. Furthermore, 

the Rayleigh number effectively works to accelerate the velocity field in a cavity. Figure 14 indicates 

the effects of 𝑆𝑟 on 𝜃, Φ, and V. Physically, the Soret influence expresses diffusive movement that is 

created from a temperature gradient. Increasing 𝑆𝑟  enhances the strength of the temperature; this 

increment strongly enhances the strength of the concentration. Increasing 𝑆𝑟 from 0 to 2 supports the 

velocity’s maximum by 134.3%. Figure 15 indicates the average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under the variations of 

𝑆𝑟 , 𝑅𝐶𝑦𝑙𝑑 , 𝐻𝑎 , and 𝛿𝐶 . The average 𝑁𝑢̅̅ ̅̅   is enhanced according to an increment in 𝑆𝑟 , whilst it 

decreases alongside an increase in 𝑅𝐶𝑦𝑙𝑑 and 𝐻𝑎. The average 𝑆ℎ̅̅ ̅ decreases alongside an increase of 

𝑆𝑟, 𝑅𝐶𝑦𝑙𝑑, and 𝐻𝑎. It is found that the variations of 𝛿𝐶 slightly changes the values of 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. 

Figure 16 displays the performance chart that was made to examine the produced ANN model's 

training phase. The graph illustrates how the MSE values, which were large at the start of the training 

phase, got smaller as each epoch progressed. By achieving the optimal validation value for each of the 

three data sets, the MLP model's training phase was finished. The error histogram derived from the 

training phase’s data is displayed in Figure 17. Upon scrutinizing the error histogram, one observes 

that the error values are predominantly centered around the zero-error line. Additionally, relatively low 

numerical values for the errors were achieved. In Figure 18, the regression curve for the MLP model is 

displayed, indicating that R=1 is consistently employed for training, validation, and testing. According to 

the results of the performance, regression, and error histograms, the built ANN model’s training phase was 

successfully finished. Following the training phase’s validation, the ANN model’s prediction performance 

was examined. First, the goal values and the 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values derived by the ANN model were compared 

in this context. The goal values for every data point are displayed in Figure 19, along with the 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ 

values that the ANN model produced. Upon a closer inspection of the graphs, it becomes evident that 

the 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values derived by the ANN model perfectly align with the desired values.  
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𝛿𝑐 = 0 𝛿𝑐 = 0.0001 𝛿𝑐 = 0.001 

𝜃 

   

Φ 

   

𝐕 

   

Figure 7. The effects of 𝛿𝑐  on 𝜃 , Φ  and V  at 𝑁 = 2, 𝛾 = 45°,  𝐷𝑢 = 0.6 , 

𝑆𝑟 = 1.2, 𝜙 = 0.05, 𝐻𝑎 = 10, 𝐿𝐹𝑖𝑛 = 0.1, 𝑅𝐶𝑦𝑙𝑑 = 0.25 and 𝑅𝑎 = 104. 
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 𝐷𝑢 = 0 𝐷𝑢 = 1.2 𝐷𝑢 = 2 

𝜃 

   

Φ 

   

𝐕 

   

Figure 8. The effects of 𝐷𝑢 on 𝜃, Φ and 𝐕 at 𝑁 = 2, 𝛾 = 45°, 𝛿𝑐 = 0.0001, 

𝑆𝑟 = 1.2, 𝜙 = 0.05, 𝐻𝑎 = 10, 𝐿𝐹𝑖𝑛 = 0.1, 𝑅𝐶𝑦𝑙𝑑 = 0.25 and 𝑅𝑎 = 104. 
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 𝐻𝑎 = 0 𝐻𝑎 = 40 𝐻𝑎 = 80 

𝜃 

   

Φ 

   

𝐕 

   

Figure 9. The effects of 𝐻𝑎 on 𝜃, Φ and 𝐕 at 𝑁 = 2, 𝛾 = 45°, 𝛿𝑐 = 0.0001, 

𝑆𝑟 = 1.2, 𝜙 = 0.05, 𝐷𝑢 = 0.6, 𝐿𝐹𝑖𝑛 = 0.1, 𝑅𝐶𝑦𝑙𝑑 = 0.25 and 𝑅𝑎 = 104. 
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 𝐿𝐹𝑖𝑛 = 0.05 𝐿𝐹𝑖𝑛 = 0.15 𝐿𝐹𝑖𝑛 = 0.2 

𝜃 

   

Φ 

   

𝐕 

   

Figure 10. The effects of 𝐿𝐹𝑖𝑛  on 𝜃 , Φ  and 𝐕  at 𝑁 = 2, 𝛾 = 45°,  𝛿𝑐 =
0.0001 , 𝑆𝑟 = 1.2 , 𝜙 = 0.05 , 𝐷𝑢 = 0.6 , 𝐻𝑎 = 10, 𝑅𝐶𝑦𝑙𝑑 = 0.25  and 𝑅𝑎 =

104. 
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 𝑅𝐶𝑦𝑙𝑑 = 0.05 𝑅𝐶𝑦𝑙𝑑 = 0.15 𝑅𝐶𝑦𝑙𝑑 = 0.3 

𝜃 

   

Φ 

   

𝐕 

   

Figure 11. The effects of 𝑅𝐶𝑦𝑙𝑑  on 𝜃 , Φ  and 𝐕  at 𝑁 = 2, 𝛾 = 45°,  𝛿𝑐 =

0.0001, 𝑆𝑟 = 1.2, 𝐻𝑎 = 10, 𝐷𝑢 = 0.6, 𝐿𝐹𝑖𝑛 = 0.1, 𝜙 = 0.05, and 𝑅𝑎 = 104. 
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 𝜙 = 0 𝜙 = 0.06 𝜙 = 0.1 

𝜃 

   

Φ 

   

𝐕 

   

Figure 12. The effects of 𝜙 on 𝜃, Φ and 𝐕 at 𝑁 = 2, 𝛾 = 45°, 𝛿𝑐 = 0.0001, 

𝑆𝑟 = 1.2, 𝐻𝑎 = 10, 𝐷𝑢 = 0.6, 𝐿𝐹𝑖𝑛 = 0.1, 𝑅𝐶𝑦𝑙𝑑 = 0.25 and 𝑅𝑎 = 104. 
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 𝑅𝑎 = 103 𝑅𝑎 = 104 𝑅𝑎 = 105 

𝜃 

   

Φ 

   

𝐕 

   

Figure 13. The effects of 𝑅𝑎  on 𝜃 , Φ , and 𝐕  at 𝑁 = 2, 𝛾 = 45°,  𝛿𝑐 = 0.0001 , 

𝑆𝑟 = 1.2, 𝐻𝑎 = 10, 𝐷𝑢 = 0.6, 𝐿𝐹𝑖𝑛 = 0.1, 𝜙 = 0.05, and 𝑅𝐶𝑦𝑙𝑑 = 0.25. 
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 𝑆𝑟 = 0 𝑆𝑟 = 1.2 𝑆𝑟 = 2 

𝜃 

   

Φ 

   

𝐕 

   

Figure 14. The effects of 𝑆𝑟 on 𝜃, Φ, and 𝐕 at 𝑁 = 2, 𝛾 = 45°, 𝛿𝑐 = 0.0001, 

𝐻𝑎 = 10, 𝐷𝑢 = 0.6, 𝐿𝐹𝑖𝑛 = 0.1, 𝜙 = 0.05, 𝑅𝑎 = 104, and 𝑅𝐶𝑦𝑙𝑑 = 0.25. 
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 𝑁𝑢̅̅ ̅̅  𝑆ℎ̅̅ ̅ 

𝑆𝑟 

  

𝑅𝐶𝑦𝑙𝑑 

  

𝐻𝑎 

  

𝛿𝐶 

  

Figure 15. Average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under the variations of 𝑆𝑟, 𝑅𝐶𝑦𝑙𝑑, 𝐻𝑎, and 𝛿𝐶. 
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Figure 16. The performance of MLP model during training processes. 

 

Figure 17. The error histogram for the MLP model. 
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Figure 18. The regression outline. 
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Figure 19. The ANN model and target values yielded the values of 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ for every data point. 

6. Conclusions 

The current work numerically examined the effects of a Cattaneo-Christov heat flux on the 

thermosolutal convection of a nanofluid-filled square cavity. The square cavity had four fins located 

on the cavity’s boarders and a wavy circular cylinder, which was located in the cavity’s center, and 

rotated in a circular form. This study checked the impacts of the Cattaneo Christov heat flux parameter, 

the Dufour number, a nanoparticle parameter, the Soret number, the Hartmann number, the Rayleigh 

number, Fin’s length, and the radius of a wavy circular cylinder on the temperature, concentration, and 

velocity field. The results are highlighted within the following points: 

• The parameters of the embedded blockages, including the fins length and radius of a wavy 

circular cylinder, worked well to improve the cooling area and reduce the strength of 

concentration as well as the velocity field.  

• Adding an extra concentration of nanoparticles up to 10% enhanced the cooling area and 

reduced the maximum velocity field by 36.52%. 

• The Rayleigh number beneficially contributed to power the double diffusion within an annulus 

and was effective in accelerating the nanofluid velocity. 

• The Soret number effectively contributed to change the distributions of the temperature, the 

concentration, and the velocity field within an annulus as compared to the Dufour number.  

• The excellent accord between the prediction values produced by the ANN model and the goal 

values indicated that the developed ANN model could forecast the 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values with a 

remarkable precision. 
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