Research article

Time-inhomogeneous Hawkes processes and its financial applications

  • Received: 21 March 2024 Revised: 19 April 2024 Accepted: 22 April 2024 Published: 22 May 2024
  • MSC : 60G42, 60G55, 60H10

  • We consider time-inhomogeneous Hawkes processes with an exponential kernel, and we analyze some properties of the model. Time-inhomogeneity for the Hawkes process is indispensable for short rate models or for other calibration purposes, while financial applications for the time-homogeneous case already well known. Distributional properties for such a model generate computational tractability for a financial application. In this paper, moments and the Laplace transform of time-inhomogeneous Hawkes processes are obtained from the distributional properties of the underlying processes. As an applications to finance, we investigate the pricing formula for zero-coupon bonds when short-term interest rates are governed by the time-inhomogeneous Hawkes process. Numerical illustrations are also provided. As an illustrative example, we apply the derived moments and Laplace transform of time-inhomogeneous Hawkes processes to the pricing of zero-coupon bonds within a financial context. By considering the short-term interest rate as driven by inhomogeneous Hawkes processes, we develop explicit formulae for valuing zero-coupon bonds. This application is particularly relevant for modeling interest rate dynamics in real-world scenarios, allowing for a more nuanced understanding of pricing dynamics. Through numerical illustrations, we demonstrate the computational tractability of our approach, showcasing its practical utility for financial practitioners and providing insights into the intricate interplay between time-inhomogeneous Hawkes processes and bond pricing in dynamic markets.

    Citation: Suhyun Lee, Mikyoung Ha, Young-Ju Lee, Youngsoo Seol. Time-inhomogeneous Hawkes processes and its financial applications[J]. AIMS Mathematics, 2024, 9(7): 17657-17675. doi: 10.3934/math.2024858

    Related Papers:

  • We consider time-inhomogeneous Hawkes processes with an exponential kernel, and we analyze some properties of the model. Time-inhomogeneity for the Hawkes process is indispensable for short rate models or for other calibration purposes, while financial applications for the time-homogeneous case already well known. Distributional properties for such a model generate computational tractability for a financial application. In this paper, moments and the Laplace transform of time-inhomogeneous Hawkes processes are obtained from the distributional properties of the underlying processes. As an applications to finance, we investigate the pricing formula for zero-coupon bonds when short-term interest rates are governed by the time-inhomogeneous Hawkes process. Numerical illustrations are also provided. As an illustrative example, we apply the derived moments and Laplace transform of time-inhomogeneous Hawkes processes to the pricing of zero-coupon bonds within a financial context. By considering the short-term interest rate as driven by inhomogeneous Hawkes processes, we develop explicit formulae for valuing zero-coupon bonds. This application is particularly relevant for modeling interest rate dynamics in real-world scenarios, allowing for a more nuanced understanding of pricing dynamics. Through numerical illustrations, we demonstrate the computational tractability of our approach, showcasing its practical utility for financial practitioners and providing insights into the intricate interplay between time-inhomogeneous Hawkes processes and bond pricing in dynamic markets.



    加载中


    [1] E. Bacry, S. Delattre, M. Hoffmann, J. F. Muzy, Scaling limits for Hawkes processes and application to financial statistics, Stochastic Process. Appl., 123 (2012), 2475–2499. https://doi.org/10.1016/j.spa.2013.04.007 doi: 10.1016/j.spa.2013.04.007
    [2] P. Brémaud, L. Massoulié, Stability of nonlinear Hawkes processes, Ann. Probab., 24 (1996), 1563–1588.
    [3] A. Dassios, H. Zhao, A dynamic contagion process, Adv. Appl. Probab., 43 (2011), 814–846. https://doi.org/10.1239/aap/1316792671 doi: 10.1239/aap/1316792671
    [4] D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984–1053. https://doi.org/10.1214/aoap/1060202833 doi: 10.1214/aoap/1060202833
    [5] E. Errais, K. Giesecke, L. Goldberg, Affine point processes and portfolio credit risk, SIAM J. Financ. Math., 1 (2010), 642–665. https://doi.org/10.1137/090771272 doi: 10.1137/090771272
    [6] R. Fierro, V. Leiva, J. Möller, The Hawkes process with different exciting functions and its asymptotic behavior, J. Appl. Probab., 52 (2015), 37–54. https://doi.org/10.1239/jap/1429282605 doi: 10.1239/jap/1429282605
    [7] G. A. Delsing, Ruin Theory for Portfolio Risk Modeling in Banking and Insurance, Amsterdam: Korteweg-de Vries Institute for Mathematics, 2022.
    [8] F. Gao, L. Zhu, Some asymptotic results for nonlinear Hawkes processes, Stochastic Process. Appl., 20 (2018), 4051–4077. https://doi.org/10.1016/j.spa.2018.01.007 doi: 10.1016/j.spa.2018.01.007
    [9] X. Gao, L. Zhu, Limit theorems for Markovian Hawkes processes with a large initial intensity, Stochastic Process. Appl., 128 (2018), 3807–3839. https://doi.org/10.1016/j.spa.2017.12.001 doi: 10.1016/j.spa.2017.12.001
    [10] X. Gao, L. Zhu, Large deviations and applications for Markovian Hawkes processes with a large initial intensity, Bernoulli, 24 (2018), 2875–2905. https://doi.org/10.3150/17-BEJ948 doi: 10.3150/17-BEJ948
    [11] X. Gao, L. Zhu, Functional central limit theorem for stationary Hawkes processes and its application to infinite-server queues, Queueing Syst., 90 (2018), 161–206. https://doi.org/10.1007/s11134-018-9570-5 doi: 10.1007/s11134-018-9570-5
    [12] A. G. Hawkes, Spectra of some self-exciting and mutually exciting point process, Biometrika, 58 (1971), 83–90. https://doi.org/10.1093/biomet/58.1.83 doi: 10.1093/biomet/58.1.83
    [13] A. G. Hawkes, D. Oakes, A cluster process representation of self-exciting process, J. Appl. Probab., 11 (1974), 493–503. https://doi.org/10.2307/3212693 doi: 10.2307/3212693
    [14] T. Jaisson, M. Rosenbaum, Limit theorems for nearly unstable Hawkes processes, Ann. Appl. Probab., 25 (2015), 600–631. https://doi.org/10.1214/14-AAP1005 doi: 10.1214/14-AAP1005
    [15] T. Jaisson, M. Rosenbaum, Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes, Ann. Appl. Probab., 26 (2016), 2860–2882. https://doi.org/10.1214/15-AAP1164 doi: 10.1214/15-AAP1164
    [16] D. Karabash, L. Zhu, Limit theorems for marked Hawkes processes with application to a risk model, Stoch. Model., 31 (2015), 433–451. https://doi.org/10.1080/15326349.2015.1024868 doi: 10.1080/15326349.2015.1024868
    [17] T. Kim, D. S. Kim, Degenerate zero-truncated Poisson random variables, Russ. J. Math. Phys., 28 (2021), 66–72. https://doi.org/10.1134/S1061920821010076 doi: 10.1134/S1061920821010076
    [18] T. Kim, D. S. Kim, H. S. Lee, S. H. Park, Dimorphic properties of Bernoulli random variable, Fliomat, 36 (2022), 1711–1717. https://doi.org/10.2298/FIL2205711K doi: 10.2298/FIL2205711K
    [19] T. Kim, D. S. Kim, H. S. Lee, Poisson degenerate central moments related to degenerate Dowling and degenerate $r$-Dowling polynomials, Appl. Math. Sci. Eng., 30 (2022), 583–597. https://doi.org/10.1080/27690911.2022.2118736 doi: 10.1080/27690911.2022.2118736
    [20] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys., 30 (2023), 528–542. https://doi.org/10.1134/S106192082304009X doi: 10.1134/S106192082304009X
    [21] R. Kobayashi, R. Lambiotte, Tideh: Time-dependent Hawkes process for predicting retweet dynamics, In: Proceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016), 2016. https://doi.org/10.1609/icwsm.v10i1.14717
    [22] B. Mehrdad, L. Zhu, On the Hawkes process with different exciting functions, preprint paper, 2015. https://doi.org/10.48550/arXiv.1403.0994
    [23] T. Omi, Y. Hirata, K. Aihara, Hawkes process model with a time-dependent background rate and its application to high-frequency financial data, Phys. Rev. E, 96 (2017), 012303. https://doi.org/10.1103/PhysRevE.96.012303 doi: 10.1103/PhysRevE.96.012303
    [24] Y. Seol, Limit theorems of discrete Hawkes processes, Stat. Probab. Lett., 99 (2015), 223–229. https://doi.org/10.1016/j.spl.2015.01.023 doi: 10.1016/j.spl.2015.01.023
    [25] Y. Seol, Limit theorem for inverse process $T_{n}$ of linear Hawkes process, Acta Math. Sin. (Engl. Ser.), 33 (2017), 51–60.
    [26] Y. Seol, Moderate deviations for Marked Hawkes processes, Acta Math. Sin. (Engl. Ser.), 33 (2017), 1297–1304.
    [27] Y. Seol, Limit theorems for the compensator of Hawkes Processes, Stat. Probab. Lett., 127 (2017), 165–172. https://doi.org/10.1016/j.spl.2017.04.003 doi: 10.1016/j.spl.2017.04.003
    [28] Y. Seol, Limit theorems for an inverse Markovian Hawkes Processes, Stat. Probab. Lett., 155 (2019), 108580. https://doi.org/10.1016/j.spl.2019.108580 doi: 10.1016/j.spl.2019.108580
    [29] Y. Seol, Asymptotics for an extended inverse Markovian Hawkes process, J. Korean Math. Soc., 58 (2021), 819–833.
    [30] H. Wang, Limit theorems for a discrete-time marked Hawkes process, Stat. Probab. Lett., 184 (2022), 109368. https://doi.org/10.1016/j.spl.2022.109368 doi: 10.1016/j.spl.2022.109368
    [31] H. Wang, Large and moderate deviations for a discrete-time marked Hawkes process, Commun. Stat. Theory Meth., 52 (2023), 6037–6062. https://doi.org/10.1080/03610926.2021.2024236 doi: 10.1080/03610926.2021.2024236
    [32] Y. Wang, P. He, Precise Deviations for a discrete Hawkes process, preprint paper, 2024.
    [33] S. Wheatley, V. Filimonov, D. Sorrette, The Hawkes process with renewal immigration & its estimation with an EM algorithm, Comput. Stat. Data Anal., 94 (2016), 120–135. https://doi.org/10.1016/j.csda.2015.08.007 doi: 10.1016/j.csda.2015.08.007
    [34] L. Zhu, Large deviations for Markovian nonlinear Hawkes processes, Ann. Appl. Probab., 25 (2015), 548–581. https://doi.org/10.1214/14-AAP1003 doi: 10.1214/14-AAP1003
    [35] L. Zhu, Process-level large deviations for nonlinear Hawkes point processes, Ann. Inst. H. Poincaré Probab. Stat., 50 (2014), 845–871. https://doi.org/10.1214/12-AIHP532 doi: 10.1214/12-AIHP532
    [36] L. Zhu, Central limit theorem for nonlinear Hawkes processes, J. Appl. Probab., 50 (2013), 760–771. https://doi.org/10.1239/jap/1378401234 doi: 10.1239/jap/1378401234
    [37] L. Zhu, Moderate deviations for Hawkes processes, Stat. Probab. Lett. 83 (2013), 885–890. https://doi.org/10.1016/j.spl.2012.12.011 doi: 10.1016/j.spl.2012.12.011
    [38] L. Zhu, Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims, Insur. Math. Econom. 53 (2013), 544–550. https://doi.org/10.1016/j.insmatheco.2013.08.008 doi: 10.1016/j.insmatheco.2013.08.008
    [39] L. Zhu, Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps, J. Appl. Probab., 51 (2014), 699–712. https://doi.org/10.1239/jap/1409932668 doi: 10.1239/jap/1409932668
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(635) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog