Research article

Stochastic travelling wave solution of the $ N $-species cooperative systems with multiplicative noise

  • Received: 09 March 2023 Revised: 28 April 2023 Accepted: 21 May 2023 Published: 12 June 2023
  • The current paper is devoted to the stochastic $ N $-species cooperative system with a moderately strong noise. By the theory of monotone random systems and the technique of suitable marker of wavefront, the existence of the travelling wave solution is established. By applying the Feynman-Kac formula and sup-sub solution technique, the upper and lower bounded of the asymptotic wave speed are also obtained. Finally, we give an example for stochastic 3-species cooperative systems.

    Citation: Hao Wen, Yantao Luo, Jianhua Huang, Yuhong Li. Stochastic travelling wave solution of the $ N $-species cooperative systems with multiplicative noise[J]. Electronic Research Archive, 2023, 31(8): 4406-4426. doi: 10.3934/era.2023225

    Related Papers:

  • The current paper is devoted to the stochastic $ N $-species cooperative system with a moderately strong noise. By the theory of monotone random systems and the technique of suitable marker of wavefront, the existence of the travelling wave solution is established. By applying the Feynman-Kac formula and sup-sub solution technique, the upper and lower bounded of the asymptotic wave speed are also obtained. Finally, we give an example for stochastic 3-species cooperative systems.



    加载中


    [1] R. Tribe, A travelling wave solution to the kolmogorov equation with noise, Stoch. Stoch. Rep., 56 (1996), 317–340. https://doi.org/10.1080/17442509608834047 doi: 10.1080/17442509608834047
    [2] C. Müeller, R. B. Sowers, Random travelling waves for the KPP equation with noise, J. Funct. Anal., 128 (1995), 439–498. https://doi.org/10.1006/jfan.1995.1038 doi: 10.1006/jfan.1995.1038
    [3] C. Müeller, L. Mytnik, J. Quastel, Effect of noise on front propagation in reaction-diffusion equations of KPP type, Invent. Math., 184 (2011), 405–453. https://doi.org/10.1007/s00222-010-0292-5 doi: 10.1007/s00222-010-0292-5
    [4] C. Müeller, L. Mytnik, L. Ryzhik, The speed of a random front for stochastic reaction-diffusion equations with strong noise, Commun. Math. Phys., 384 (2021), 699–732. https://doi.org/10.1007/s00220-021-04084-0 doi: 10.1007/s00220-021-04084-0
    [5] K. Elworthy, H. Zhao, The propagation of travelling waves for stochastic generalized KPP equations, Stoch. Process. Their Appl., 20 (1994), 131–166. https://doi.org/10.1016/0895-7177(94)90162-7 doi: 10.1016/0895-7177(94)90162-7
    [6] B. Øksendal, G. Våge, H. Zhao, Asymptotic properties of the solutions to stochastic KPP equations, Proc. R. Soc. Edinburgh Sect. A Math., 13 (2000), 1363–1381. https://doi.org/10.1017/S030821050000072X doi: 10.1017/S030821050000072X
    [7] B. Øksendal, G. Våge, H. Zhao, Two properties of stochastic KPP equations: Ergodicity and pathwise property, Nonlinearity, 14 (2001), 639–662. https://doi.org/10.1088/0951-7715/14/3/311 doi: 10.1088/0951-7715/14/3/311
    [8] W. Shen, Travelling waves in diffusive random media, J. Dyn. Differ. Equations, 16 (2004), 1011–1060. https://doi.org/10.1007/s10884-004-7832-x doi: 10.1007/s10884-004-7832-x
    [9] W. Shen, Z. Shen, Transition fronts in time heterogeneous and random media of ignition type, J. Differ. Equations, 261 (2017), 454–485. https://doi.org/10.1016/j.jde.2016.09.030 doi: 10.1016/j.jde.2016.09.030
    [10] W. Shen, Z. Shen, Stability, uniqueness and recurrence of generalized travelling waves in time heterogeneous media of ignition type, J. Differ. Equations, 369 (2017), 2573–2613. https://doi.org/10.1090/tran/6726 doi: 10.1090/tran/6726
    [11] Z. Huang, Z. Liu, Stochastic traveling wave solution to stochastic generalized KPP equation, Nonlinear Differ. Equations Appl., 22 (2015), 143–173. https://doi.org/10.1007/s00030-014-0279-9 doi: 10.1007/s00030-014-0279-9
    [12] Z. Huang, Z. Liu, Random travelling wave and bifurcations of asymptotic behaviors in the stochastic KPP equation driven by dual noises, J. Differ. Equations, 2 (2016), 1317–1356. https://doi.org/10.1016/j.jde.2016.04.003 doi: 10.1016/j.jde.2016.04.003
    [13] Z. Huang, Z. Liu, Z. Wang, Stochastic travelling wave solution to a stochastic KPP equation, J. Dyn. Differ. Equations, 28 (2016), 389–417. https://doi.org/10.1007/s10884-015-9485-3 doi: 10.1007/s10884-015-9485-3
    [14] Z. Wang, Z. Huang, Z. Liu, Stochastic travelling waves of a stochastic Fisher-KPP equation and bifurcations for asymptotic behaviors, Stoch. Dyn., 19 (2019), 1950028. https://doi.org/10.1142/S021949371950028X doi: 10.1142/S021949371950028X
    [15] Z. Wang, T. Zhou, Asymptotic behaviors and stochastic travelling waves in stochastic Fisher-KPP equations, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5023–5045. https://doi.org/10.3934/dcdsb.2020323 doi: 10.3934/dcdsb.2020323
    [16] H. Wen, J. Huang, Y. Li, Propagation of stochastic travelling waves of cooperative systems with noise, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 5779–5803. https://doi.org/10.3934/dcdsb.2021295 doi: 10.3934/dcdsb.2021295
    [17] I. Chueshov, Monotone Random Systems Theory and Applications, Springer, Berlin, 2002. https://doi.org/10.1007/b83277
    [18] H. Wen, J. Huang, L. Zhang, Travelling wave of stochastic Lotka-Volterra competitive system, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 1750–1770. https://doi.org/10.3934/dcdsb.2022145 doi: 10.3934/dcdsb.2022145
    [19] J. Cui, L. Chen, Stable positive periodic solution of time dependent Lotka-Volterra periodic mutualistic system, Acta. Math. Sci., 14 (1994), 19–23. https://doi.org/10.1016/S0252-9602(18)30086-9 doi: 10.1016/S0252-9602(18)30086-9
    [20] C. Ji, D. Jiang, Persistence and non-persistence of a mutualism system with stochastic pertubation, Discrete Contin. Dyn. Syst., 32 (2012), 867–889. https://doi.org/10.3934/dcds.2012.32.867 doi: 10.3934/dcds.2012.32.867
    [21] D. Jiang, C. Ji, X. Li, D. O'Regan, Analysis of autonomous Lotka-Volterra competition systems with random perturbation, J. Math. Anal. Appl., 390 (2012), 582–595. https://doi.org/10.1016/j.jmaa.2011.12.049 doi: 10.1016/j.jmaa.2011.12.049
    [22] T. Shiga, Two contrasting properties of solutions for one-dimensional stochastic partial differential equations, Can. J. Math., 46 (1994), 415–437. https://doi.org/10.4153/CJM-1994-022-8 doi: 10.4153/CJM-1994-022-8
    [23] D. A. Dawson, I. Iscoe, E. A. Perkins, Super-Brownian motion: Path properties and hitting probabilities, Probab. Theor. Relat. Fields, 83 (1989), 123–206. https://doi.org/10.1007/BF00333147 doi: 10.1007/BF00333147
    [24] P. Kotelenez, Comparison methods for a class of function valued stochastic partial differential equations, Probab. Theor. Relat. Fields, 93 (1992), 1–19. https://doi.org/10.1007/BF01195385 doi: 10.1007/BF01195385
    [25] C. Müeller, R. Tribe, A phase transition for a stochastic PDE related to the contact process, Probab. Theor. Relat. Fields, 100 (1994), 131–156. https://doi.org/10.1007/BF01199262 doi: 10.1007/BF01199262
    [26] J. Zhao, Y. Shao, Stability of a three-species cooperative system with time delays and stochastic perturbations, Discrete Dyn. Nat. Soc., 2021 (2021), 1–15. https://doi.org/10.1155/2021/5577499 doi: 10.1155/2021/5577499
    [27] Y. Shao, Y. Chen, B. Dai, Dynamical analysis and optimal harvesting of a stochastic three-species cooperative system with delays and Lévy jumps, Adv. Differ. Equations, 423 (2018). https://doi.org/10.1186/s13662-018-1874-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(106) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog